1
|
Angom RS, Singh M, Muhammad H, Varanasi SM, Mukhopadhyay D. Zebrafish as a Versatile Model for Cardiovascular Research: Peering into the Heart of the Matter. Cells 2025; 14:531. [PMID: 40214485 PMCID: PMC11988917 DOI: 10.3390/cells14070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. A total of 17.5 million people died of CVDs in the year 2012, accounting for 31% of all deaths globally. Vertebrate animal models have been used to understand cardiac disease biology, as the cellular, molecular, and physiological aspects of human CVDs can be replicated closely in these organisms. Zebrafish is a popular model organism offering an arsenal of genetic tools that allow the rapid in vivo analysis of vertebrate gene function and disease conditions. It has a short breeding cycle, high fecundity, optically transparent embryos, rapid internal organ development, and easy maintenance. This review aims to give readers an overview of zebrafish cardiac biology and a detailed account of heart development in zebrafish and its comparison with humans and the conserved genetic circuitry. We also discuss the contributions made in CVD research using the zebrafish model. The first part of this review focuses on detailed information on the morphogenetic and differentiation processes in early cardiac development. The overlap and divergence of the human heart's genetic circuitry, structure, and physiology are emphasized wherever applicable. In the second part of the review, we overview the molecular tools and techniques available to dissect gene function and expression in zebrafish, with special mention of the use of these tools in cardiac biology.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Meghna Singh
- Department of Pathology and Lab Medicine, University of California, Los Angeles, CA 92093, USA;
| | - Huzaifa Muhammad
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine and Science, Jacksonville, FL 32224, USA; (R.S.A.); (H.M.); (S.M.V.)
| |
Collapse
|
2
|
Zhang F, Evans T. Stage-specific DNA methylation dynamics in mammalian heart development. Epigenomics 2025; 17:359-371. [PMID: 39980349 PMCID: PMC11970762 DOI: 10.1080/17501911.2025.2467024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Cardiac development is a precisely regulated process governed by both genetic and epigenetic mechanisms. Among these, DNA methylation is one mode of epigenetic regulation that plays a crucial role in controlling gene expression at various stages of heart development and maturation. Understanding stage-specific DNA methylation dynamics is critical for unraveling the molecular processes underlying heart development from specification of early progenitors, formation of a primitive and growing heart tube from heart fields, heart morphogenesis, organ function, and response to developmental and physiological signals. This review highlights research that has explored profiles of DNA methylation that are highly dynamic during cardiac development and maturation, exploring stage-specific roles and the key molecular players involved. By exploring recent insights into the changing methylation landscape, we aim to highlight the complex interplay between DNA methylation and stage-specific cardiac gene expression, differentiation, and maturation.
Collapse
Affiliation(s)
- Fangfang Zhang
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Shen S, Werner T, Lukowski SW, Andersen S, Sun Y, Shim WJ, Mizikovsky D, Kobayashi S, Outhwaite J, Chiu HS, Chen X, Chapman G, Martin EMMA, Xia D, Pham D, Su Z, Kim D, Yang P, Tan MC, Sinniah E, Zhao Q, Negi S, Redd MA, Powell JE, Dunwoodie SL, Tam PPL, Bodén M, Ho JWK, Nguyen Q, Palpant NJ. Atlas of multilineage stem cell differentiation reveals TMEM88 as a developmental regulator of blood pressure. Nat Commun 2025; 16:1356. [PMID: 39904980 PMCID: PMC11794859 DOI: 10.1038/s41467-025-56533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Pluripotent stem cells provide a scalable approach to analyse molecular regulation of cell differentiation across developmental lineages. Here, we engineer barcoded induced pluripotent stem cells to generate an atlas of multilineage differentiation from pluripotency, encompassing an eight-day time course with modulation of WNT, BMP, and VEGF signalling pathways. Annotation of in vitro cell types with reference to in vivo development reveals diverse mesendoderm lineage cell types including lateral plate and paraxial mesoderm, neural crest, and primitive gut. Interrogation of temporal and signalling-specific gene expression in this atlas, evaluated against cell type-specific gene expression in human complex trait data highlights the WNT-inhibitor gene TMEM88 as a regulator of mesendodermal lineages influencing cardiovascular and anthropometric traits. Genetic TMEM88 loss of function models show impaired differentiation of endodermal and mesodermal derivatives in vitro and dysregulated arterial blood pressure in vivo. Together, this study provides an atlas of multilineage stem cell differentiation and analysis pipelines to dissect genetic determinants of mammalian developmental physiology.
Collapse
Affiliation(s)
- Sophie Shen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Tessa Werner
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Stacey Andersen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Genome Innovation Hub, The University of Queensland, St Lucia, QLD, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Woo Jun Shim
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sakurako Kobayashi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer Outhwaite
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Han Sheng Chiu
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Gavin Chapman
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ella M M A Martin
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Di Xia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Genome Innovation Hub, The University of Queensland, St Lucia, QLD, Australia
| | - Duy Pham
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Daniel Kim
- Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia
| | - Men Chee Tan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Queensland Facility for Advanced Genome Editing, The University of Queensland, St Lucia, QLD, Australia
| | - Enakshi Sinniah
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Qiongyi Zhao
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sumedha Negi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- University of New South Wales, Cellular Genomics Futures Institute, Sydney, NSW, Australia
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
4
|
Vijayakumar S, Sala R, Kang G, Chen A, Pablo MA, Adebayo AI, Cipriano A, Fowler JL, Gomes DL, Ang LT, Loh KM, Sebastiano V. Monolayer platform to generate and purify primordial germ-like cells in vitro provides insights into human germline specification. Nat Commun 2023; 14:5690. [PMID: 37709760 PMCID: PMC10502105 DOI: 10.1038/s41467-023-41302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Generating primordial germ cell-like cells (PGCLCs) from human pluripotent stem cells (hPSCs) advances studies of human reproduction and development of infertility treatments, but often entails complex 3D aggregates. Here we develop a simplified, monolayer method to differentiate hPSCs into PGCs within 3.5 days. We use our simplified differentiation platform and single-cell RNA-sequencing to achieve further insights into PGCLC specification. Transient WNT activation for 12 h followed by WNT inhibition specified PGCLCs; by contrast, sustained WNT induced primitive streak. Thus, somatic cells (primitive streak) and PGCLCs are related-yet distinct-lineages segregated by temporally-dynamic signaling. Pluripotency factors including NANOG are continuously expressed during the transition from pluripotency to posterior epiblast to PGCs, thus bridging pluripotent and germline states. Finally, hPSC-derived PGCLCs can be easily purified by virtue of their CXCR4+PDGFRA-GARP- surface-marker profile and single-cell RNA-sequencing reveals that they harbor transcriptional similarities with fetal PGCs.
Collapse
Affiliation(s)
- Sivakamasundari Vijayakumar
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Roberta Sala
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gugene Kang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michelle Ann Pablo
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Abidemi Ismail Adebayo
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Andrea Cipriano
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jonas L Fowler
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Danielle L Gomes
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Vittorio Sebastiano
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Zhang M, Liu J, Mao A, Ning G, Cao Y, Zhang W, Wang Q. Tmem88 confines ectodermal Wnt2bb signaling in pharyngeal arch artery progenitors for balancing cell cycle progression and cell fate decision. NATURE CARDIOVASCULAR RESEARCH 2023; 2:234-250. [PMID: 39195996 DOI: 10.1038/s44161-023-00215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/06/2023] [Indexed: 08/29/2024]
Abstract
Pharyngeal arch artery (PAA) progenitors undergo proliferative expansion and angioblast differentiation to build vessels connecting the heart with the dorsal aortae. However, it remains unclear whether and how these two processes are orchestrated. Here we demonstrate that Tmem88 is required to fine-tune PAA progenitor proliferation and differentiation. Loss of zebrafish tmem88a/b leads to an excessive expansion and a failure of differentiation of PAA progenitors. Moreover, tmem88a/b deficiency enhances cyclin D1 expression in PAA progenitors via aberrant Wnt signal activation. Mechanistically, cyclin D1-CDK4/6 promotes progenitor proliferation through accelerating the G1/S transition while suppressing angioblast differentiation by phosphorylating Nkx2.5/Smad3. Ectodermal Wnt2bb signaling is confined by Tmem88 in PAA progenitors to ensure a balance between proliferation and differentiation. Therefore, the proliferation and angioblast differentiation of PAA progenitors manifest an inverse relationship and are delicately regulated by cell cycle machinery downstream of the Tmem88-Wnt pathway.
Collapse
Affiliation(s)
- Mingming Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aihua Mao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
6
|
Balatskyi VV, Sowka A, Dobrzyn P, Piven OO. WNT/β-catenin pathway is a key regulator of cardiac function and energetic metabolism. Acta Physiol (Oxf) 2023; 237:e13912. [PMID: 36599355 DOI: 10.1111/apha.13912] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The WNT/β-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.
Collapse
Affiliation(s)
- Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
7
|
Afouda BA. Towards Understanding the Gene-Specific Roles of GATA Factors in Heart Development: Does GATA4 Lead the Way? Int J Mol Sci 2022; 23:5255. [PMID: 35563646 PMCID: PMC9099915 DOI: 10.3390/ijms23095255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcription factors play crucial roles in the regulation of heart induction, formation, growth and morphogenesis. Zinc finger GATA transcription factors are among the critical regulators of these processes. GATA4, 5 and 6 genes are expressed in a partially overlapping manner in developing hearts, and GATA4 and 6 continue their expression in adult cardiac myocytes. Using different experimental models, GATA4, 5 and 6 were shown to work together not only to ensure specification of cardiac cells but also during subsequent heart development. The complex involvement of these related gene family members in those processes is demonstrated through the redundancy among them and crossregulation of each other. Our recent identification at the genome-wide level of genes specifically regulated by each of the three family members and our earlier discovery that gata4 and gata6 function upstream, while gata5 functions downstream of noncanonical Wnt signalling during cardiac differentiation, clearly demonstrate the functional differences among the cardiogenic GATA factors. Such suspected functional differences are worth exploring more widely. It appears that in the past few years, significant advances have indeed been made in providing a deeper understanding of the mechanisms by which each of these molecules function during heart development. In this review, I will therefore discuss current evidence of the role of individual cardiogenic GATA factors in the process of heart development and emphasize the emerging central role of GATA4.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
8
|
Lan Y, Banks KM, Pan H, Verma N, Dixon GR, Zhou T, Ding B, Elemento O, Chen S, Huangfu D, Evans T. Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation. Cell Rep 2021; 37:110095. [PMID: 34879277 PMCID: PMC11229417 DOI: 10.1016/j.celrep.2021.110095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Changes in DNA methylation are associated with normal cardiogenesis, whereas altered methylation patterns can occur in congenital heart disease. Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) and promote locus-specific DNA demethylation. Here, we characterize stage-specific methylation dynamics and the function of TETs during human cardiomyocyte differentiation. Human embryonic stem cells (hESCs) in which all three TET genes are inactivated fail to generate cardiomyocytes (CMs), with altered mesoderm patterning and defective cardiac progenitor specification. Genome-wide methylation analysis shows TET knockout causes promoter hypermethylation of genes encoding WNT inhibitors, leading to hyperactivated WNT signaling and defects in cardiac mesoderm patterning. TET activity is also needed to maintain hypomethylated status and expression of NKX2-5 for subsequent cardiac progenitor specification. Finally, loss of TETs causes a set of cardiac structural genes to fail to be demethylated at the cardiac progenitor stage. Our data demonstrate key roles for TET proteins in controlling methylation dynamics at sequential steps during human cardiac development.
Collapse
Affiliation(s)
- Yahui Lan
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kelly M Banks
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Heng Pan
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nipun Verma
- Developmental Biology Program; Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gary R Dixon
- Developmental Biology Program; Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ting Zhou
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bo Ding
- Bonacept LLC, 6755 Mira Mesa Blvd, Ste123-360, San Diego, CA 92122, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program; Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
9
|
Failed Progenitor Specification Underlies the Cardiopharyngeal Phenotypes in a Zebrafish Model of 22q11.2 Deletion Syndrome. Cell Rep 2019; 24:1342-1354.e5. [PMID: 30067987 PMCID: PMC6261257 DOI: 10.1016/j.celrep.2018.06.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Microdeletions involving TBX1 result in variable congenital malformations known collectively as 22q11.2 deletion syndrome (22q11.2DS). Tbx1-deficient mice and zebrafish recapitulate several disease phenotypes, including pharyngeal arch artery (PAA), head muscle (HM), and cardiac outflow tract (OFT) deficiencies. In zebrafish, these structures arise from nkx2.5+ progenitors in pharyngeal arches 2-6. Because pharyngeal arch morphogenesis is compromised in Tbx1-deficient animals, the malformations were considered secondary. Here, we report that the PAA, HM, and OFT phenotypes in tbx1 mutant zebrafish are primary and arise prior to pharyngeal arch morphogenesis from failed specification of the nkx2.5+ pharyngeal lineage. Through in situ analysis and lineage tracing, we reveal that nkx2.5 and tbx1 are co-expressed in this progenitor population. Furthermore, we present evidence suggesting that gdf3-ALK4 signaling is a downstream mediator of nkx2.5+ pharyngeal lineage specification. Collectively, these studies support a cellular mechanism potentially underlying the cardiovascular and craniofacial defects observed in the 22q11.2DS population.
Collapse
|
10
|
Dobrzycki T, Lalwani M, Telfer C, Monteiro R, Patient R. The roles and controls of GATA factors in blood and cardiac development. IUBMB Life 2019; 72:39-44. [PMID: 31778014 PMCID: PMC6973044 DOI: 10.1002/iub.2178] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
GATA factors play central roles in the programming of blood and cardiac cells during embryonic development. Using the experimentally accessible Xenopus and zebrafish models, we report observations regarding the roles of GATA‐2 in the development of blood stem cells and GATA‐4, ‐5, and ‐6 in cardiac development. We show that blood stem cells develop from the dorsal lateral plate mesoderm and GATA‐2 is required at multiple stages. Firstly, GATA‐2 is required to make the cells responsive to VEGF‐A signalling by driving the synthesis of its receptor, FLK‐1/KDR. This leads to differentiation into the endothelial cells that form the dorsal aorta. GATA‐2 is again required for the endothelial‐to‐haematopoietic transition that takes place later in the floor of the dorsal aorta. GATA‐2 expression is dependent on BMP signalling for each of these inputs into blood stem cell programming. GATA‐4, ‐5, and ‐6 work together to ensure the specification of cardiac cells during development. We have demonstrated redundancy within the family and also some evolution of the functions of the different family members. Interestingly, one of the features that varies in evolution is the timing of expression relative to other key regulators such as Nkx2.5 and BMP. We show that the GATA factors, Nkx2.5 and BMP regulate each other and it would appear that what is critical is the mutually supportive network of expression rather than the order of expression of each of the component genes. In Xenopus and zebrafish, the cardiac mesoderm is adjacent to an anterior population of cells giving rise to blood and endothelium. This population is not present in mammals and we have shown that, like the cardiac population, the blood and endothelial precursors require GATA‐4, ‐5, and ‐6 for their development. Later, blood‐specific or cardiac‐specific regulators determine the ultimate fate of the cells, and we show that these regulators act cross‐antagonistically. Fibroblast growth factor (FGF) signalling drives the cardiac fate, and we propose that the anterior extension of the FGF signalling field during evolution led to the recruitment of the blood and endothelial precursors into the heart field ultimately resulting in a larger four chambered heart. Zebrafish are able to successfully regenerate their hearts after injury. To understand the pathways involved, with a view to determining why humans cannot do this, we profiled gene expression in the cardiomyocytes before and after injury, and compared those proximal to the injury with those more distal. We were able to identify an enhancement of the expression of regulators of the canonical Wnt pathway proximal to the injury, suggesting that changes in Wnt signalling are responsible for the repair response to injury.
Collapse
Affiliation(s)
- Tomasz Dobrzycki
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mukesh Lalwani
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Caroline Telfer
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, IBR West University of Birmingham, Edgbaston, Birmingham, UK
| | - Roger Patient
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.,BHF Centre of Research Excellence, Oxford, UK
| |
Collapse
|
11
|
Akerberg AA, Burns CE, Burns CG. Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatr Cardiol 2019; 40:1410-1418. [PMID: 31399780 PMCID: PMC6786954 DOI: 10.1007/s00246-019-02180-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Numerous RNA-binding proteins (RBPs) are expressed in the heart, and mutations in several RBPs have been implicated in cardiovascular disease through genetic associations, animal modeling, and mechanistic studies. However, the functions of many more cardiac RBPs, and their relevance to disease states, remain to be elucidated. Recently, we have initiated studies to characterize the functions of the RBPs RBPMS and RBPMS2 in regulating myocardial biology in zebrafish and higher vertebrate species. These studies began when we learned, using an unbiased gene discovery approach, that rbpms2a and rbpms2b in zebrafish are robust markers of embryonic myocardium. This observation, which is consistent with published data, suggests that the encoded proteins are likely to be performing critical functions in regulating one or more aspects of cardiomyocyte differentiation, proliferation, survival, and/or contractility. This notion is supported by recent reports demonstrating that zebrafish embryos with disrupted Rbpms2 function exhibit gross signs of cardiac distress. Interestingly, a 20-year-old study determined that myocardial tissue from the frog, chick, and mouse also express high levels of Rbpms and/or Rbpms2, which is suggestive of evolutionary conservation of function. In this review, we will provide a historical account of how RBPMS and RBPMS2 genes were discovered, attempt to clarify some potentially confusing nomenclature, and summarize published observations that inform our ongoing studies.
Collapse
Affiliation(s)
- Alexander A Akerberg
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115
| | - Caroline E. Burns
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115,Harvard Stem Cell Institute, Cambridge, MA 02138,Authors for Correspondence: ()
| | - C. Geoffrey Burns
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115,Authors for Correspondence: ()
| |
Collapse
|
12
|
Lee H, Evans T. TMEM88 Inhibits Wnt Signaling by Promoting Wnt Signalosome Localization to Multivesicular Bodies. iScience 2019; 19:267-280. [PMID: 31401350 PMCID: PMC6700443 DOI: 10.1016/j.isci.2019.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 01/07/2023] Open
Abstract
Wnt/β-catenin signaling is regulated in a bimodal fashion during cardiogenesis. Signaling is initially required to promote generation of precardiac mesoderm, but subsequently must be repressed for cardiac progenitor specification. TMEM88 was discovered recently as a negative regulator during the later phase of cardiac progenitor specification, but how TMEM88 functions was unknown. Based on a C-terminal PDZ-binding motif, TMEM88 was proposed to act by targeting the PDZ domain of Dishevelled, the positive Wnt signaling mediator. However, we discovered that TMEM88 acts downstream of the β-catenin destruction complex and can inhibit Wnt signaling independent of Dishevelled. TMEM88 requires the PDZ-binding motif for trafficking from Golgi to the plasma membrane and is also found in the multivesicular body (MVB) associated with the endocytosed Wnt signalosome. Expression of Tmem88 promotes association of the Wnt signalosome including β-catenin to the MVB, leading to reduced accumulation of nuclear β-catenin and repression of Wnt signaling. Human ESCs with a targeted TMEM88 knockout are impaired for cardiac specification TMEM88 does not require Dishevelled to inhibit Wnt signaling TMEM88 is trafficked from Golgi to plasma membrane and then to the MVB Expression of TMEM88 promotes association of the signalosome to the MVB
Collapse
Affiliation(s)
- Heejin Lee
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
13
|
Song G, Han M, Li Z, Gan X, Chen X, Yang J, Dong S, Yan M, Wan J, Wang Y, Huang Z, Yin Z, Zheng F. Deletion of Pr72 causes cardiac developmental defects in Zebrafish. PLoS One 2018; 13:e0206883. [PMID: 30481179 PMCID: PMC6258505 DOI: 10.1371/journal.pone.0206883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/22/2018] [Indexed: 01/20/2023] Open
Abstract
The alpha regulator subunit B'' of protein phosphatase 2 (PPP2R3A), a regulatory subunit of protein phosphatase 2A (PP2A), was reported to present a special subcellular localization in cardiomyocytes and elevate in non-ischemia failing hearts. PPP2R3A has two transcriptions PR72 and PR130. PR72 acts as a negative regulator of the Wnt signaling cascade, while the Wnt signaling cascade plays a pivotal role in cardiac development. And PR130 was found to be involved in cardiac development of zebrafish in our previous study. Thus, to investigate the function of PR72 in heart, two stable pr72 knockout (KO) zebrafish lines were generated using Transcription Activator-Like Effector Nuclease (TALEN) technology. Homozygous pr72 KO fish struggled to survive to adulthood and exhibited cardiac developmental defects, including enlarged ventricular chambers, reduced cardiomyocytes and decreased cardiac function. And the defective sarcomere ultrastructure that affected mitochondria, I bands, Z lines, and intercalated disks was also observed. Furthermore, the abnormal heart looping was detected in mutants which could be rescued by injection with wild type pr72 mRNA. Additionally, it was found that Wnt effectors were elevated in mutants. Those indicated that deletion of pr72 in zebrafish interrupted cardiac development, probably through activation of the Wnt pathway.
Collapse
Affiliation(s)
- Guibo Song
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingjun Han
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhua Li
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuedong Gan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaowen Chen
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Yang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sufang Dong
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Yan
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhuliang Huang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhan Yin
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (FZ); (ZY)
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
- * E-mail: (FZ); (ZY)
| |
Collapse
|
14
|
Zhao H, Lu F, Cui S, Zhang X, Wang W, Si E, Yuan Z. TMEM88 inhibits extracellular matrix expression in keloid fibroblasts. Biomed Pharmacother 2017; 95:1436-1440. [DOI: 10.1016/j.biopha.2017.09.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/03/2017] [Accepted: 09/10/2017] [Indexed: 12/25/2022] Open
|
15
|
Hempel A, Kühl SJ, Rothe M, Rao Tata P, Sirbu IO, Vainio SJ, Kühl M. The CapZ interacting protein Rcsd1 is required for cardiogenesis downstream of Wnt11a in Xenopus laevis. Dev Biol 2017; 424:28-39. [PMID: 28237811 DOI: 10.1016/j.ydbio.2017.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 11/17/2022]
Abstract
Wnt proteins are critical for embryonic cardiogenesis and cardiomyogenesis by regulating different intracellular signalling pathways. Whereas canonical Wnt/β-catenin signalling is required for mesoderm induction and proliferation of cardiac progenitor cells, β-catenin independent, non-canonical Wnt signalling regulates cardiac specification and terminal differentiation. Although the diverse cardiac malformations associated with the loss of non-canonical Wnt11 in mice such as outflow tract (OFT) defects, reduced ventricular trabeculation, myofibrillar disorganization and reduced cardiac marker gene expression are well described, the underlying molecular mechanisms are still not completely understood. Here we aimed to further characterize Wnt11 mediated signal transduction during vertebrate cardiogenesis. Using Xenopus as a model system, we show by loss of function and corresponding rescue experiments that the non-canonical Wnt signalling mediator Rcsd1 is required downstream of Wnt11 for ventricular trabeculation, terminal differentiation of cardiomyocytes and cardiac morphogenesis. We here place Rcsd1 downstream of Wnt11 during cardiac development thereby providing a novel mechanism for how non-canonical Wnt signalling regulates vertebrate cardiogenesis.
Collapse
Affiliation(s)
- Annemarie Hempel
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, IGradU, Ulm University, 89069 Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Melanie Rothe
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, IGradU, Ulm University, 89069 Ulm, Germany
| | - Purushothama Rao Tata
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, IGradU, Ulm University, 89069 Ulm, Germany
| | - Ioan Ovidiu Sirbu
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, BioCenter Oulu and InfoTech Oulu,University of Oulu, Aapistie 5, FIN-90014, Finland
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.
| |
Collapse
|
16
|
Comparison of Zebrafish tmem88a mutant and morpholino knockdown phenotypes. PLoS One 2017; 12:e0172227. [PMID: 28192479 PMCID: PMC5305201 DOI: 10.1371/journal.pone.0172227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 02/01/2017] [Indexed: 01/13/2023] Open
Abstract
Tmem88a is a transmembrane protein that is thought to be a negative regulator of the Wnt signalling pathway. Several groups have used antisense morpholino oligonucleotides in an effort to characterise the role of tmem88a in zebrafish cardiovascular development, but they have not obtained consistent results. Here, we generate an 8 bp deletion in the coding region of the tmem88a locus using TALENs, and we have gone on to establish a viable homozygous tmem88aΔ8 mutant line. Although tmem88aΔ8 mutants have reduced expression of some key haematopoietic genes, differentiation of erythrocytes and neutrophils is unaffected, contradicting our previous study using antisense morpholino oligonucleotides. We find that expression of the tmem88a paralogue tmem88b is not significantly changed in tmem88aΔ8 mutants and injection of the tmem88a splice-blocking morpholino oligonucleotide into tmem88aΔ8 mutants recapitulates the reduction of erythrocytes observed in morphants using o-Dianisidine. This suggests that there is a partial, but inessential, requirement for tmem88a during haematopoiesis and that morpholino injection exacerbates this phenotype in tmem88a morpholino knockdown embryos.
Collapse
|
17
|
Yang J, Li Z, Gan X, Zhai G, Gao J, Xiong C, Qiu X, Wang X, Yin Z, Zheng F. Deletion of Pr130 Interrupts Cardiac Development in Zebrafish. Int J Mol Sci 2016; 17:ijms17111746. [PMID: 27845735 PMCID: PMC5133774 DOI: 10.3390/ijms17111746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 11/16/2022] Open
Abstract
Protein phosphatase 2 regulatory subunit B, alpha (PPP2R3A), a regulatory subunit of protein phosphatase 2A (PP2A), is a major serine/threonine phosphatase that regulates crucial function in development and growth. Previous research has implied that PPP2R3A was involved in heart failure, and PR130, the largest transcription of PPP2R3A, functioning in the calcium release of sarcoplasmic reticulum (SR), plays an important role in the excitation-contraction (EC) coupling. To obtain a better understanding of PR130 functions in myocardium and cardiac development, two pr130-deletion zebrafish lines were generated using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system. Pr130-knockout zebrafish exhibited cardiac looping defects and decreased cardiac function (decreased fractional area and fractional shortening). Hematoxylin and eosin (H&E) staining demonstrated reduced cardiomyocytes. Subsequent transmission electron microscopy revealed that the bright and dark bands were narrowed and blurred, the Z- and M-lines were fogged, and the gaps between longitudinal myocardial fibers were increased. Additionally, increased apoptosis was observed in cardiomyocyte in pr130-knockout zebrafish compared to wild-type (WT). Taken together, our results suggest that pr130 is required for normal myocardium formation and efficient cardiac contractile function.
Collapse
Affiliation(s)
- Jie Yang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zuhua Li
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xuedong Gan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Gang Zhai
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jiajia Gao
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Chenling Xiong
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xueping Qiu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xuebin Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zhan Yin
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
18
|
Abstract
Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis.
Collapse
|
19
|
Quantitative proteomics identify DAB2 as a cardiac developmental regulator that inhibits WNT/β-catenin signaling. Proc Natl Acad Sci U S A 2016; 113:1002-7. [PMID: 26755607 DOI: 10.1073/pnas.1523930113] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To reveal the molecular mechanisms involved in cardiac lineage determination and differentiation, we quantified the proteome of human embryonic stem cells (hESCs), cardiac progenitor cells (CPCs), and cardiomyocytes during a time course of directed differentiation by label-free quantitative proteomics. This approach correctly identified known stage-specific markers of cardiomyocyte differentiation, including SRY-box2 (SOX2), GATA binding protein 4 (GATA4), and myosin heavy chain 6 (MYH6). This led us to determine whether our proteomic screen could reveal previously unidentified mediators of heart development. We identified Disabled 2 (DAB2) as one of the most dynamically expressed proteins in hESCs, CPCs, and cardiomyocytes. We used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mutagenesis in zebrafish to assess whether DAB2 plays a functional role during cardiomyocyte differentiation. We found that deletion of Dab2 in zebrafish embryos led to a significant reduction in cardiomyocyte number and increased endogenous WNT/β-catenin signaling. Furthermore, the Dab2-deficient defects in cardiomyocyte number could be suppressed by overexpression of dickkopf 1 (DKK1), an inhibitor of WNT/β-catenin signaling. Thus, inhibition of WNT/β-catenin signaling by DAB2 is essential for establishing the correct number of cardiomyocytes in the developing heart. Our work demonstrates that quantifying the proteome of human stem cells can identify previously unknown developmental regulators.
Collapse
|
20
|
Birket MJ, Mummery CL. Pluripotent stem cell derived cardiovascular progenitors--a developmental perspective. Dev Biol 2015; 400:169-79. [PMID: 25624264 DOI: 10.1016/j.ydbio.2015.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 12/15/2022]
Abstract
Human pluripotent stem cells can now be routinely differentiated into cardiac cell types including contractile cardiomyocytes, enabling the study of heart development and disease in vitro, and creating opportunities for the development of novel therapeutic interventions for patients. Our grasp of the system, however, remains partial, and a significant reason for this has been our inability to effectively purify and expand the intermediate cardiovascular progenitor cells (CPCs) equivalent to those studied in heart development. Doing so could facilitate the construction of a cardiac lineage cell fate map, boosting our capacity to more finely control stem cell lineage commitment to functionally distinct cardiac identities, as well as providing a model for identifying which genes confer cardiac potential on CPCs. This review offers a perspective on CPC development as understood from model organisms and pluripotent stem cell systems, focusing on issues of identity as well as the signalling implicated in inducing, expanding and patterning these cells.
Collapse
Affiliation(s)
- Matthew J Birket
- Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | |
Collapse
|
21
|
Musso G, Tasan M, Mosimann C, Beaver JE, Plovie E, Carr LA, Chua HN, Dunham J, Zuberi K, Rodriguez H, Morris Q, Zon L, Roth FP, MacRae CA. Novel cardiovascular gene functions revealed via systematic phenotype prediction in zebrafish. Development 2014; 141:224-35. [PMID: 24346703 DOI: 10.1242/dev.099796] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Comprehensive functional annotation of vertebrate genomes is fundamental to biological discovery. Reverse genetic screening has been highly useful for determination of gene function, but is untenable as a systematic approach in vertebrate model organisms given the number of surveyable genes and observable phenotypes. Unbiased prediction of gene-phenotype relationships offers a strategy to direct finite experimental resources towards likely phenotypes, thus maximizing de novo discovery of gene functions. Here we prioritized genes for phenotypic assay in zebrafish through machine learning, predicting the effect of loss of function of each of 15,106 zebrafish genes on 338 distinct embryonic anatomical processes. Focusing on cardiovascular phenotypes, the learning procedure predicted known knockdown and mutant phenotypes with high precision. In proof-of-concept studies we validated 16 high-confidence cardiac predictions using targeted morpholino knockdown and initial blinded phenotyping in embryonic zebrafish, confirming a significant enrichment for cardiac phenotypes as compared with morpholino controls. Subsequent detailed analyses of cardiac function confirmed these results, identifying novel physiological defects for 11 tested genes. Among these we identified tmem88a, a recently described attenuator of Wnt signaling, as a discrete regulator of the patterning of intercellular coupling in the zebrafish cardiac epithelium. Thus, we show that systematic prioritization in zebrafish can accelerate the pace of developmental gene function discovery.
Collapse
Affiliation(s)
- Gabriel Musso
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Palpant NJ, Pabon L, Rabinowitz JS, Hadland BK, Stoick-Cooper CL, Paige SL, Bernstein ID, Moon RT, Murry CE. Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development. Development 2013; 140:3799-808. [PMID: 23924634 DOI: 10.1242/dev.094789] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genetic regulation of the cell fate transition from lateral plate mesoderm to the specification of cardiomyocytes requires suppression of Wnt/β-catenin signaling, but the mechanism for this is not well understood. By analyzing gene expression and chromatin dynamics during directed differentiation of human embryonic stem cells (hESCs), we identified a suppressor of Wnt/β-catenin signaling, transmembrane protein 88 (TMEM88), as a potential regulator of cardiovascular progenitor cell (CVP) specification. During the transition from mesoderm to the CVP, TMEM88 has a chromatin signature of genes that mediate cell fate decisions, and its expression is highly upregulated in advance of key cardiac transcription factors in vitro and in vivo. In early zebrafish embryos, tmem88a is expressed broadly in the lateral plate mesoderm, including the bilateral heart fields. Short hairpin RNA targeting of TMEM88 during hESC cardiac differentiation increases Wnt/β-catenin signaling, confirming its role as a suppressor of this pathway. TMEM88 knockdown has no effect on NKX2.5 or GATA4 expression, but 80% of genes most highly induced during CVP development have reduced expression, suggesting adoption of a new cell fate. In support of this, analysis of later stage cell differentiation showed that TMEM88 knockdown inhibits cardiomyocyte differentiation and promotes endothelial differentiation. Taken together, TMEM88 is crucial for heart development and acts downstream of GATA factors in the pre-cardiac mesoderm to specify lineage commitment of cardiomyocyte development through inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Nathan J Palpant
- Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | | | | | | | | | | | | | | | | |
Collapse
|