1
|
Vidaurre V, Song A, Li T, Ku WL, Zhao K, Qian J, Chen X. The Drosophila histone methyltransferase SET1 coordinates multiple signaling pathways in regulating male germline stem cell maintenance and differentiation. Development 2024; 151:dev202729. [PMID: 39007366 PMCID: PMC11369688 DOI: 10.1242/dev.202729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Many tissue-specific adult stem cell lineages maintain a balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase Set1 regulates early-stage male germ cells in Drosophila. Early-stage germline-specific knockdown of Set1 results in temporally progressive defects, arising as germ cell loss and developing into overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage non-cell-autonomously. Additionally, wild-type Set1, but not the catalytically inactive Set1, rescues the Set1 knockdown phenotypes, highlighting the functional importance of the methyltransferase activity of Set1. Further, RNA-sequencing experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene Stat92E and the BMP pathway gene Mad, which are upregulated upon Set1 knockdown. Genetic interaction assays support the functional relationships between Set1 and JAK-STAT or BMP pathways, as both Stat92E and Mad mutations suppress the Set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The phenotype of germ cell loss followed by over-proliferation when inhibiting a histone methyltransferase also raises concerns about using their inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Annabelle Song
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taibo Li
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wai Lim Ku
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Jiang Qian
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| |
Collapse
|
2
|
Li Y, Sun Y, Li R, Zhou H, Li S, Jin P. Genetic Screening Revealed the Negative Regulation of miR-310~313 Cluster Members on Imd Pathway during Gram-Negative Bacterial Infection in Drosophila. Genes (Basel) 2024; 15:601. [PMID: 38790230 PMCID: PMC11120675 DOI: 10.3390/genes15050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Innate immune response is the first line of host defense against pathogenic microorganisms, and its excessive or insufficient activation is detrimental to the organism. Many individual microRNAs (miRNAs) have emerged as crucial post-transcriptional regulators of immune homeostasis in Drosophila melanogaster. However, the synergistical regulation of miRNAs located within a cluster on the Imd-immune pathway remains obscured. In our study, a genetic screening with 52 transgenic UAS-miRNAs was performed to identify ten miRNAs or miRNA clusters, including the miR310~313 cluster, which may function on Imd-dependent immune responses. The miRNA RT-qPCR analysis showed that the expression of miR-310~313 cluster members exhibited an increase at 6-12 h post E. coli infection. Furthermore, the overexpression of the miR-310~313 cluster impaired the Drosophila survival. And the overexpression of miR-310/311/312 reduced Dpt expression, an indication of Imd pathway induced by Gram-negative bacteria. Conversely, the knockdown of miR-310/311/312 led to increases in Dpt expression. The Luciferase reporter expression assays and RT-qPCR analysis confirmed that miR-310~313 cluster members directly co-targeted and inhibited Imd transcription. These findings reveal that the members of the miR-310~313 cluster synergistically inhibit Imd-dependent immune responses by co-targeting the Imd gene in Drosophila.
Collapse
Affiliation(s)
- Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yixuan Sun
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (R.L.); (H.Z.)
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (R.L.); (H.Z.)
| | - Shengjie Li
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China;
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (R.L.); (H.Z.)
| |
Collapse
|
3
|
Bernard EIM, Towler BP, Rogoyski OM, Newbury SF. Characterisation of the in-vivo miRNA landscape in Drosophila ribonuclease mutants reveals Pacman-mediated regulation of the highly conserved let-7 cluster during apoptotic processes. Front Genet 2024; 15:1272689. [PMID: 38444757 PMCID: PMC10912645 DOI: 10.3389/fgene.2024.1272689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
The control of gene expression is a fundamental process essential for correct development and to maintain homeostasis. Many post-transcriptional mechanisms exist to maintain the correct levels of each RNA transcript within the cell. Controlled and targeted cytoplasmic RNA degradation is one such mechanism with the 5'-3' exoribonuclease Pacman (XRN1) and the 3'-5' exoribonuclease Dis3L2 playing crucial roles. Loss of function mutations in either Pacman or Dis3L2 have been demonstrated to result in distinct phenotypes, and both have been implicated in human disease. One mechanism by which gene expression is controlled is through the function of miRNAs which have been shown to be crucial for the control of almost all cellular processes. Although the biogenesis and mechanisms of action of miRNAs have been comprehensively studied, the mechanisms regulating their own turnover are not well understood. Here we characterise the miRNA landscape in a natural developing tissue, the Drosophila melanogaster wing imaginal disc, and assess the importance of Pacman and Dis3L2 on the abundance of miRNAs. We reveal a complex landscape of miRNA expression and show that whilst a null mutation in dis3L2 has a minimal effect on the miRNA expression profile, loss of Pacman has a profound effect with a third of all detected miRNAs demonstrating Pacman sensitivity. We also reveal a role for Pacman in regulating the highly conserved let-7 cluster (containing miR-100, let-7 and miR-125) and present a genetic model outlining a positive feedback loop regulated by Pacman which enhances our understanding of the apoptotic phenotype observed in Pacman mutants.
Collapse
Affiliation(s)
- Elisa I. M. Bernard
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Benjamin P. Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Oliver M. Rogoyski
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Sarah F. Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
4
|
Mathieu J, Michel-Hissier P, Boucherit V, Huynh JR. The deubiquitinase USP8 targets ESCRT-III to promote incomplete cell division. Science 2022; 376:818-823. [PMID: 35587967 DOI: 10.1126/science.abg2653] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In many vertebrate and invertebrate organisms, gametes develop within groups of interconnected cells called germline cysts formed by several rounds of incomplete divisions. We found that loss of the deubiquitinase USP8 gene in Drosophila can transform incomplete divisions of germline cells into complete divisions. Conversely, overexpression of USP8 in germline stem cells is sufficient for the reverse transformation from complete to incomplete cytokinesis. The ESCRT-III proteins CHMP2B and Shrub/CHMP4 are targets of USP8 deubiquitinating activity. In Usp8 mutant sister cells, ectopic recruitment of ESCRT proteins at intercellular bridges causes cysts to break apart. A Shrub/CHMP4 variant that cannot be ubiquitinated does not localize at abscission bridges and cannot complete abscission. Our results uncover ubiquitination of ESCRT-III as a major switch between two types of cell division.
Collapse
Affiliation(s)
- Juliette Mathieu
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, Inserm, Paris, France
| | - Pascale Michel-Hissier
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, Inserm, Paris, France
| | - Virginie Boucherit
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, Inserm, Paris, France
| | - Jean-René Huynh
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, Inserm, Paris, France
| |
Collapse
|
5
|
Lyu Y, Liufu Z, Xiao J, Tang T. A Rapid Evolving microRNA Cluster Rewires Its Target Regulatory Networks in Drosophila. Front Genet 2021; 12:760530. [PMID: 34777478 PMCID: PMC8581666 DOI: 10.3389/fgene.2021.760530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
New miRNAs are evolutionarily important but their functional evolution remains unclear. Here we report that the evolution of a microRNA cluster, mir-972C rewires its downstream regulatory networks in Drosophila. Genomic analysis reveals that mir-972C originated in the common ancestor of Drosophila where it comprises six old miRNAs. It has subsequently recruited six new members in the melanogaster subgroup after evolving for at least 50 million years. Both the young and the old mir-972C members evolved rapidly in seed and non-seed regions. Combining target prediction and cell transfection experiments, we found that the seed and non-seed changes in individual mir-972C members cause extensive target divergence among D. melanogaster, D. simulans, and D. virilis, consistent with the functional evolution of mir-972C reported recently. Intriguingly, the target pool of the cluster as a whole remains relatively conserved. Our results suggest that clustering of young and old miRNAs broadens the target repertoires by acquiring new targets without losing many old ones. This may facilitate the establishment of new miRNAs in existing regulatory networks.
Collapse
Affiliation(s)
- Yang Lyu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Juan Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Wang Y, Chen Y, Cao M, Wang X, Wang G, Li J. Identification of wnt2 in the pearl mussel Hyriopsis cumingii and its role in innate immunity and gonadal development. FISH & SHELLFISH IMMUNOLOGY 2021; 118:85-93. [PMID: 34438059 DOI: 10.1016/j.fsi.2021.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Wnt2 is a significant factor in the Wnt signaling pathway, which is associated with a variety of physiological activities, including inflammatory response, cell apoptosis, reproductive system development, and cell differentiation. Hyriopsis cumingii is the main pearl breeding mussel in China. However, the role of wnt2 in this species remains unclear. In this study, wnt2 from H. cumingii was cloned and identified. The full-length cDNA of wnt2 is 1524 bp, containing a 963 bp open reading frame (ORF), encoding 320 amino acid residues. The tissue distribution of H. cumingii indicated that wnt2 was predominantly highly expressed in the ovary and gill. And the expression profile after Aeromonas hydrophila or LPS injection indicated that wnt2 was up-regulated in gill, suggesting its role in the innate immune response. The expression of wnt2 was high at 4-month-old of early gonadal development and throughout ovarian development. In situ hybridization (ISH) showed significant hybridization signals on the gills and mature eggs of female gonads. In addition, miR-1988b-5p was found to negatively regulate wnt2 to affect the expression of key genes (frizzled-5, ctnnb1, and tcf7l) in the Wnt signaling pathway. Thus, these findings suggest a key role for wnt2 in immune regulation and gonadal development in H. cumingii.
Collapse
Affiliation(s)
- Yayu Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Ya Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Mulian Cao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Xiaoqiang Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| |
Collapse
|
7
|
Vidaurre V, Chen X. Epigenetic regulation of drosophila germline stem cell maintenance and differentiation. Dev Biol 2021; 473:105-118. [PMID: 33610541 DOI: 10.1016/j.ydbio.2021.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Gametogenesis is one of the most extreme cellular differentiation processes that takes place in Drosophila male and female germlines. This process begins at the germline stem cell, which undergoes asymmetric cell division (ACD) to produce a self-renewed daughter that preserves its stemness and a differentiating daughter cell that undergoes epigenetic and genomic changes to eventually produce haploid gametes. Research in molecular genetics and cellular biology are beginning to take advantage of the continually advancing genomic tools to understand: (1) how germ cells are able to maintain their identity throughout the adult reproductive lifetime, and (2) undergo differentiation in a balanced manner. In this review, we focus on the epigenetic mechanisms that address these two questions through their regulation of germline-soma communication to ensure germline stem cell identity and activity.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD, 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD, 21218, USA.
| |
Collapse
|
8
|
Wnt6 regulates the homeostasis of the stem cell niche via Rac1-and Cdc42-mediated noncanonical Wnt signalling pathways in Drosophila testis. Exp Cell Res 2021; 402:112511. [PMID: 33582096 DOI: 10.1016/j.yexcr.2021.112511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/23/2022]
Abstract
The homeostasis of the stem cell niche is regulated by both intrinsic and extrinsic factors, and the complex and ordered molecular and cellular regulatory mechanisms need to be further explored. In Drosophila testis, germline stem cells (GSCs) rely on hub cells for self-renewal and physical attachment. GSCs are also in contact with somatic cyst stem cells (CySCs). Utilizing genetic manipulation in Drosophila, we investigated the role of Wnt6 in vivo and in vitro. In Drosophila testis, we found that Wnt6 is required for GSC differentiation and CySC self-renewal. In Schneider 2 (S2) cells, we found that Wnt6 regulates cell proliferation and apoptosis. Mechanistically, we demonstrated that Wnt6 can downregulate the expression levels of Arm, Rac1 and Cdc42 in S2 cells. Notably, Rac1 and Cdc42, which act downstream of the noncanonical Wnt signalling pathway, imitated the phenotypes of Wnt6 in Drosophila testis. Thus, the newly discovered Wnt6-Rac1/Cdc42 signal axis is required for the homeostasis of the stem cell niche in the Drosophila testis.
Collapse
|
9
|
Wang M, Chen X, Wu Y, Zheng Q, Chen W, Yan Y, Luan X, Shen C, Fang J, Zheng B, Yu J. RpS13 controls the homeostasis of germline stem cell niche through Rho1-mediated signals in the Drosophila testis. Cell Prolif 2020; 53:e12899. [PMID: 32896929 PMCID: PMC7574871 DOI: 10.1111/cpr.12899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Objectives Stem cell niche regulated the renewal and differentiation of germline stem cells (GSCs) in Drosophila. Previously, we and others identified a series of genes encoding ribosomal proteins that may contribute to the self‐renewal and differentiation of GSCs. However, the mechanisms that maintain and differentiate GSCs in their niches were not well understood. Materials and Methods Flies were used to generate tissue‐specific gene knockdown. Small interfering RNAs were used to knockdown genes in S2 cells. qRT‐PCR was used to examine the relative mRNA expression level. TUNEL staining or flow cytometry assays were used to detect cell survival. Immunofluorescence was used to determine protein localization and expression pattern. Results Herein, using a genetic manipulation approach, we investigated the role of ribosomal protein S13 (RpS13) in testes and S2 cells. We reported that RpS13 was required for the self‐renewal and differentiation of GSCs. We also demonstrated that RpS13 regulated cell proliferation and apoptosis. Mechanistically, we showed that RpS13 regulated the expression of ribosome subunits and could moderate the expression of the Rho1, DE‐cad and Arm proteins. Notably, Rho1 imitated the phenotype of RpS13 in both Drosophila testes and S2 cells, and recruited cell adhesions, which was mediated by the DE‐cad and Arm proteins. Conclusion These findings uncover a novel mechanism of RpS13 that mediates Rho1 signals in the stem cell niche of the Drosophila testis.
Collapse
Affiliation(s)
- Min Wang
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xia Chen
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Qianwen Zheng
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Wanyin Chen
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yidan Yan
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xiaojin Luan
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jie Fang
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Yu
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Lovegrove HE, Bergstralh DT, St Johnston D. The role of integrins in Drosophila egg chamber morphogenesis. Development 2019; 146:dev.182774. [PMID: 31784458 PMCID: PMC6918751 DOI: 10.1242/dev.182774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
Abstract
The Drosophila egg chamber comprises a germline cyst surrounded by a tightly organised epithelial monolayer, the follicular epithelium (FE). Loss of integrin function from the FE disrupts epithelial organisation at egg chamber termini, but the cause of this phenotype remains unclear. Here, we show that the β-integrin Myospheroid (Mys) is only required during early oogenesis when the pre-follicle cells form the FE. Mutation of mys disrupts both the formation of a monolayered epithelium at egg chamber termini and the morphogenesis of the stalk between adjacent egg chambers, which develops through the intercalation of two rows of cells into a single-cell-wide stalk. Secondary epithelia, like the FE, have been proposed to require adhesion to the basement membrane to polarise. However, Mys is not required for pre-follicle cell polarisation, as both follicle and stalk cells localise polarity factors correctly, despite being mispositioned. Instead, loss of integrins causes pre-follicle cells to constrict basally, detach from the basement membrane and become internalised. Thus, integrin function is dispensable for pre-follicle cell polarity but is required to maintain cellular organisation and cell shape during morphogenesis.
Collapse
Affiliation(s)
| | | | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
11
|
Zheng Y, Shen W, Bi J, Chen MY, Wang RF, Ai H, Wang YF. Small RNA analysis provides new insights into cytoplasmic incompatibility in Drosophila melanogaster induced by Wolbachia. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103938. [PMID: 31491378 DOI: 10.1016/j.jinsphys.2019.103938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia is a genus of endosymbiotic bacteria that induce a wide range of effects on their insect hosts. Cytoplasmic incompatibility (CI) is the most common phenotype mediated by Wolbachia and results in embryonic lethality when Wolbachia-infected males mate with uninfected females. Studies have revealed that bacteria can regulate many cellular processes in their hosts using small non-coding RNAs, so we investigated the involvement of small RNAs (sRNAs) in CI. Comparison of sRNA libraries between Wolbachia-infected and uninfected Drosophila melanogaster testes revealed 18 novel microRNAs (miRNAs), of which 12 were expressed specifically in Wolbachia-infected flies and one specifically in Wolbachia-uninfected flies. Furthermore, ten miRNAs showed differential expression, with four upregulated and six downregulated in Wolbachia-infected flies. Of the upregulated miRNAs, nov-miR-12 exhibited the highest upregulation in the testes of D. melanogaster. We then identified pipsqueak (psq) as the target gene of nov-miR-12 with the greatest complementarity in its 3' untranslated region (UTR). Wolbachia infection was correlated with reduced psq expression in D. melanogaster, and luciferase assays demonstrated that nov-miR-12 could downregulate psq through binding to its 3'UTR region. Knockdown of psq in Wolbachia-free fly testes significantly reduced egg hatching rate and mimicked the cellular abnormalities of Wolbachia-induced CI in embryos, including asynchronous nuclear division, chromatin bridging, and chromatin fragmentation. These results suggest that Wolbachia may induce CI in insect hosts by miRNA-mediated changes in host gene expression. Moreover, these findings reveal a potential molecular strategy for elucidating the complex interactions between endosymbionts and their insect hosts, such as Wolbachia-driven CI.
Collapse
Affiliation(s)
- Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Wei Shen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Rui-Fang Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
12
|
Abstract
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development-a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development.
Collapse
|
13
|
Wingless/Wnt Signaling in Intestinal Development, Homeostasis, Regeneration and Tumorigenesis: A Drosophila Perspective. J Dev Biol 2018; 6:jdb6020008. [PMID: 29615557 PMCID: PMC6026893 DOI: 10.3390/jdb6020008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 02/06/2023] Open
Abstract
In mammals, the Wnt/β-catenin signal transduction pathway regulates intestinal stem cell maintenance and proliferation, whereas Wnt pathway hyperactivation, resulting primarily from the inactivation of the tumor suppressor Adenomatous polyposis coli (APC), triggers the development of the vast majority of colorectal cancers. The Drosophila adult gut has recently emerged as a powerful model to elucidate the mechanisms by which Wingless/Wnt signaling regulates intestinal development, homeostasis, regeneration, and tumorigenesis. Herein, we review recent insights on the roles of Wnt signaling in Drosophila intestinal physiology and pathology.
Collapse
|
14
|
Hangover Links Nuclear RNA Signaling to cAMP Regulation via the Phosphodiesterase 4d Ortholog dunce. Cell Rep 2017; 18:533-544. [PMID: 28076795 DOI: 10.1016/j.celrep.2016.12.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/28/2016] [Accepted: 12/14/2016] [Indexed: 11/20/2022] Open
Abstract
The hangover gene defines a cellular stress pathway that is required for rapid ethanol tolerance in Drosophila melanogaster. To understand how cellular stress changes neuronal function, we analyzed Hangover function on a cellular and neuronal level. We provide evidence that Hangover acts as a nuclear RNA binding protein and we identified the phosphodiesterase 4d ortholog dunce as a target RNA. We generated a transcript-specific dunce mutant that is impaired not only in ethanol tolerance but also in the cellular stress response. At the neuronal level, Dunce and Hangover are required in the same neuron pair to regulate experience-dependent motor output. Within these neurons, two cyclic AMP (cAMP)-dependent mechanisms balance the degree of tolerance. The balance is achieved by feedback regulation of Hangover and dunce transcript levels. This study provides insight into how nuclear Hangover/RNA signaling is linked to the cytoplasmic regulation of cAMP levels and results in neuronal adaptation and behavioral changes.
Collapse
|
15
|
Liufu Z, Zhao Y, Guo L, Miao G, Xiao J, Lyu Y, Chen Y, Shi S, Tang T, Wu CI. Redundant and incoherent regulations of multiple phenotypes suggest microRNAs' role in stability control. Genome Res 2017; 27:1665-1673. [PMID: 28904014 PMCID: PMC5630030 DOI: 10.1101/gr.222505.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022]
Abstract
Each microRNA (miRNA) represses a web of target genes and, through them, controls multiple phenotypes. The difficulties inherent in such controls cast doubt on how effective miRNAs are in driving phenotypic changes. A "simple regulation" model posits "one target-one phenotype" control under which most targeting is nonfunctional. In an alternative "coordinate regulation" model, multiple targets are assumed to control the same phenotypes coherently, and most targeting is functional. Both models have some empirical support but pose different conceptual challenges. Here, we concurrently analyze multiple targets and phenotypes associated with the miRNA-310 family (miR310s) of Drosophila Phenotypic rescue in the mir310s knockout background is achieved by promoter-directed RNA interference that restores wild-type expression. For one phenotype (eggshell morphology), we observed redundant regulation, hence rejecting "simple regulation" in favor of the "coordinate regulation" model. For other phenotypes (egg-hatching and male fertility), however, one gene shows full rescue, but three other rescues aggravate the phenotype. Overall, phenotypic controls by miR310s do not support either model. Like a thermostat that controls both heating and cooling elements to regulate temperature, redundancy and incoherence in regulation generally suggest some capacity in stability control. Our results therefore support the published view that miRNAs play a role in the canalization of transcriptome and, hence, phenotypes.
Collapse
Affiliation(s)
- Zhongqi Liufu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yixin Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Li Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Guangxia Miao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Juan Xiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yang Lyu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yuxin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Tian Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
16
|
Alberti C, Cochella L. A framework for understanding the roles of miRNAs in animal development. Development 2017; 144:2548-2559. [PMID: 28720652 DOI: 10.1242/dev.146613] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) contribute to the progressive changes in gene expression that occur during development. The combined loss of all miRNAs results in embryonic lethality in all animals analyzed, illustrating the crucial role that miRNAs play collectively. However, although the loss of some individual miRNAs also results in severe developmental defects, the roles of many other miRNAs have been challenging to uncover. This has been mostly attributed to their proposed function as tuners of gene expression or providers of robustness. Here, we present a view of miRNAs in the context of development as a hierarchical and canalized series of gene regulatory networks. In this scheme, only a fraction of embryonic miRNAs act at the top of this hierarchy, with their loss resulting in broad developmental defects, whereas most other miRNAs are expressed with high cellular specificity and play roles at the periphery of development, affecting the terminal features of specialized cells. This view could help to shed new light on our understanding of miRNA function in development, disease and evolution.
Collapse
Affiliation(s)
- Chiara Alberti
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
17
|
Li Y, Li S, Li R, Xu J, Jin P, Chen L, Ma F. Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:34-45. [PMID: 27871832 DOI: 10.1016/j.dci.2016.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection.
Collapse
Affiliation(s)
- Yao Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Jiao Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Liming Chen
- The Key Laboratory of Developmental Genes and Human Disease, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
18
|
Qiang J, Tao F, He J, Sun L, Xu P, Bao W. Effects of exposure to Streptococcus iniae on microRNA expression in the head kidney of genetically improved farmed tilapia (Oreochromis niloticus). BMC Genomics 2017; 18:190. [PMID: 28219342 PMCID: PMC5322787 DOI: 10.1186/s12864-017-3591-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Background Genetically improved farmed tilapia (GIFT, Oreochromis niloticus) are susceptible to infection by Streptococcus iniae when maintained in modern intensive culture systems. GIFT are commercially important fishes that are cultured widely in southern China. The role of microRNAs (miRNAs) in the regulatory response of GIFT to S. iniae infection has been underestimated and has not yet been well studied. Head kidney has an important immune function in teleost fishes. The main aim of this study was to determine the possible function of miRNAs in head kidney of S. iniae-infected GIFT. MiRNAs are small, non-coding RNAs that regulate gene expression by binding to the 3’-untranslated regions of their target mRNAs. MiRNAs are known to regulate immune-regulated signaling and inflammatory response pathways. Results High-throughput deep sequencing of two libraries (control group [CO] and infected group [IN]) of RNA extracted from GIFT head kidney tissues generated 12,089,630 (CO) and 12,624,975 (IN) clean reads. Bioinformatics analysis identified 1736 and 1729 conserved miRNAs and 164 and 165 novel miRNAs in the CO and IN libraries, respectively. Three miRNAs (miR-310-3p, miR-92, and miR-127) were found to be up-regulated and four miRNAs (miR-92d-3p, miR-375-5p, miR-146-3p, and miR-694) were found to be down-regulated in the S. iniae-infected GIFT. The expressions of these miRNAs were verified by quantitative real-time PCR. RNAhybrid and TargetScan were used to identify complementary miRNA and mRNA target sites, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to annotate and predict potential downstream regulation of biological pathways. Seven target genes, which encode immune-related proteins (complement C3, cytidine deaminase, regulator of G-protein Rgs22, mitogen-activated protein kinase Mapk1, metabotropic glutamate receptorm GluR8, calcium-sensing receptor CaSR, and microtubule-associated protein Map1S) were predicted to play crucial roles in the GIFT response to S. iniae infection. Conclusions S. iniae outbreaks have hindered the development of the tilapia industry in China. Understanding the miRNA transcriptome of S. iniae-infected GIFT is important for exploring the immune responses regulated by miRNAs as well as for studying novel regulated networks to prevent and treat S. iniae infections in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3591-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China.
| | - Fanyi Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Lanyi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China.
| | - Wenjin Bao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| |
Collapse
|
19
|
Estrogen related receptor is required for the testicular development and for the normal sperm axoneme/mitochondrial derivatives in Drosophila males. Sci Rep 2017; 7:40372. [PMID: 28094344 PMCID: PMC5240334 DOI: 10.1038/srep40372] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022] Open
Abstract
Estrogen related receptors (ERRs), categorized as orphan nuclear receptors, are critical for energy homeostasis and somatic development. However, significance of ERRs in the development of reproductive organs/organelles/cells remain poorly understood, albeit their homology to estrogen receptors. In this context, here, we show that knockdown of ERR in the testes leads to improperly developed testes with mis-regulation of genes (aly, mia, bruce, bam, bgcn, fzo and eya) involved in spermatogenesis, resulting in reduced male fertility. The observed testicular deformity is consistent with the down-regulation of SOX-E group of gene (SOX100B) in Drosophila. We also show dispersion/disintegration of fusomes (microtubule based structures associated with endoplasmic reticulum derived vesicle, interconnecting spermatocytes) in ERR knockdown testes. A few ERR knockdown testes go through spermatogenesis but have significantly fewer sperm. Moreover, flagella of these sperm are defective with abnormal axoneme and severely reduced mitochondrial derivatives, suggesting a possible role for ERR in mitochondrial biogenesis, analogous to mammalian ERRα. Interestingly, similar knockdown of remaining seventeen nuclear receptors did not yield a detectable reproductive or developmental defect in Drosophila. These findings add newer dimensions to the functions envisaged for ERR and provide the foundation for deciphering the relevance of orphan nuclear receptors in ciliopathies and testicular dysgenesis.
Collapse
|
20
|
Ghezzi A, Zomeno M, Pietrzykowski AZ, Atkinson NS. Immediate-early alcohol-responsive miRNA expression in Drosophila. J Neurogenet 2016; 30:195-204. [PMID: 27845601 DOI: 10.1080/01677063.2016.1252764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
At the core of the changes characteristic of alcoholism are alterations in gene expression in the brain of the addicted individual. These changes are believed to underlie some of the neuroadaptations that promote compulsive drinking. Unfortunately, the mechanisms by which alcohol consumption produces changes in gene expression remain poorly understood. MicroRNAs (miRNAs) have emerged as important regulators of gene expression because they can coordinately modulate the translation efficiency of large sets of specific mRNAs. Here, we investigate the early miRNA responses elicited by an acute sedating dose of alcohol in the Drosophila model organism. In our analysis, we combine the power of next-generation sequencing with Drosophila genetics to identify alcohol-sensitive miRNAs and to functionally test them for a role in modulating alcohol sensitivity. We identified 14 known Drosophila miRNAs, and 13 putative novel miRNAs that respond to an acute sedative exposure to alcohol. Using the GeneSwitch Gal4/UAS system, a subset of these ethanol-responsive miRNAs was functionally tested to determine their individual contribution in modulating ethanol sensitivity. We identified two microRNAs that when overexpressed significantly increased ethanol sensitivity: miR-6 and miR-310. MicroRNA target prediction analysis revealed that the different alcohol-responsive miRNAs target-overlapping sets of mRNAs. Alcoholism is the product of accumulated cellular changes produced by chronic ethanol consumption. Although all of the changes described herein are extremely rapid responses evoked by a single ethanol exposure, understanding the gene expression changes that occur in the first few minutes after ethanol exposure will help us to categorize ethanol responses into those that are near instantaneous and those that are emergent responses produced only by repeated ethanol exposure.
Collapse
Affiliation(s)
- Alfredo Ghezzi
- a Department of Biology , University of Puerto Rico , Rio Piedras, San Juan , Puerto Rico
| | - Marie Zomeno
- b Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin , Austin , TX , USA
| | - Andrzej Z Pietrzykowski
- c The Biologically Inspired Neural and Dynamical Systems (BINDS) Lab, Department of Computer Science , University of Massachusetts Amherst , Amherst , MA , USA
| | - Nigel S Atkinson
- b Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
21
|
Hedgehog Signaling Strength Is Orchestrated by the mir-310 Cluster of MicroRNAs in Response to Diet. Genetics 2016; 202:1167-83. [PMID: 26801178 PMCID: PMC4788116 DOI: 10.1534/genetics.115.185371] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/18/2016] [Indexed: 01/08/2023] Open
Abstract
Since the discovery of microRNAs (miRNAs) only two decades ago, they have emerged as an essential component of the gene regulatory machinery. miRNAs have seemingly paradoxical features: a single miRNA is able to simultaneously target hundreds of genes, while its presence is mostly dispensable for animal viability under normal conditions. It is known that miRNAs act as stress response factors; however, it remains challenging to determine their relevant targets and the conditions under which they function. To address this challenge, we propose a new workflow for miRNA function analysis, by which we found that the evolutionarily young miRNA family, the mir-310s (mir-310/mir-311/mir-312/mir-313), are important regulators of Drosophila metabolic status. mir-310s-deficient animals have an abnormal diet-dependent expression profile for numerous diet-sensitive components, accumulate fats, and show various physiological defects. We found that the mir-310s simultaneously repress the production of several regulatory factors (Rab23, DHR96, and Ttk) of the evolutionarily conserved Hedgehog (Hh) pathway to sharpen dietary response. As the mir-310s expression is highly dynamic and nutrition sensitive, this signal relay model helps to explain the molecular mechanism governing quick and robust Hh signaling responses to nutritional changes. Additionally, we discovered a new component of the Hh signaling pathway in Drosophila, Rab23, which cell autonomously regulates Hh ligand trafficking in the germline stem cell niche. How organisms adjust to dietary fluctuations to sustain healthy homeostasis is an intriguing research topic. These data are the first to report that miRNAs can act as executives that transduce nutritional signals to an essential signaling pathway. This suggests miRNAs as plausible therapeutic agents that can be used in combination with low calorie and cholesterol diets to manage quick and precise tissue-specific responses to nutritional changes.
Collapse
|
22
|
Abstract
MicroRNAs are short noncoding, ~22-nucleotide RNAs that regulate protein abundance. The growth in our understanding of this class of RNAs has been rapid since their discovery just over a decade ago. We now appreciate that miRNAs are deeply embedded within the genetic networks that control basic features of metazoan cells including their identity, metabolism, and reproduction. The Drosophila melanogaster model system has made and will continue to make important contributions to this analysis. Intended as an introductory overview, here we review the current methods and resources available for functional analysis of fly miRNAs for those interested in performing this type of analysis.
Collapse
Affiliation(s)
- Geetanjali Chawla
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN, 47405, USA
| | - Arthur Luhur
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN, 47405, USA
| | - Nicholas Sokol
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN, 47405, USA.
| |
Collapse
|
23
|
Ninova M, Ronshaugen M, Griffiths-Jones S. MicroRNA evolution, expression, and function during short germband development in Tribolium castaneum. Genome Res 2015; 26:85-96. [PMID: 26518483 PMCID: PMC4691753 DOI: 10.1101/gr.193367.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/20/2015] [Indexed: 01/12/2023]
Abstract
MicroRNAs are well-established players in the development of multicellular animals. Most of our understanding of microRNA function in arthropod development comes from studies in Drosophila. Despite their advantages as model systems, the long germband embryogenesis of fruit flies is an evolutionary derived state restricted to several holometabolous insect lineages. MicroRNA evolution and expression across development in animals exhibiting the ancestral and more widespread short germband mode of embryogenesis has not been characterized. We sequenced small RNA libraries of oocytes and successive intervals covering the embryonic development of the short germband model organism, Tribolium castaneum. We analyzed the evolution and temporal expression of the microRNA complement and sequenced libraries of total RNA to investigate the relationships with microRNA target expression. We show microRNA maternal loading and sequence-specific 3′ end nontemplate oligoadenylation of maternally deposited microRNAs that is conserved between Tribolium and Drosophila. We further uncover large clusters encoding multiple paralogs from several Tribolium-specific microRNA families expressed during a narrow interval of time immediately after the activation of zygotic transcription. These novel microRNAs, together with several early expressed conserved microRNAs, target a significant number of maternally deposited transcripts. Comparison with Drosophila shows that microRNA-mediated maternal transcript targeting is a conserved process in insects, but the number and sequences of microRNAs involved have diverged. The expression of fast-evolving and species-specific microRNAs in the early blastoderm of T. castaneum is consistent with previous findings in Drosophila and shows that the unique permissiveness for microRNA innovation at this stage is a conserved phenomenon.
Collapse
Affiliation(s)
- Maria Ninova
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Matthew Ronshaugen
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Sam Griffiths-Jones
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
24
|
Marco A. Selection Against Maternal microRNA Target Sites in Maternal Transcripts. G3 (BETHESDA, MD.) 2015; 5:2199-207. [PMID: 26306531 PMCID: PMC4593001 DOI: 10.1534/g3.115.019497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022]
Abstract
In animals, before the zygotic genome is expressed, the egg already contains gene products deposited by the mother. These maternal products are crucial during the initial steps of development. In Drosophila melanogaster, a large number of maternal products are found in the oocyte, some of which are indispensable. Many of these products are RNA molecules, such as gene transcripts and ribosomal RNAs. Recently, microRNAs (small RNA gene regulators) have been detected early during development and are important in these initial steps. The presence of some microRNAs in unfertilized eggs has been reported, but whether they have a functional impact in the egg or early embryo has not being explored. I have extracted and sequenced small RNAs from Drosophila unfertilized eggs. The unfertilized egg is rich in small RNAs and contains multiple microRNA products. Maternal microRNAs often are encoded within the intron of maternal genes, suggesting that many maternal microRNAs are the product of transcriptional hitchhiking. Comparative genomics analyses suggest that maternal transcripts tend to avoid target sites for maternal microRNAs. I also developed a microRNA target mutation model to study the functional impact of polymorphisms at microRNA target sites. The analysis of Drosophila populations suggests that there is selection against maternal microRNA target sites in maternal transcripts. A potential role of the maternal microRNA mir-9c in maternal-to-zygotic transition is also discussed. In conclusion, maternal microRNAs in Drosophila have a functional impact in maternal protein-coding transcripts.
Collapse
Affiliation(s)
- Antonio Marco
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
25
|
Sanchez-Díaz I, Rosales-Bravo F, Reyes-Taboada JL, Covarrubias AA, Narvaez-Padilla V, Reynaud E. The Esg Gene Is Involved in Nicotine Sensitivity in Drosophila melanogaster. PLoS One 2015; 10:e0133956. [PMID: 26222315 PMCID: PMC4519288 DOI: 10.1371/journal.pone.0133956] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 07/03/2015] [Indexed: 12/04/2022] Open
Abstract
In humans, there is a strong correlation between sensitivity to substances of abuse and addiction risk. This differential tolerance to drugs has a strong genetic component. The identification of human genetic factors that alter drug tolerance has been a difficult task. For this reason and taking advantage of the fact that Drosophila responds similarly to humans to many drugs, and that genetically it has a high degree of homology (sharing at least 70% of genes known to be involved in human genetic diseases), we looked for genes in Drosophila that altered their nicotine sensitivity. We developed an instantaneous nicotine vaporization technique that exposed flies in a reproducible way. The amount of nicotine sufficient to "knock out" half of control flies for 30 minutes was determined and this parameter was defined as Half Recovery Time (HRT). Two fly lines, L4 and L70, whose HRT was significantly longer than control´s were identified. The L4 insertion is a loss of function allele of the transcriptional factor escargot (esg), whereas L70 insertion causes miss-expression of the microRNA cluster miR-310-311-312-313 (miR-310c). In this work, we demonstrate that esg loss of function induces nicotine sensitivity possibly by altering development of sensory organs and neurons in the medial section of the thoracoabdominal ganglion. The ectopic expression of the miR-310c also induces nicotine sensitivity by lowering Esg levels thus disrupting sensory organs and possibly to the modulation of other miR-310c targets.
Collapse
Affiliation(s)
- Iván Sanchez-Díaz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal, 510–3, Cuernavaca 62210, México
| | - Fernando Rosales-Bravo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, México
| | - José Luis Reyes-Taboada
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal, 510–3, Cuernavaca 62210, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal, 510–3, Cuernavaca 62210, Mexico
| | - Verónica Narvaez-Padilla
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, México
| | - Enrique Reynaud
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Apartado Postal, 510–3, Cuernavaca 62210, México
| |
Collapse
|
26
|
Song JL, Nigam P, Tektas SS, Selva E. microRNA regulation of Wnt signaling pathways in development and disease. Cell Signal 2015; 27:1380-91. [PMID: 25843779 PMCID: PMC4437805 DOI: 10.1016/j.cellsig.2015.03.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 12/19/2022]
Abstract
Wnt signaling pathways and microRNAs (miRNAs) are critical regulators of development. Aberrant Wnt signaling pathways and miRNA levels lead to developmental defects and diverse human pathologies including but not limited to cancer. Wnt signaling pathways regulate a plethora of cellular processes during embryonic development and maintain homeostasis of adult tissues. A majority of Wnt signaling components are regulated by miRNAs which are small noncoding RNAs that are expressed in both animals and plants. In animal cells, miRNAs fine tune gene expression by pairing primarily to the 3'untranslated region of protein coding mRNAs to repress target mRNA translation and/or induce target degradation. miRNA-mediated regulation of signaling transduction pathways is important in modulating dose-sensitive response of cells to signaling molecules. This review discusses components of the Wnt signaling pathways that are regulated by miRNAs in the context of development and diseases. A fundamental understanding of miRNA functions in Wnt signaling transduction pathways may yield new insight into crosstalks of regulatory mechanisms essential for development and disease pathophysiology leading to novel therapeutics.
Collapse
Affiliation(s)
- Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Priya Nigam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Senel S Tektas
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erica Selva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
27
|
Insects as models to study the epigenetic basis of disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:69-78. [DOI: 10.1016/j.pbiomolbio.2015.02.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/06/2015] [Accepted: 02/23/2015] [Indexed: 12/17/2022]
|
28
|
Feng L, Chen X. Epigenetic regulation of germ cells-remember or forget? Curr Opin Genet Dev 2015; 31:20-7. [PMID: 25930104 DOI: 10.1016/j.gde.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/02/2015] [Indexed: 12/18/2022]
Abstract
Unlike somatic cells, germ cells retain the potential to reproduce an entire new organism upon fertilization. In order to accomplish the process of fertilization, germ cells undergo an extreme cellular differentiation process known as gametogenesis in order to produce morphologically and functionally distinct oocyte and sperm. In addition to changes in genetic content changes from diploid to haploid, epigenetic mechanisms that modify chromatin state without altering primary DNA sequences have profound influence on germ cell differentiation and moreover, the transgenerational effect. In this review, we will go over the most recent discoveries on epigenetic regulations in germline differentiation and transgenerational inheritance across different metazoan species.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
29
|
Yeh SD, von Grotthuss M, Gandasetiawan KA, Jayasekera S, Xia XQ, Chan C, Jayaswal V, Ranz JM. Functional divergence of the miRNA transcriptome at the onset of Drosophila metamorphosis. Mol Biol Evol 2014; 31:2557-72. [PMID: 24951729 DOI: 10.1093/molbev/msu195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous RNA molecules that regulate gene expression posttranscriptionally. To date, the emergence of miRNAs and their patterns of sequence evolution have been analyzed in great detail. However, the extent to which miRNA expression levels have evolved over time, the role different evolutionary forces play in shaping these changes, and whether this variation in miRNA expression can reveal the interplay between miRNAs and mRNAs remain poorly understood. This is especially true for miRNA expressed during key developmental transitions. Here, we assayed miRNA expression levels immediately before (≥18BPF [18 h before puparium formation]) and after (PF) the increase in the hormone ecdysone responsible for triggering metamorphosis. We did so in four strains of Drosophila melanogaster and two closely related species. In contrast to their sequence conservation, approximately 25% of miRNAs analyzed showed significant within-species variation in male expression levels at ≥18BPF and/or PF. Additionally, approximately 33% showed modifications in their pattern of expression bias between developmental timepoints. A separate analysis of the ≥18BPF and PF stages revealed that changes in miRNA abundance accumulate linearly over evolutionary time at PF but not at ≥18BPF. Importantly, ≥18BPF-enriched miRNAs showed the greatest variation in expression levels both within and between species, so are the less likely to evolve under stabilizing selection. Functional attributes, such as expression ubiquity, appeared more tightly associated with lower levels of miRNA expression polymorphism at PF than at ≥18BPF. Furthermore, ≥18BPF- and PF-enriched miRNAs showed opposite patterns of covariation in expression with mRNAs, which denoted the type of regulatory relationship between miRNAs and mRNAs. Collectively, our results show contrasting patterns of functional divergence associated with miRNA expression levels during Drosophila ontogeny.
Collapse
Affiliation(s)
- Shu-Dan Yeh
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Marcin von Grotthuss
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | | | - Suvini Jayasekera
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Carolus Chan
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Vivek Jayaswal
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| |
Collapse
|
30
|
Abstract
Most animals have separate sexes. The differential expression of gene products, in particular that of gene regulators, is underlying sexual dimorphism. Analyses of sex-biased expression have focused mostly on protein-coding genes. Several lines of evidence indicate that microRNAs, a class of major gene regulators, are likely to have a significant role in sexual dimorphism. This role has not been systematically explored so far. Here, I study the sex-biased expression pattern of microRNAs in the model species Drosophila melanogaster. As with protein-coding genes, sex-biased microRNAs are associated with the reproductive function. Strikingly, contrary to protein-coding genes, male-biased microRNAs are enriched in the X chromosome, whereas female microRNAs are mostly autosomal. I propose that the chromosomal distribution is a consequence of high rates of de novo emergence, and a preference for new microRNAs to be expressed in the testis. I also suggest that demasculinization of the X chromosome may not affect microRNAs. Interestingly, female-biased microRNAs are often encoded within protein-coding genes that are also expressed in females. MicroRNAs with sex-biased expression do not preferentially target sex-biased gene transcripts. These results strongly suggest that the sex-biased expression of microRNAs is mainly a consequence of high rates of microRNA emergence in the X chromosome (male bias) or hitchhiked expression by host genes (female bias).
Collapse
Affiliation(s)
- Antonio Marco
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
31
|
León K, Gallay N, Poupon A, Reiter E, Dalbies-Tran R, Crepieux P. Integrating microRNAs into the complexity of gonadotropin signaling networks. Front Cell Dev Biol 2013; 1:3. [PMID: 25364708 PMCID: PMC4206998 DOI: 10.3389/fcell.2013.00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/12/2013] [Indexed: 12/13/2022] Open
Abstract
Follicle-stimulating hormone (FSH) is a master endocrine regulator of mammalian reproductive functions. Hence, it is used to stimulate folliculogenesis in assisted reproductive technologies (ART), both in women and in breeding animals. However, the side effects that hormone administration induces in some instances jeopardize the success of ART. Similarly, the luteinizing hormone (LH) is also of paramount importance in the reproductive function because it regulates steroidogenesis and the LH surge is a pre-requisite to ovulation. Gaining knowledge as extensive as possible on gonadotropin-induced biological responses could certainly lead to precise selection of their effects in vivo by the use of selective agonists at the hormone receptors. Hence, over the years, numerous groups have contributed to decipher the cellular events induced by FSH and LH in their gonadal target cells. Although little is known on the effect of gonadotropins on microRNA expression so far, recent data have highlighted that a microRNA regulatory network is likely to superimpose on the signaling protein network. No doubt that this will dramatically alter our current understanding of the gonadotropin-induced signaling networks. This is the topic of this review to present this additional level of complexity within the gonadotropin signaling network, in the context of recent findings on the microRNA machinery in the gonad.
Collapse
Affiliation(s)
- Kelly León
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Nathalie Gallay
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Anne Poupon
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Eric Reiter
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Rozenn Dalbies-Tran
- BINGO Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Pascale Crepieux
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| |
Collapse
|
32
|
Cowin P. Highlighting Young Investigators: Guest Editor Ramanuj DasGupta Ram DasGupta: Pushing the boundaries of β-catenin signaling and drug development. ACTA ACUST UNITED AC 2013; 20:151-3. [DOI: 10.3109/15419061.2013.858134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|