1
|
Hu Y, Yang X, Lipshitz HD. The TRIM-NHL RNA-binding protein MEI-P26 modulates the size of Drosophila Type I neuroblast lineages. Genetics 2025; 229:iyaf015. [PMID: 39854267 PMCID: PMC11912871 DOI: 10.1093/genetics/iyaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
The Drosophila TRIM-NHL RNA-binding protein (RBP), MEI-P26, has previously been shown to suppress tumor formation in the germline. Here we show that, in the Drosophila larval central brain, cell-type-specific expression of MEI-P26 plays a vital role in regulating neural development. MEI-P26 and another TRIM-NHL RBP, Brain tumor (BRAT), have distinct expression patterns in Type I neuroblast (NB) lineages: While both proteins are expressed in NBs, BRAT is expressed in ganglion mother cells (GMCs) but not neurons, whereas MEI-P26 is expressed in neurons but not GMCs. Knockdown of MEI-P26 leads to re-expression of the stem cell marker Deadpan (DPN) and over-production of neurons. In contrast, ectopically expressed MEI-P26 reduces NB lineage size by repressing division of GMCs, resulting in reduced neuron production. We show that MEI-P26 positively regulates expression of Prospero (PROS), a transcription factor that is known to repress cell cycle-related genes. Ectopic expression of PROS phenocopies ectopic expression of MEI-P26. In both cases, Cyclin B (CYCB) expression is downregulated. Importantly, knockdown of PROS in the context of ectopic MEI-P26 rescues the neural lineage. Based on these results, we conclude that MEI-P26 functions to prevent over-production of neurons by promoting production of PROS which, in turn, downregulates cell division.
Collapse
Affiliation(s)
- Yichao Hu
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Institute of Genetics, Zhejiang University International School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohang Yang
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
- Institute of Genetics, Zhejiang University International School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Institute of Genetics, Zhejiang University International School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
2
|
Brattig-Correia R, Almeida JM, Wyrwoll MJ, Julca I, Sobral D, Misra CS, Di Persio S, Guilgur LG, Schuppe HC, Silva N, Prudêncio P, Nóvoa A, Leocádio AS, Bom J, Laurentino S, Mallo M, Kliesch S, Mutwil M, Rocha LM, Tüttelmann F, Becker JD, Navarro-Costa P. The conserved genetic program of male germ cells uncovers ancient regulators of human spermatogenesis. eLife 2024; 13:RP95774. [PMID: 39388236 PMCID: PMC11466473 DOI: 10.7554/elife.95774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Male germ cells share a common origin across animal species, therefore they likely retain a conserved genetic program that defines their cellular identity. However, the unique evolutionary dynamics of male germ cells coupled with their widespread leaky transcription pose significant obstacles to the identification of the core spermatogenic program. Through network analysis of the spermatocyte transcriptome of vertebrate and invertebrate species, we describe the conserved evolutionary origin of metazoan male germ cells at the molecular level. We estimate the average functional requirement of a metazoan male germ cell to correspond to the expression of approximately 10,000 protein-coding genes, a third of which defines a genetic scaffold of deeply conserved genes that has been retained throughout evolution. Such scaffold contains a set of 79 functional associations between 104 gene expression regulators that represent a core component of the conserved genetic program of metazoan spermatogenesis. By genetically interfering with the acquisition and maintenance of male germ cell identity, we uncover 161 previously unknown spermatogenesis genes and three new potential genetic causes of human infertility. These findings emphasize the importance of evolutionary history on human reproductive disease and establish a cross-species analytical pipeline that can be repurposed to other cell types and pathologies.
Collapse
Affiliation(s)
- Rion Brattig-Correia
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Department of Systems Science and Industrial Engineering, Binghamton UniversityNew YorkUnited States
| | - Joana M Almeida
- Instituto Gulbenkian de CiênciaOeirasPortugal
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Margot Julia Wyrwoll
- Centre of Medical Genetics, Institute of Reproductive Genetics, University and University Hospital of MünsterMünsterGermany
| | - Irene Julca
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Daniel Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University LisbonLisbonPortugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University LisbonCaparicaPortugal
| | - Chandra Shekhar Misra
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeirasPortugal
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | | | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-UniversityGiessenGermany
| | - Neide Silva
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Pedro Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Ana Nóvoa
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | - Joana Bom
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | | | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Luis M Rocha
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Department of Systems Science and Industrial Engineering, Binghamton UniversityNew YorkUnited States
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University and University Hospital of MünsterMünsterGermany
| | - Jörg D Becker
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeirasPortugal
| | - Paulo Navarro-Costa
- Instituto Gulbenkian de CiênciaOeirasPortugal
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of LisbonLisbonPortugal
| |
Collapse
|
3
|
Mannino MC, Cassidy MB, Florez S, Rusan Z, Chakraborty S, Schoborg T. Mutations in abnormal spindle disrupt temporal transcription factor expression and trigger immune responses in the Drosophila brain. Genetics 2023; 225:iyad188. [PMID: 37831641 PMCID: PMC10697820 DOI: 10.1093/genetics/iyad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The coordination of cellular behaviors during neurodevelopment is critical for determining the form, function, and size of the central nervous system (CNS). Mutations in the vertebrate Abnormal Spindle-Like, Microcephaly Associated (ASPM) gene and its Drosophila melanogaster ortholog abnormal spindle (asp) lead to microcephaly (MCPH), a reduction in overall brain size whose etiology remains poorly defined. Here, we provide the neurodevelopmental transcriptional landscape for a Drosophila model for autosomal recessive primary microcephaly-5 (MCPH5) and extend our findings into the functional realm to identify the key cellular mechanisms responsible for Asp-dependent brain growth and development. We identify multiple transcriptomic signatures, including new patterns of coexpressed genes in the developing CNS. Defects in optic lobe neurogenesis were detected in larval brains through downregulation of temporal transcription factors (tTFs) and Notch signaling targets, which correlated with a significant reduction in brain size and total cell numbers during the neurogenic window of development. We also found inflammation as a hallmark of asp mutant brains, detectable throughout every stage of CNS development, which also contributes to the brain size phenotype. Finally, we show that apoptosis is not a primary driver of the asp mutant brain phenotypes, further highlighting an intrinsic Asp-dependent neurogenesis promotion mechanism that is independent of cell death. Collectively, our results suggest that the etiology of the asp mutant brain phenotype is complex and that a comprehensive view of the cellular basis of the disorder requires an understanding of how multiple pathway inputs collectively determine tissue size and architecture.
Collapse
Affiliation(s)
- Maria C Mannino
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Steven Florez
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Zeid Rusan
- Personalis, Inc., Fremont, CA 94555, USA
| | - Shalini Chakraborty
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Todd Schoborg
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
4
|
Veen K, Krylov A, Yu S, He J, Boyd P, Hyde DR, Mantamadiotis T, Cheng LY, Jusuf PR. Her6 and Prox1a are novel regulators of photoreceptor regeneration in the zebrafish retina. PLoS Genet 2023; 19:e1011010. [PMID: 37930995 PMCID: PMC10653607 DOI: 10.1371/journal.pgen.1011010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/16/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023] Open
Abstract
Damage to light-sensing photoreceptors (PRs) occurs in highly prevalent retinal diseases. As humans cannot regenerate new PRs, these diseases often lead to irreversible blindness. Intriguingly, animals, such as the zebrafish, can regenerate PRs efficiently and restore functional vision. Upon injury, mature Müller glia (MG) undergo reprogramming to adopt a stem cell-like state. This process is similar to cellular dedifferentiation, and results in the generation of progenitor cells, which, in turn, proliferate and differentiate to replace lost retinal neurons. In this study, we tested whether factors involved in dedifferentiation of Drosophila CNS are implicated in the regenerative response in the zebrafish retina. We found that hairy-related 6 (her6) negatively regulates of PR production by regulating the rate of cell divisions in the MG-derived progenitors. prospero homeobox 1a (prox1a) is expressed in differentiated PRs and may promote PR differentiation through phase separation. Interestingly, upon Her6 downregulation, Prox1a is precociously upregulated in the PRs, to promote PR differentiation; conversely, loss of Prox1a also induces a downregulation of Her6. Together, we identified two novel candidates of PR regeneration that cross regulate each other; these may be exploited to promote human retinal regeneration and vision recovery.
Collapse
Affiliation(s)
- Kellie Veen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Aaron Krylov
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shuguang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Patrick Boyd
- Department of Biological Sciences, Center for Zebrafish Research, and Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - David R. Hyde
- Department of Biological Sciences, Center for Zebrafish Research, and Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Theo Mantamadiotis
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Louise Y. Cheng
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patricia R. Jusuf
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Aughey GN. Maintenance of neuronal fate and transcriptional identity. Biol Open 2023; 12:bio059953. [PMID: 37272626 PMCID: PMC10259840 DOI: 10.1242/bio.059953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
The processes that drive naive multipotent stem cells towards fully differentiated fates are increasingly well understood. However, once differentiated, the mechanisms and molecular factors involved in maintaining differentiated states and associated transcriptomes are less well studied. Neurons are a post-mitotic cell-type with highly specialised functions that largely lack the capacity for renewal. Therefore, neuronal cell identities and the transcriptional states that underpin them are locked into place by active mechanisms that prevent lineage reversion/dedifferentiation and repress cell cycling. Furthermore, individual neurons may be very long-lived, so these mechanisms must be sufficient to ensure the fidelity of neuronal transcriptomes over long time periods. This Review aims to provide an overview of recent progress in understanding how neuronal cell fate and associated gene expression are maintained and the transcriptional regulators that are involved. Maintenance of neuronal fate and subtype specification are discussed, as well as the activating and repressive mechanisms involved. The relevance of these processes to disease states, such as brain cancers and neurodegeneration is outlined. Finally, outstanding questions and hypotheses in this field are proposed.
Collapse
Affiliation(s)
- Gabriel N. Aughey
- Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, University College London, London WC1N 3BG, UK
| |
Collapse
|
6
|
Zhang Q, Song J, Cao L, Sun M, Xu T, Yang S, Li S, Wang H, Fu X. RNF113A targeted by miR-197 promotes proliferation and inhibits autophagy via CXCR4/CXCL12/AKT/ERK/Beclin1 axis in cervical cancer. Exp Cell Res 2023; 428:113632. [PMID: 37164050 DOI: 10.1016/j.yexcr.2023.113632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Ring Finger Protein 113 (RNF113A), an ubiquitin E3 ligase, is genetically associated with many biological processes, including proliferation, differentiation, cell death, and neurogenesis. Recently, RNF113A has been found to be an abnormal expression in many diseases, such as X-linked trichothiodystrophy syndrome and esophageal cancer. Here, we explore the potential mechanism of RNF113A in the progression of cervical cancer (CC). In this study, we evaluated the expression level and biological function of RNF113A in CC both in vitro and in vivo by bioinformatic prediction, DIA proteomic analysis, compensation experiment, Co-IP, dual-luciferase reporter assay and nude mouse xenograft to identify the RNF113A-associated autophagy pathways involved with tumorigenesis. Consistent with the prediction from biological information analysis, we found that RNF113A was highly expressed in human CC tissues and cells. In addition, this study illustrated that the high expression of RNF113A dramatically promoted proliferation and suppressed autophagy both in vitro and in vivo. In contrast, low expression of RNF113A enhanced autophagy activities and inhibited tumor growth in CC. We also found that miRNA-197, the level of which (negative correlation with RNF113A) declined in human CC, directly restrained the expression of RNF113A. Mechanistically, proteomic and mechanistic assays uncovered that RNF113A confirmed as the direct downstream target of miR-197, promoted proliferation and restrained autophagy in CC not through direct ubiquitination degradation of autophagy marker Beclin1 but via CXCR4/CXCL12/AKT/ERK/Beclin1 signal transduction axis. In summary, we found a new miR-197/RNF113 A/CXCR4/CXCL12/AKT/ERK/Beclin1 regulation pathway that plays an important part in the survival and progression of CC.
Collapse
Affiliation(s)
- Qingwei Zhang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Jiayu Song
- Department of Pharmacology, Luohe Medical College, Luohe, 462000, Henan, China; School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, China.
| | - Liejia Cao
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Mingzheng Sun
- Department of Pharmacology, Luohe Medical College, Luohe, 462000, Henan, China
| | - Tenghan Xu
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Shaozhe Yang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Suhong Li
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Huifen Wang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Xiuhong Fu
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China.
| |
Collapse
|
7
|
Tsampoula M, Tarampoulous I, Manolakou T, Ninou E, Politis PK. The neurodevelopmental disorders associated gene Rnf113a regulates survival and differentiation properties of neural stem cells. Stem Cells 2022; 40:678-690. [DOI: 10.1093/stmcls/sxac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/23/2022] [Indexed: 11/15/2022]
Abstract
Abstract
RNF113A (Ring Finger Protein 113A) is genetically associated with autism spectrum disorders and X-linked trichothiodystrophy (TTD) syndrome. Loss-of-function mutations in human RNF113A are causally linked to TTD, which is characterized by abnormal development of central nervous system (CNS) and mental retardation. How loss of RNF113A activity affects brain development is not known. Here we identify Rnf113a1 as a critical regulator of cell death and neurogenesis during mouse brain development. Rnf113a1 gene exhibits widespread expression in the embryonic CNS. Knockdown studies in embryonic cortical neural stem/progenitor cells (NSCs) and the mouse cortex suggest that Rnf113a1 controls survival, proliferation and differentiation properties of progenitor cells. Importantly, Rnf113a1 deficiency triggers cell apoptosis via a combined action on essential regulators of cell survival, including p53, Nupr1 and Rad51. Collectively, these observations establish Rnf113a1 as a regulatory factor in CNS development and provide insights for its role in neurodevelopmental defects associated with TTD and autism.
Collapse
Affiliation(s)
- Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Isaak Tarampoulous
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Elpinickie Ninou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
8
|
Malla S, Prasad Bhattarai D, Groza P, Melguizo‐Sanchis D, Atanasoai I, Martinez‐Gamero C, Román Á, Zhu D, Lee D, Kutter C, Aguilo F. ZFP207 sustains pluripotency by coordinating OCT4 stability, alternative splicing and RNA export. EMBO Rep 2022; 23:e53191. [PMID: 35037361 PMCID: PMC8892232 DOI: 10.15252/embr.202153191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sandhya Malla
- Department of Medical Biosciences Umeå University Umeå Sweden
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Devi Prasad Bhattarai
- Department of Medical Biosciences Umeå University Umeå Sweden
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Paula Groza
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Dario Melguizo‐Sanchis
- Department of Medical Biosciences Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Ionut Atanasoai
- Department of Microbiology, Tumor and Cell Biology Science for Life Laboratory Karolinska Institute Stockholm Sweden
| | - Carlos Martinez‐Gamero
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| | - Ángel‐Carlos Román
- Department of Biochemistry, Molecular Biology and Genetics University of Extremadura Badajoz Spain
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology McGovern Medical School The University of Texas Health Science Center at Houston Houston TX USA
| | - Dung‐Fang Lee
- Department of Integrative Biology and Pharmacology McGovern Medical School The University of Texas Health Science Center at Houston Houston TX USA
- Center for Precision Health School of Biomedical Informatics The University of Texas Health Science Center at Houston Houston TX USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston TX USA
- Center for Stem Cell and Regenerative Medicine The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases The University of Texas Health Science Center at Houston Houston TX USA
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology Science for Life Laboratory Karolinska Institute Stockholm Sweden
| | - Francesca Aguilo
- Department of Medical Biosciences Umeå University Umeå Sweden
- Department of Molecular Biology Umeå University Umeå Sweden
- Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
| |
Collapse
|
9
|
Li Q, Jang H, Lim KY, Lessing A, Stavropoulos N. insomniac links the development and function of a sleep-regulatory circuit. eLife 2021; 10:65437. [PMID: 34908527 PMCID: PMC8758140 DOI: 10.7554/elife.65437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Although many genes are known to influence sleep, when and how they impact sleep-regulatory circuits remain ill-defined. Here, we show that insomniac (inc), a conserved adaptor for the autism-associated Cul3 ubiquitin ligase, acts in a restricted period of neuronal development to impact sleep in adult Drosophila. The loss of inc causes structural and functional alterations within the mushroom body (MB), a center for sensory integration, associative learning, and sleep regulation. In inc mutants, MB neurons are produced in excess, develop anatomical defects that impede circuit assembly, and are unable to promote sleep when activated in adulthood. Our findings link neurogenesis and postmitotic development of sleep-regulatory neurons to their adult function and suggest that developmental perturbations of circuits that couple sensory inputs and sleep may underlie sleep dysfunction in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Qiuling Li
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Hyunsoo Jang
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Kayla Y Lim
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Alexie Lessing
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Nicholas Stavropoulos
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
- Waksman Institute, Rutgers UniversityPiscatawayUnited States
| |
Collapse
|
10
|
Kurashina M, Wang J, Lin J, Lee KK, Johal A, Mizumoto K. Sustained expression of unc-4 homeobox gene and unc-37/Groucho in postmitotic neurons specifies the spatial organization of the cholinergic synapses in C. elegans. eLife 2021; 10:66011. [PMID: 34388088 PMCID: PMC8363302 DOI: 10.7554/elife.66011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/07/2021] [Indexed: 11/13/2022] Open
Abstract
Neuronal cell fate determinants establish the identities of neurons by controlling gene expression to regulate neuronal morphology and synaptic connectivity. However, it is not understood if neuronal cell fate determinants have postmitotic functions in synapse pattern formation. Here we identify a novel role for UNC-4 homeobox protein and its corepressor UNC-37/Groucho, in tiled synaptic patterning of the cholinergic motor neurons in Caenorhabditis elegans. We show that unc-4 is not required during neurogenesis but is required in the postmitotic neurons for proper synapse patterning. In contrast, unc-37 is required in both developing and postmitotic neurons. The synaptic tiling defects of unc-4 mutants are suppressed by bar-1/β-catenin mutation, which positively regulates the expression of ceh-12/HB9. Ectopic ceh-12 expression partly underlies the synaptic tiling defects of unc-4 and unc-37 mutants. Our results reveal a novel postmitotic role of neuronal cell fate determinants in synapse pattern formation through inhibiting the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Mizuki Kurashina
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, Canada
| | - Jane Wang
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Jeffrey Lin
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Kathy Kyungeun Lee
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Arpun Johal
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, Canada.,Life Sciences Institute, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Abstract
AbstractIn the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we will discuss our current understanding of how self-renewal and differentiation are regulated in the two neural stem cell pools, and the consequences of the deregulation of these processes.
Collapse
Affiliation(s)
- Francesca Froldi
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| | - Milán Szuperák
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| | - Louise Y. Cheng
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
12
|
Sheffield L, Sciambra N, Evans A, Hagedorn E, Goltz C, Delfeld M, Kuhns H, Fierst JL, Chtarbanova S. Age-dependent impairment of disease tolerance is associated with a robust transcriptional response following RNA virus infection in Drosophila. G3-GENES GENOMES GENETICS 2021; 11:6219303. [PMID: 33836060 PMCID: PMC8495950 DOI: 10.1093/g3journal/jkab116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022]
Abstract
Advanced age in humans is associated with greater susceptibility to and higher mortality rates from infections, including infections with some RNA viruses. The underlying innate immune mechanisms, which represent the first line of defense against pathogens, remain incompletely understood. Drosophila melanogaster is able to mount potent and evolutionarily conserved innate immune defenses against a variety of microorganisms including viruses and serves as an excellent model organism for studying host–pathogen interactions. With its relatively short lifespan, Drosophila also is an organism of choice for aging studies. Despite numerous advantages that this model offers, Drosophila has not been used to its full potential to investigate the response of the aged host to viral infection. Here, we show that, in comparison to younger flies, aged Drosophila succumb more rapidly to infection with the RNA-containing Flock House virus due to an age-dependent defect in disease tolerance. Relative to younger individuals, we find that older Drosophila mount transcriptional responses characterized by differential regulation of more genes and genes regulated to a greater extent. We show that loss of disease tolerance to Flock House virus with age associates with a stronger regulation of genes involved in apoptosis, some genes of the Drosophila immune deficiency NF-kB pathway, and genes whose products function in mitochondria and mitochondrial respiration. Our work shows that Drosophila can serve as a model to investigate host–virus interactions during aging and furthermore sets the stage for future analysis of the age-dependent mechanisms that govern survival and control of virus infections at older age.
Collapse
Affiliation(s)
- Lakbira Sheffield
- Department of Biological Sciences, University of Alabama, 300, Hackberry lane, Tuscaloosa, AL-35487, USA.,Graduate Biomedical Sciences program, University of Alabama at Birmingham, Birmingham, AL- 35294, USA
| | - Noah Sciambra
- Department of Biological Sciences, University of Alabama, 300, Hackberry lane, Tuscaloosa, AL-35487, USA
| | - Alysa Evans
- Department of Biological Sciences, University of Alabama, 300, Hackberry lane, Tuscaloosa, AL-35487, USA
| | - Eli Hagedorn
- Department of Biological Sciences, University of Alabama, 300, Hackberry lane, Tuscaloosa, AL-35487, USA
| | - Casey Goltz
- Department of Biological Sciences, University of Alabama, 300, Hackberry lane, Tuscaloosa, AL-35487, USA
| | - Megan Delfeld
- Department of Biological Sciences, University of Alabama, 300, Hackberry lane, Tuscaloosa, AL-35487, USA
| | - Haley Kuhns
- Department of Biological Sciences, University of Alabama, 300, Hackberry lane, Tuscaloosa, AL-35487, USA
| | - Janna L Fierst
- Department of Biological Sciences, University of Alabama, 300, Hackberry lane, Tuscaloosa, AL-35487, USA
| | - Stanislava Chtarbanova
- Department of Biological Sciences, University of Alabama, 300, Hackberry lane, Tuscaloosa, AL-35487, USA
| |
Collapse
|
13
|
The Integrator Complex Prevents Dedifferentiation of Intermediate Neural Progenitors back into Neural Stem Cells. Cell Rep 2020; 27:987-996.e3. [PMID: 31018143 DOI: 10.1016/j.celrep.2019.03.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/31/2019] [Accepted: 03/24/2019] [Indexed: 01/08/2023] Open
Abstract
Mutations of the Integrator subunits are associated with neurodevelopmental disorders and cancers. However, their role during neural development is poorly understood. Here, we demonstrate that the Drosophila Integrator complex prevents dedifferentiation of intermediate neural progenitors (INPs) during neural stem cell (neuroblast) lineage development. Loss of intS5, intS8, and intS1 generated ectopic type II neuroblasts. INP-specific knockdown of intS8, intS1, and intS2 resulted in the formation of excess type II neuroblasts, indicating that Integrator prevents INP dedifferentiation. Cell-type-specific DamID analysis identified 1413 IntS5-binding sites in INPs, including zinc-finger transcription factor earmuff (erm). Furthermore, erm expression is lost in intS5 and intS8 mutant neuroblast lineages, and intS8 genetically interacts with erm to suppress the formation of ectopic neuroblasts. Taken together, our data demonstrate that the Drosophila Integrator complex plays a critical role in preventing INP dedifferentiation primarily by regulating a key transcription factor Erm that also suppresses INP dedifferentiation.
Collapse
|
14
|
Samuels TJ, Arava Y, Järvelin AI, Robertson F, Lee JY, Yang L, Yang CP, Lee T, Ish-Horowicz D, Davis I. Neuronal upregulation of Prospero protein is driven by alternative mRNA polyadenylation and Syncrip-mediated mRNA stabilisation. Biol Open 2020; 9:bio049684. [PMID: 32205310 PMCID: PMC7225087 DOI: 10.1242/bio.049684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
During Drosophila and vertebrate brain development, the conserved transcription factor Prospero/Prox1 is an important regulator of the transition between proliferation and differentiation. Prospero level is low in neural stem cells and their immediate progeny, but is upregulated in larval neurons and it is unknown how this process is controlled. Here, we use single molecule fluorescent in situ hybridisation to show that larval neurons selectively transcribe a long prospero mRNA isoform containing a 15 kb 3' untranslated region, which is bound in the brain by the conserved RNA-binding protein Syncrip/hnRNPQ. Syncrip binding increases the stability of the long prospero mRNA isoform, which allows an upregulation of Prospero protein production. Adult flies selectively lacking the long prospero isoform show abnormal behaviour that could result from impaired locomotor or neurological activity. Our findings highlight a regulatory strategy involving alternative polyadenylation followed by differential post-transcriptional regulation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tamsin J Samuels
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
| | - Yoav Arava
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
- Department of Biology Technion, Haifa, 32000, Israel
| | - Aino I Järvelin
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
| | | | - Jeffrey Y Lee
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
| | - Lu Yang
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
| | - Ching-Po Yang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147 USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147 USA
| | - David Ish-Horowicz
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
- MRC Laboratory for Molecular Cell Biology, University College, London, WC1E 6BT UK
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
15
|
Ly PT, Wang H. Fzr/Cdh1 Promotes the Differentiation of Neural Stem Cell Lineages in Drosophila. Front Cell Dev Biol 2020; 8:60. [PMID: 32117986 PMCID: PMC7026481 DOI: 10.3389/fcell.2020.00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
How stem cells and progenitors balance between self-renewal and differentiation is a central issue of stem cell biology. Here, we describe a novel and essential function of Drosophila Fzr/Cdh1, an evolutionary conserved protein, during the differentiation of neural stem cell (NSC) lineages in the central nervous system. We show that Fzr, a known co-activator of Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase, promotes the production of neurons from neural progenitors called ganglion mother cells (GMCs). However, knockdown of APC/C subunit Ida or another APC/C co-activator CDC20 does not similarly impair GMC-neuron transition. We also observe a concomitant loss of differentiation factor Prospero expression and ectopic accumulation of mitotic kinase Polo in fzr mutant clones, strongly supporting the impairment of GMC to neuron differentiation. Besides functioning in GMCs, Fzr is also present in NSCs to facilitate the production of intermediate neural progenitors from NSCs. Taken together, Fzr plays a novel function in promoting differentiation programs during Drosophila NSC lineage development. Given that human Fzr is inactivated in multiple types of human cancers including brain tumors and that Fzr regulates neurotoxicity in various models of neurodegenerative diseases, our study on the role of Fzr in turning off proliferation in neuronal cells may provide insights into how Fzr deficits may contribute to human neurodegenerative diseases and tumors.
Collapse
Affiliation(s)
- Phuong Thao Ly
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Mendelsohn BA, Beleford DT, Abu-El-Haija A, Alsaleh NS, Rahbeeni Z, Martin PM, Rego S, Huang A, Capodanno G, Shieh JT, Van Ziffle J, Risch N, Alkuraya FS, Slavotinek AM. A novel truncating variant in ring finger protein 113A (RNF113A) confirms the association of this gene with X-linked trichothiodystrophy. Am J Med Genet A 2019; 182:513-520. [PMID: 31880405 DOI: 10.1002/ajmg.a.61450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022]
Abstract
We describe an 11-year old boy with severe global developmental delays, failure to thrive and growth retardation, refractory seizures with recurrent status epilepticus, hypogammaglobulinemia, hypergonadotropic hypogonadism, and duodenal strictures. He had facial and skin findings compatible with trichothiodystrophy, including sparse and brittle hair, thin eyebrows, and dry skin. Exome sequencing showed a hemizygous, truncating variant in RNF113A, c.903_910delGCAGACCA, predicting p.(Gln302fs*12), that was inherited from his mother. Although his clinical features overlap closely with features described in the two previously reported male first cousins with RNF113A loss of function mutations, the duodenal strictures seen in this patient have not been reported. Interestingly, the patient's mother had short stature and 100% skewed X-inactivation as seen in other obligate female carriers. A second male with developmental delays, microcephaly, seizures, ambiguous genitalia, and facial anomalies that included sparse and brittle hair, thin eyebrows and dry skin was recently reported to have c.897_898delTG, predicting p.(Cys299*) in RNF113A and we provide additional clinical details for this patient. This report further supports deleterious variants in RNF113A as a cause of a novel trichothiodystrophy syndrome.
Collapse
Affiliation(s)
- Bryce A Mendelsohn
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California
| | - Daniah T Beleford
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California
| | - Aya Abu-El-Haija
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.,Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Norah S Alsaleh
- Division of Genetics and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Pierre-Marie Martin
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Shannon Rego
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California
| | - Alyssa Huang
- Division of Pediatric Endocrinology, University of California, San Francisco, California
| | - Gina Capodanno
- Division of Pediatric Endocrinology, University of California, San Francisco, California
| | - Joseph T Shieh
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Jessica Van Ziffle
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Neil Risch
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Fowzan S Alkuraya
- Division of Genetics and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Anne M Slavotinek
- Division of Medical Genetics, University of California, San Francisco, San Francisco, California.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
17
|
Tessarech M, Gorce M, Boussion F, Bault J, Triau S, Charif M, Khiaty S, Delorme B, Guichet A, Ziegler A, Bris C, Laquerrière A, Fallet‐Bianco C, Jacquette A, Salhi H, Héron D, Reynier P, Procaccio V, Bonneau D, Colin E. Second report of RING finger protein 113A (
RNF113A)
involvement in a Mendelian disorder. Am J Med Genet A 2019; 182:565-569. [DOI: 10.1002/ajmg.a.61384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/01/2019] [Accepted: 09/26/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Marine Tessarech
- Department of Biochemistry and GeneticsAngers University Hospital Angers France
| | - Magali Gorce
- Department of Biochemistry and GeneticsAngers University Hospital Angers France
| | - Françoise Boussion
- Department of Obstetrics and GynecologyAngers University Hospital Angers France
| | - Jean‐Philippe Bault
- Department of Gynecology and ObstetricsCHI Poissy‐Saint‐Germain Poissy France
- Department of Gynecology and ObstetricsCH Bicêtre Kremlin‐Bicêtre France
| | - Stéphane Triau
- Department of PathologyAngers University Hospital Angers France
| | - Majida Charif
- UMR CNRS 6015‐INSERM 1083 and PREMMIMitovasc Institute Angers France
| | - Salim Khiaty
- UMR CNRS 6015‐INSERM 1083 and PREMMIMitovasc Institute Angers France
| | - Benoit Delorme
- Department of RadiologyAngers University Hospital Angers France
| | - Agnès Guichet
- Department of Biochemistry and GeneticsAngers University Hospital Angers France
| | - Alban Ziegler
- Department of Biochemistry and GeneticsAngers University Hospital Angers France
- UMR CNRS 6015‐INSERM 1083 and PREMMIMitovasc Institute Angers France
| | - Céline Bris
- Department of Biochemistry and GeneticsAngers University Hospital Angers France
- UMR CNRS 6015‐INSERM 1083 and PREMMIMitovasc Institute Angers France
| | - Annie Laquerrière
- Normandie Univ, UNIROUEN, INSERM U1245Normandy Centre for Genomic and Personalized Medicine Rouen France
- Department of PathologyRouen University Hospital Rouen France
| | | | | | - Houria Salhi
- Department of PathologyCochin Saint Vincent de Paul Hospital, APHP Paris France
| | - Delphine Héron
- Department of Medical GeneticsTrousseau Hospital, APHP Paris France
| | - Pascal Reynier
- Department of Biochemistry and GeneticsAngers University Hospital Angers France
- UMR CNRS 6015‐INSERM 1083 and PREMMIMitovasc Institute Angers France
| | - Vincent Procaccio
- Department of Biochemistry and GeneticsAngers University Hospital Angers France
- UMR CNRS 6015‐INSERM 1083 and PREMMIMitovasc Institute Angers France
| | - Dominique Bonneau
- Department of Biochemistry and GeneticsAngers University Hospital Angers France
- UMR CNRS 6015‐INSERM 1083 and PREMMIMitovasc Institute Angers France
| | - Estelle Colin
- Department of Biochemistry and GeneticsAngers University Hospital Angers France
- UMR CNRS 6015‐INSERM 1083 and PREMMIMitovasc Institute Angers France
| |
Collapse
|
18
|
Wu NY, Cheng SC. Functional analysis of Cwc24 ZF-domain in 5' splice site selection. Nucleic Acids Res 2019; 47:10327-10339. [PMID: 31504764 PMCID: PMC6821175 DOI: 10.1093/nar/gkz733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022] Open
Abstract
The essential splicing factor Cwc24 contains a zinc-finger (ZF) domain required for its function in splicing. Cwc24 binds over the 5' splice site after the spliceosome is activated, and its binding prior to Prp2-mediated spliceosome remodeling is important for proper interactions of U5 and U6 with the 5' splice site sequence and selection of the 5' splice site. Here, we show that Cwc24 transiently interacts with the 5' splice site in formation of the functional RNA catalytic core during spliceosome remodeling, and the ZF-motif is required for specific interaction of Cwc24 with the 5' splice site. Deletion of the ZF domain or mutation of the conserved ZF residues greatly weakened the association of Cwc24 with the spliceosome, and lowered the affinity and specificity of its interaction with the 5' splice site, resulting in atypical interactions of U5, U6 and Prp8 with the 5' splice site, and aberrant cleavage at the 5' splice site. Our results reveal a crucial role of the Cwc24 ZF-motif for defining 5' splice site selection in the first splicing step.
Collapse
Affiliation(s)
- Nan-Ying Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
19
|
Froldi F, Pachnis P, Szuperák M, Costas O, Fernando T, Gould AP, Cheng LY. Histidine is selectively required for the growth of Myc-dependent dedifferentiation tumours in the Drosophila CNS. EMBO J 2019; 38:embj.201899895. [PMID: 30804004 PMCID: PMC6443203 DOI: 10.15252/embj.201899895] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Rewired metabolism of glutamine in cancer has been well documented, but less is known about other amino acids such as histidine. Here, we use Drosophila cancer models to show that decreasing the concentration of histidine in the diet strongly inhibits the growth of mutant clones induced by loss of Nerfin‐1 or gain of Notch activity. In contrast, changes in dietary histidine have much less effect on the growth of wildtype neural stem cells and Prospero neural tumours. The reliance of tumours on dietary histidine and also on histidine decarboxylase (Hdc) depends upon their growth requirement for Myc. We demonstrate that Myc overexpression in nerfin‐1 tumours is sufficient to switch their mode of growth from histidine/Hdc sensitive to resistant. This study suggests that perturbations in histidine metabolism selectively target neural tumours that grow via a dedifferentiation process involving large cell size increases driven by Myc.
Collapse
Affiliation(s)
- Francesca Froldi
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | | | - Milán Szuperák
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia Costas
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | | | | | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia.,The Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
20
|
The Scalloped and Nerfin-1 Transcription Factors Cooperate to Maintain Neuronal Cell Fate. Cell Rep 2018; 25:1561-1576.e7. [DOI: 10.1016/j.celrep.2018.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/14/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023] Open
|
21
|
Harding K, White K. Drosophila as a Model for Developmental Biology: Stem Cell-Fate Decisions in the Developing Nervous System. J Dev Biol 2018; 6:E25. [PMID: 30347666 PMCID: PMC6315890 DOI: 10.3390/jdb6040025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Stem cells face a diversity of choices throughout their lives. At specific times, they may decide to initiate cell division, terminal differentiation, or apoptosis, or they may enter a quiescent non-proliferative state. Neural stem cells in the Drosophila central nervous system do all of these, at stereotypical times and anatomical positions during development. Distinct populations of neural stem cells offer a unique system to investigate the regulation of a particular stem cell behavior, while comparisons between populations can lead us to a broader understanding of stem cell identity. Drosophila is a well-described and genetically tractable model for studying fundamental stem cell behavior and the mechanisms that underlie cell-fate decisions. This review will focus on recent advances in our understanding of the factors that contribute to distinct stem cell-fate decisions within the context of the Drosophila nervous system.
Collapse
Affiliation(s)
- Katherine Harding
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA
| | - Kristin White
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
22
|
Drosophila nucleostemin 3 is required to maintain larval neuroblast proliferation. Dev Biol 2018; 440:1-12. [PMID: 29679561 PMCID: PMC6278609 DOI: 10.1016/j.ydbio.2018.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 02/03/2023]
Abstract
Stem cells must maintain proliferation during tissue development, repair and homeostasis, yet avoid tumor formation. In Drosophila, neural stem cells (neuroblasts) maintain proliferation during embryonic and larval development and terminate cell cycle during metamorphosis. An important question for understanding how tissues are generated and maintained is: what regulates stem cell proliferation versus differentiation? We performed a genetic screen which identified nucleostemin 3 (ns3) as a gene required to maintain neuroblast proliferation. ns3 is evolutionarily conserved with yeast and human Lsg1, which encode putative GTPases and are essential for organism growth and viability. We found NS3 is cytoplasmic and it is required to retain the cell cycle repressor Prospero in neuroblast cytoplasm via a Ran-independent pathway. NS3 is also required for proper neuroblast cell polarity and asymmetric cell division. Structure-function analysis further shows that the GTP-binding domain and acidic domain are required for NS3 function in neuroblast proliferation. We conclude NS3 has novel roles in regulating neuroblast cell polarity and proliferation.
Collapse
|
23
|
Shaw RE, Kottler B, Ludlow ZN, Buhl E, Kim D, Morais da Silva S, Miedzik A, Coum A, Hodge JJ, Hirth F, Sousa-Nunes R. In vivo expansion of functionally integrated GABAergic interneurons by targeted increase in neural progenitors. EMBO J 2018; 37:e98163. [PMID: 29728368 PMCID: PMC6028031 DOI: 10.15252/embj.201798163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 01/08/2023] Open
Abstract
A central hypothesis for brain evolution is that it might occur via expansion of progenitor cells and subsequent lineage-dependent formation of neural circuits. Here, we report in vivo amplification and functional integration of lineage-specific circuitry in Drosophila Levels of the cell fate determinant Prospero were attenuated in specific brain lineages within a range that expanded not only progenitors but also neuronal progeny, without tumor formation. Resulting supernumerary neural stem cells underwent normal functional transitions, progressed through the temporal patterning cascade, and generated progeny with molecular signatures matching source lineages. Fully differentiated supernumerary gamma-amino butyric acid (GABA)-ergic interneurons formed functional connections in the central complex of the adult brain, as revealed by in vivo calcium imaging and open-field behavioral analysis. Our results show that quantitative control of a single transcription factor is sufficient to tune neuron numbers and clonal circuitry, and provide molecular insight into a likely mechanism of brain evolution.
Collapse
Affiliation(s)
- Rachel E Shaw
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Benjamin Kottler
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Zoe N Ludlow
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Dongwook Kim
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sara Morais da Silva
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alina Miedzik
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Antoine Coum
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James Jl Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rita Sousa-Nunes
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
24
|
Wang L, Hou Z, Hasim A, Abuduerheman A, Zhang H, Niyaz M, Awut I, Upur H, Sheyhidin I. RNF113A promotes the proliferation, migration and invasion, and is associated with a poor prognosis of esophageal squamous cell carcinoma. Int J Oncol 2018; 52:861-871. [PMID: 29393393 DOI: 10.3892/ijo.2018.4253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/04/2017] [Indexed: 11/06/2022] Open
Abstract
Ring finger protein 113A (RNF113A) possesses a C3HC4 zinc finger domain and this domain is found in E3 ubiquitin ligase and is involved in tumorigenesis. To date, and at least to the best of our knowledge, there are no studies available which have investigated RNF113A in cancer. Thus, this study aimed to explore the role of RNF113A in the development of esophageal squamous cell carcinoma (ESCC). For this purpose, paraffin-embedded samples from 117 patients with ESCC were selected, as well as 41 pairs of fresh-frozen ESCC and adjacent normal tissue samples. RNF113A expression was examined by immunohistochemistry and reverse transcription-quantitative PCR (RT-qPCR). RNF113A was overexpressed or silenced in the EC9706 and Eca109 cells. The cells were examined for cell cycle progression, apoptosis, invasiveness and migration. Xenograft tumors were also created in mice using the Eca109 cells. Tumor differentiation (P=0.008) and T classification (P<0.001) were found to be significantly associated with RNF113A expression. No statistically significant association was observed between RNF113A expression and sex, age, histological type, tumor location and lymph node metastasis (N classification). Kaplan-Meier analysis revealed that the patients with ESCC with ahigh expression of RNF113A had a lower survival rate than those with a low expression (P=0.002). Multivariate analysis revealed that RNF113A expression (HR=2.406; 95% CI, 1.301-4.449, P=0.005) was independently associated with overall survival in patients with ESCC. The overexpression of RNF113A promoted proliferation, migration, and invasiveness of ESCC cell lines in vitro, and RNF113A silencing reversed these malignant behaviors. RNF113A knockdown inhibited tumor growth in vivo. Thus, these results indicate that RNF113A promotes the proliferation, migration and invasiveness of ESCC cell lines. RNF113A expression in ESCC is this associated with a poor prognosis of affected patients.
Collapse
Affiliation(s)
- Lei Wang
- Department of Thoracic Surgery, Τhe First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Zhichao Hou
- Department of Thoracic Surgery, Τhe First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Ayshamgul Hasim
- Department of Pathology, Medical University of Xinjiang, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Abulajiang Abuduerheman
- Department of Thoracic Surgery, Τhe First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Haiping Zhang
- Department of Thoracic Surgery, Τhe First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Madiniyat Niyaz
- Clinical Medical Research Institute, Τhe First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Idiris Awut
- Department of Thoracic Surgery, Τhe First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Halmurat Upur
- Department of Uyghur Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Ilyar Sheyhidin
- Department of Thoracic Surgery, Τhe First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| |
Collapse
|
25
|
Shear force-based genetic screen reveals negative regulators of cell adhesion and protrusive activity. Proc Natl Acad Sci U S A 2017; 114:E7727-E7736. [PMID: 28847951 DOI: 10.1073/pnas.1616600114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The model organism Dictyostelium discoideum has greatly facilitated our understanding of the signal transduction and cytoskeletal pathways that govern cell motility. Cell-substrate adhesion is downstream of many migratory and chemotaxis signaling events. Dictyostelium cells lacking the tumor suppressor PTEN show strongly impaired migratory activity and adhere strongly to their substrates. We reasoned that other regulators of migration could be obtained through a screen for overly adhesive mutants. A screen of restriction enzyme-mediated integration mutagenized cells yielded numerous mutants with the desired phenotypes, and the insertion sites in 18 of the strains were mapped. These regulators of adhesion and motility mutants have increased adhesion and decreased motility. Characterization of seven strains demonstrated decreased directed migration, flatness, increased filamentous actin-based protrusions, and increased signal transduction network activity. Many of the genes share homology to human genes and demonstrate the diverse array of cellular networks that function in adhesion and migration.
Collapse
|
26
|
Casola C, Betrán E. The Genomic Impact of Gene Retrocopies: What Have We Learned from Comparative Genomics, Population Genomics, and Transcriptomic Analyses? Genome Biol Evol 2017; 9:1351-1373. [PMID: 28605529 PMCID: PMC5470649 DOI: 10.1093/gbe/evx081] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 02/07/2023] Open
Abstract
Gene duplication is a major driver of organismal evolution. Gene retroposition is a mechanism of gene duplication whereby a gene's transcript is used as a template to generate retroposed gene copies, or retrocopies. Intriguingly, the formation of retrocopies depends upon the enzymatic machinery encoded by retrotransposable elements, genomic parasites occurring in the majority of eukaryotes. Most retrocopies are depleted of the regulatory regions found upstream of their parental genes; therefore, they were initially considered transcriptionally incompetent gene copies, or retropseudogenes. However, examples of functional retrocopies, or retrogenes, have accumulated since the 1980s. Here, we review what we have learned about retrocopies in animals, plants and other eukaryotic organisms, with a particular emphasis on comparative and population genomic analyses complemented with transcriptomic datasets. In addition, these data have provided information about the dynamics of the different "life cycle" stages of retrocopies (i.e., polymorphic retrocopy number variants, fixed retropseudogenes and retrogenes) and have provided key insights into the retroduplication mechanisms, the patterns and evolutionary forces at work during the fixation process and the biological function of retrogenes. Functional genomic and transcriptomic data have also revealed that many retropseudogenes are transcriptionally active and a biological role has been experimentally determined for many. Finally, we have learned that not only non-long terminal repeat retroelements but also long terminal repeat retroelements play a role in the emergence of retrocopies across eukaryotes. This body of work has shown that mRNA-mediated duplication represents a widespread phenomenon that produces an array of new genes that contribute to organismal diversity and adaptation.
Collapse
Affiliation(s)
- Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University, TX
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
27
|
Role of Cwc24 in the First Catalytic Step of Splicing and Fidelity of 5' Splice Site Selection. Mol Cell Biol 2017; 37:MCB.00580-16. [PMID: 27994011 DOI: 10.1128/mcb.00580-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/11/2016] [Indexed: 12/17/2022] Open
Abstract
Cwc24 is an essential splicing factor but only transiently associates with the spliceosome, with an unknown function. The protein contains a RING finger and a zinc finger domain in the carboxyl terminus. The human ortholog of Cwc24, RNF113A, has been associated with the disorder trichothiodystrophy. Here, we show that the zinc finger domain is essential for Cwc24 function, while the RING finger domain is dispensable. Cwc24 binds to the spliceosome after the Prp19-associated complex and is released upon Prp2 action. Cwc24 is not required for Prp2-mediated remodeling of the spliceosome, but the spliceosome becomes inactive if remodeling occurs before the addition of Cwc24. Cwc24 binds directly to pre-mRNA at the 5' splice site, spanning the splice junction. In the absence of Cwc24, U5 and U6 modes of interaction with the 5' splice site are altered, and splicing is very inefficient, with aberrant cleavage at the 5' splice site. Our data suggest roles for Cwc24 in orchestrating organization of the spliceosome into an active configuration prior to Prp2-mediated spliceosome remodeling and in promoting specific interaction of U5 and U6 with the 5' splice site for fidelity of 5' splice site selection.
Collapse
|
28
|
Xu J, Hao X, Yin MX, Lu Y, Jin Y, Xu J, Ge L, Wu W, Ho M, Yang Y, Zhao Y, Zhang L. Prevention of medulla neuron dedifferentiation by Nerfin-1 requires inhibition of Notch activity. Development 2017; 144:1510-1517. [PMID: 28242614 DOI: 10.1242/dev.141341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/17/2017] [Indexed: 11/20/2022]
Abstract
The Drosophila larval central nervous system comprises the central brain, ventral nerve cord and optic lobe. In these regions, neuroblasts (NBs) divide asymmetrically to self-renew and generate differentiated neurons or glia. To date, mechanisms of preventing neuron dedifferentiation are still unclear, especially in the optic lobe. Here, we show that the zinc-finger transcription factor Nerfin-1 is expressed in early-stage medulla neurons and is essential for maintaining their differentiation. Loss of Nerfin-1 activates Notch signaling, which promotes neuron-to-NB reversion. Repressing Notch signaling largely rescues dedifferentiation in nerfin-1 mutant clones. Thus, we conclude that Nerfin-1 represses Notch activity in medulla neurons and prevents them from dedifferentiation.
Collapse
Affiliation(s)
- Jiajun Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Xue Hao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Meng-Xin Yin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Yi Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Yunyun Jin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Jinjin Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Ling Ge
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Margaret Ho
- Department of Anatomy and Neurobiology, Tongji University, School of Medicine, Shanghai 200092, People's Republic of China
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China .,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, People's Republic of China
| |
Collapse
|
29
|
Froldi F, Cheng LY. Understanding how differentiation is maintained: lessons from the Drosophila brain. Cell Mol Life Sci 2016; 73:1641-4. [PMID: 26817462 PMCID: PMC11108259 DOI: 10.1007/s00018-016-2144-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/19/2022]
Abstract
The ability to maintain cells in a differentiated state and to prevent them from reprogramming into a multipotent state has recently emerged as a central theme in neural development as well as in oncogenesis. In the developing central nervous system (CNS) of the fruit fly Drosophila, several transcription factors were recently identified to be required in postmitotic cells to maintain differentiation, and in their absence, mature neurons undergo dedifferentiation, giving rise to proliferative neural stem cells and ultimately to tumor growth. In this review, we will highlight the current understanding of dedifferentiation and cell plasticity in the Drosophila CNS.
Collapse
Affiliation(s)
- Francesca Froldi
- Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
30
|
Carelli FN, Hayakawa T, Go Y, Imai H, Warnefors M, Kaessmann H. The life history of retrocopies illuminates the evolution of new mammalian genes. Genome Res 2016; 26:301-14. [PMID: 26728716 PMCID: PMC4772013 DOI: 10.1101/gr.198473.115] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/21/2015] [Indexed: 02/03/2023]
Abstract
New genes contribute substantially to adaptive evolutionary innovation, but the functional evolution of new mammalian genes has been little explored at a broad scale. Previous work established mRNA-derived gene duplicates, known as retrocopies, as models for the study of new gene origination. Here we combine mammalian transcriptomic and epigenomic data to unveil the processes underlying the evolution of stripped-down retrocopies into complex new genes. We show that although some robustly expressed retrocopies are transcribed from preexisting promoters, most evolved new promoters from scratch or recruited proto-promoters in their genomic vicinity. In particular, many retrocopy promoters emerged from ancestral enhancers (or bivalent regulatory elements) or are located in CpG islands not associated with other genes. We detected 88–280 selectively preserved retrocopies per mammalian species, illustrating that these mechanisms facilitated the birth of many functional retrogenes during mammalian evolution. The regulatory evolution of originally monoexonic retrocopies was frequently accompanied by exon gain, which facilitated co-option of distant promoters and allowed expression of alternative isoforms. While young retrogenes are often initially expressed in the testis, increased regulatory and structural complexities allowed retrogenes to functionally diversify and evolve somatic organ functions, sometimes as complex as those of their parents. Thus, some retrogenes evolved the capacity to temporarily substitute for their parents during the process of male meiotic X inactivation, while others rendered parental functions superfluous, allowing for parental gene loss. Overall, our reconstruction of the “life history” of mammalian retrogenes highlights retroposition as a general model for understanding new gene birth and functional evolution.
Collapse
Affiliation(s)
- Francesco Nicola Carelli
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Takashi Hayakawa
- Department of Wildlife Science (Nagoya Railroad Company, Limited), Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Japan Monkey Center, Inuyama, Aichi 484-0081, Japan
| | - Yasuhiro Go
- Department of Brain Sciences, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 484-8585, Japan
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Maria Warnefors
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Henrik Kaessmann
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Froldi F, Szuperak M, Weng CF, Shi W, Papenfuss AT, Cheng LY. The transcription factor Nerfin-1 prevents reversion of neurons into neural stem cells. Genes Dev 2015; 29:129-43. [PMID: 25593306 PMCID: PMC4298133 DOI: 10.1101/gad.250282.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Froldi et al. show that the Drosophila zinc finger transcription factor Nervous fingers 1 (Nerfin-1) locks neurons into differentiation, preventing their reversion into neuroblasts. The loss of Nerfin-1 causes reversion to multipotency and results in tumors in several neural lineages. RNA-seq and ChIP analysis show that Nerfin-1 administers its function by repression of self-renewing genes and activation of differentiation-specific genes. Cellular dedifferentiation is the regression of a cell from a specialized state to a more multipotent state and is implicated in cancer. However, the transcriptional network that prevents differentiated cells from reacquiring stem cell fate is so far unclear. Neuroblasts (NBs), the Drosophila neural stem cells, are a model for the regulation of stem cell self-renewal and differentiation. Here we show that the Drosophila zinc finger transcription factor Nervous fingers 1 (Nerfin-1) locks neurons into differentiation, preventing their reversion into NBs. Following Prospero-dependent neuronal specification in the ganglion mother cell (GMC), a Nerfin-1-specific transcriptional program maintains differentiation in the post-mitotic neurons. The loss of Nerfin-1 causes reversion to multipotency and results in tumors in several neural lineages. Both the onset and rate of neuronal dedifferentiation in nerfin-1 mutant lineages are dependent on Myc- and target of rapamycin (Tor)-mediated cellular growth. In addition, Nerfin-1 is required for NB differentiation at the end of neurogenesis. RNA sequencing (RNA-seq) and chromatin immunoprecipitation (ChIP) analysis show that Nerfin-1 administers its function by repression of self-renewing-specific and activation of differentiation-specific genes. Our findings support the model of bidirectional interconvertibility between neural stem cells and their post-mitotic progeny and highlight the importance of the Nerfin-1-regulated transcriptional program in neuronal maintenance.
Collapse
Affiliation(s)
- Francesca Froldi
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Milan Szuperak
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chen-Fang Weng
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wei Shi
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Computing and Information Systems, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony T Papenfuss
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia;
| |
Collapse
|
32
|
Corbett MA, Dudding-Byth T, Crock PA, Botta E, Christie LM, Nardo T, Caligiuri G, Hobson L, Boyle J, Mansour A, Friend KL, Crawford J, Jackson G, Vandeleur L, Hackett A, Tarpey P, Stratton MR, Turner G, Gécz J, Field M. A novel X-linked trichothiodystrophy associated with a nonsense mutation in RNF113A. J Med Genet 2015; 52:269-74. [DOI: 10.1136/jmedgenet-2014-102418] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Lai SL, Doe CQ. Transient nuclear Prospero induces neural progenitor quiescence. eLife 2014; 3. [PMID: 25354199 PMCID: PMC4212206 DOI: 10.7554/elife.03363] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/17/2014] [Indexed: 12/26/2022] Open
Abstract
Stem cells can self-renew, differentiate, or enter quiescence. Understanding how stem cells switch between these states is highly relevant for stem cell-based therapeutics. Drosophila neural progenitors (neuroblasts) have been an excellent model for studying self-renewal and differentiation, but quiescence remains poorly understood. In this study, we show that when neuroblasts enter quiescence, the differentiation factor Prospero is transiently detected in the neuroblast nucleus, followed by the establishment of a unique molecular profile lacking most progenitor and differentiation markers. The pulse of low level nuclear Prospero precedes entry into neuroblast quiescence even when the timing of quiescence is advanced or delayed by changing temporal identity factors. Furthermore, loss of Prospero prevents entry into quiescence, whereas a pulse of low level nuclear Prospero can drive proliferating larval neuroblasts into quiescence. We propose that Prospero levels distinguish three progenitor fates: absent for self-renewal, low for quiescence, and high for differentiation. DOI:http://dx.doi.org/10.7554/eLife.03363.001 Stem cells provide tissues in the body with a continuing source of new cells, both when the tissues are first developing and when they are growing or repairing in adulthood. A stem cell can divide to create either another stem cell, or a cell that will mature into one of many different cell types. Neuroblasts are a type of brain stem cell and can divide to create two new cells: another neuroblast that will continue to replicate itself and a cell called a ganglion mother cell that will go on to produce two mature cells for the nervous system. Moreover, when a neuroblast divides, it splits unequally, so that certain molecules end up predominantly in the ganglion mother cell—including a protein called Prospero. Once partitioned into the ganglion mother cell, the Prospero protein enters the nucleus, where it switches off ‘stem cell genes’ and switches on ‘neuron genes’ so the ganglion mother cell can form the mature neurons of the brain. Thus, neuroblasts must keep Prospero out of the nucleus to maintain stem cell properties, whereas ganglion mother cells must move Prospero into the nucleus to form neurons. Now, Lai and Doe discover a new way that the Prospero protein is used to control stem cell biology. Neuroblasts, like all stem cells, can enter periods where they go dormant or quiescent—that is, they temporarily stop generating ganglion mother cells. By analyzing which proteins are present in neuroblasts during this transition to quiescence, Lai and Doe discovered that the Prospero protein was briefly detected, at low levels, in the nucleus of the neuroblast just before it became dormant. To see whether this ‘low-level pulse’ of nuclear Prospero is linked to the cell entering a dormant state, Lai and Doe investigated two types of mutant fly in which neuroblasts become dormant either earlier or later than in normal flies. A low-level pulse of nuclear Prospero still precisely matched the start of the dormant state in both mutants. When the Prospero protein was removed altogether, the neuroblasts failed to become dormant, and instead continued dividing. Lai and Doe propose that different levels of Prospero distinguish three different fates for neuroblasts. Neuroblasts self-replicate when Prospero is kept out of the nucleus, become dormant when exposed to low level nuclear Prospero, and produce the mature cells of the brain when nuclear Prospero levels are high. Exactly how the intermediate levels of nuclear Prospero trigger the dormant state remains a question for future work, as is the question of whether the related mammalian protein, called Prox1, has a similar function. Understanding how stem cells switch between cell division and quiescence is important for developing effective stem cell-based therapies. It could also help us understand cancer, as cancer cells go through similar periods of inactivity, during which they do not respond to many anti-tumor drugs. DOI:http://dx.doi.org/10.7554/eLife.03363.002
Collapse
Affiliation(s)
- Sen-Lin Lai
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
| |
Collapse
|
34
|
Drosophila neuroblasts as a new model for the study of stem cell self-renewal and tumour formation. Biosci Rep 2014; 34:BSR20140008. [PMID: 24965943 PMCID: PMC4114065 DOI: 10.1042/bsr20140008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Drosophila larval brain stem cells (neuroblasts) have emerged as an important model for the study of stem cell asymmetric division and the mechanisms underlying the transformation of neural stem cells into tumour-forming cancer stem cells. Each Drosophila neuroblast divides asymmetrically to produce a larger daughter cell that retains neuroblast identity, and a smaller daughter cell that is committed to undergo differentiation. Neuroblast self-renewal and differentiation are tightly controlled by a set of intrinsic factors that regulate ACD (asymmetric cell division). Any disruption of these two processes may deleteriously affect the delicate balance between neuroblast self-renewal and progenitor cell fate specification and differentiation, causing neuroblast overgrowth and ultimately lead to tumour formation in the fly. In this review, we discuss the mechanisms underlying Drosophila neural stem cell self-renewal and differentiation. Furthermore, we highlight emerging evidence in support of the notion that defects in ACD in mammalian systems, which may play significant roles in the series of pathogenic events leading to the development of brain cancers.
Collapse
|
35
|
Southall TD, Davidson CM, Miller C, Carr A, Brand AH. Dedifferentiation of neurons precedes tumor formation in Lola mutants. Dev Cell 2014; 28:685-96. [PMID: 24631403 PMCID: PMC3978655 DOI: 10.1016/j.devcel.2014.01.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/15/2014] [Accepted: 01/30/2014] [Indexed: 12/30/2022]
Abstract
The ability to reprogram differentiated cells into a pluripotent state has revealed that the differentiated state is plastic and reversible. It is evident, therefore, that mechanisms must be in place to maintain cells in a differentiated state. Transcription factors that specify neuronal characteristics have been well studied, but less is known about the mechanisms that prevent neurons from dedifferentiating to a multipotent, stem cell-like state. Here, we identify Lola as a transcription factor that is required to maintain neurons in a differentiated state. We show that Lola represses neural stem cell genes and cell-cycle genes in postmitotic neurons. In lola mutants, neurons dedifferentiate, turn on neural stem cell genes, and begin to divide, forming tumors. Thus, neurons rather than stem cells or intermediate progenitors are the tumor-initiating cells in lola mutants.
Collapse
Affiliation(s)
- Tony D Southall
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Catherine M Davidson
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Claire Miller
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Adrian Carr
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|