1
|
Qin H, Yu S, Han R, He J. Age-dependent glial heterogeneity and traumatic injury responses in a vertebrate brain structure. Cell Rep 2025; 44:115508. [PMID: 40198221 DOI: 10.1016/j.celrep.2025.115508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/11/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
The progression of traumatic brain injury (TBI) pathology is significantly influenced by age and involves a complex interplay of glial cells. However, the influence of age on the glial dynamics and their TBI responses remains mostly unexplored. Here, we obtain a comprehensive single-cell transcriptome atlas of three major glial types under the physiological and TBI conditions across four post-embryonic life stages in the zebrafish midbrain optic tectum. We identify a library of glial subtypes and states with specific age-dependent patterns that respond distinctly to TBI. Combining the glial interactome analysis and CRISPR-Cas9-mediated gene disruption, we reveal the essential roles of dla-notch3 and cxcl12a-cxcr4b interactions in the early-larval-stage-specific unresponsiveness of radial astrocytes to TBI and the TBI-induced age-independent recruitment of microglia to injury sites, respectively. Overall, our findings provide the molecular and cellular framework of TBI-induced age-related glial dynamics in vertebrate brains.
Collapse
Affiliation(s)
- Huiwen Qin
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Yu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyi Han
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
2
|
Bagnoli S, Drago DL, Astoricchio E, Chiavacci E, Fronte B, Cellerino A, Terzibasi Tozzini E. Comparative Analysis of Localization and Composition of Adult Neurogenic Niches in the Chondrichthyans Raja asterias and Torpedo ocellata. Int J Mol Sci 2025; 26:3563. [PMID: 40332081 PMCID: PMC12027359 DOI: 10.3390/ijms26083563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Adult neurogenesis in cartilaginous fish remains a relatively unexplored area, particularly in terms of comparative analysis. This process, defined as the ability of specialized stem cells to generate new functional neurons, has gained prominence due to its relevance in neurodegenerative disease research and regenerative medicine. However, there is an ongoing discussion about when and where it first appeared. Evidence of adult neurogenesis in both teleosts and mammals highlights significant differences, such as the number of newly formed cells and the brain regions involved. Investigating additional cartilaginous fish species, which occupy a basal position in vertebrate phylogeny, could provide valuable insights into the ancient origins of this trait and potentially new general knowledge about the adult neurogenesis process. In this study, we combined immunohistochemistry and in situ hybridization to examine neurogenic activity in three brain regions-the telencephalon, mesencephalon, and cerebellum-of two batoid species: Raja asterias and Torpedo ocellata. Immunohistochemical methods were used to identify neurogenic cells by employing markers for cell proliferation (PCNA), mitosis (pH3), glial cells (S100B), and stem cells (Msi1). Additionally, in situ hybridization was performed to detect neural stem cell mRNA for Notch1, Notch3, and Sox2 in the telencephalon and mesencephalon of Raja asterias.
Collapse
Affiliation(s)
- Sara Bagnoli
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, 56126 Pisa, Italy; (S.B.); (D.L.D.); (E.C.); (A.C.)
| | - Davide Lorenzo Drago
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, 56126 Pisa, Italy; (S.B.); (D.L.D.); (E.C.); (A.C.)
| | - Emanuele Astoricchio
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Elena Chiavacci
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, 56126 Pisa, Italy; (S.B.); (D.L.D.); (E.C.); (A.C.)
| | - Baldassarre Fronte
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy;
| | - Alessandro Cellerino
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, 56126 Pisa, Italy; (S.B.); (D.L.D.); (E.C.); (A.C.)
| | - Eva Terzibasi Tozzini
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| |
Collapse
|
3
|
Nian FS, Liao BK, Su YL, Wu PR, Tsai JW, Hou PS. Oscillatory DeltaC Expression in Neural Progenitors Primes the Prototype of Forebrain Development. Mol Neurobiol 2025; 62:4076-4092. [PMID: 39392541 PMCID: PMC11880136 DOI: 10.1007/s12035-024-04530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Notch signaling plays a pivotal role in regulating various developmental processes, particularly in controlling the timing of neuronal production within the developing neocortex. Central to this regulatory mechanism is the oscillatory pattern of Delta, which functions as a developmental clock modulator. Its deficiency profoundly impairs mammalian brain formation, highlighting its fundamental role in brain development. However, zebrafish carrying a mutation in the functional ortholog DeltaC (dlc) within their functional ortholog exhibit an intact forebrain structure, implying evolutionary variations in Notch signaling within the forebrain. In this study, we unveil the distinct yet analogous expression profiles of Delta and Her genes in the developing vertebrate forebrain. Specifically, for the first time, we detected the oscillatory expression of the Delta gene dlc in the developing zebrafish forebrain. Although this oscillatory pattern appeared irregular and was not pervasive among the progenitor population, attenuation of the dlc-involved Notch pathway using a γ-secretase inhibitor impaired neuronal differentiation in the developing zebrafish forebrain, revealing the indispensable role of the dlc-involved Notch pathway in regulating early zebrafish neurogenesis. Taken together, our results demonstrate the foundational prototype of dlc-involved Notch signaling in the developing zebrafish forebrains, upon which the intricate patterns of the mammalian neocortex may have been sculpted.
Collapse
Affiliation(s)
- Fang-Shin Nian
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Bo-Kai Liao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yen-Lin Su
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Pei-Rong Wu
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Ilyin NP, Shevlyakov AD, Boyko GA, Moskalenko AM, Ikrin AN, Galstyan DS, Kolesnikova TO, Katolikova NV, Chekrygin SA, Lim LW, Yang L, De Abreu MS, Yenkoyan KB, Kalueff AV, Demin KA. Neurotranscriptomic and behavioral effects of ISRIB, and its therapeutic effects in the traumatic brain injury model in zebrafish. Brain Res 2025; 1848:149329. [PMID: 39537125 DOI: 10.1016/j.brainres.2024.149329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/05/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) is a global medical concern and has a lasting impact on brain activity with high risks of mortality. Current treatments are inadequate for repairing damaged brain cells or correcting cognitive and behavioral disabilities in TBI patients. Mounting evidence links TBI to the activation of the Integrated Stress Response (ISR) signaling in the brain. A novel small molecule, ISRIB, is an effective inhibitor of the ISR pathway, offering potential advantages for brain health. Here, we investigated how ISRIB affects brain transcriptome and behavior in zebrafish TBI model evoked by telencephalic brain injury. Overall, while TBI diminished memory and social behavior in zebrafish, administering ISRIB post-injury markedly reduced these behavioral deficits, and modulated brain gene expression, rescuing TBI-activated pathways related to inflammation and brain cell development. Collectively, this supports the role of brain ISR in TBI, and suggests potential utility of ISRIB for the treatment of TBI-related states.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton D Shevlyakov
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Galina A Boyko
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Aleksey N Ikrin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Nataliia V Katolikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Sergei A Chekrygin
- Core Facility Center "Center Bio-Bank", Saint Petersburg University, St. Petersburg, Russia
| | - Lee Wei Lim
- Department of Biociences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Municipal Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - LongEn Yang
- Department of Biociences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Municipal Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Murilo S De Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, M. Heratsi Yerevan State Medical University, Yerevan, Armenia; Biochemistry Department, M. Heratsi Yerevan State Medical University, Yerevan, Armenia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Department of Biociences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Key Municipal Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
5
|
Siniscalco AM, Perera RP, Greenslade JE, Veeravenkatasubramanian H, Masters A, Doll HM, Raj B. Barcoding Notch signaling in the developing brain. Development 2024; 151:dev203102. [PMID: 39575683 DOI: 10.1242/dev.203102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Developmental signaling inputs are fundamental for shaping cell fates and behavior. However, traditional fluorescent-based signaling reporters have limitations in scalability and molecular resolution of cell types. We present SABER-seq, a CRISPR-Cas molecular recorder that stores transient developmental signaling cues as permanent mutations in cellular genomes for deconstruction at later stages via single-cell transcriptomics. We applied SABER-seq to record Notch signaling in developing zebrafish brains. SABER-seq has two components: a signaling sensor and a barcode recorder. The sensor activates Cas9 in a Notch-dependent manner with inducible control, while the recorder obtains mutations in ancestral cells where Notch is active. We combine SABER-seq with an expanded juvenile brain atlas to identify cell types derived from Notch-active founders. Our data reveal rare examples where differential Notch activities in ancestral progenitors are detected in terminally differentiated neuronal subtypes. SABER-seq is a novel platform for rapid, scalable and high-resolution mapping of signaling activity during development.
Collapse
Affiliation(s)
- Abigail M Siniscalco
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Roshan Priyarangana Perera
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jessie E Greenslade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Aiden Masters
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hannah M Doll
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bushra Raj
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Rosa F, Dray N, Bedu S, Bally-Cuif L. Non-apoptotic caspase events and Atf3 expression underlie direct neuronal differentiation of adult neural stem cells. Development 2024; 151:dev204381. [PMID: 39565097 DOI: 10.1242/dev.204381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Neural stem cells (NSCs) generate neurons over a lifetime in adult vertebrate brains. In the adult zebrafish pallium, NSCs persist long term through balanced fate decisions. These decisions include direct neuronal conversions, i.e. delamination and neurogenesis without a division. To characterize this process, we reanalyze intravital imaging data of adult pallial NSCs, and observe shared delamination dynamics between NSCs and committed neuronal progenitors. Searching for mechanisms predicting direct NSC conversions, we build an NSC-specific genetic tracer of Caspase3/7 activation (Cas3*/Cas7*) in vivo. We show that non-apoptotic Cas3*/7* events occur in adult NSCs and are biased towards lineage termination under physiological conditions, with a predominant generation of single neurons. We further identify the transcription factor Atf3 as necessary for this bias. Finally, we show that the Cas3*/7* pathway is engaged by NSCs upon parenchymal lesion and correlates with NSCs more prone to lineage termination and neuron formation. These results provide evidence for non-apoptotic caspase events occurring in vertebrate adult NSCs and link these events with the NSC fate decision of direct conversion, which is important for long-term NSC population homeostasis.
Collapse
Affiliation(s)
- Frédéric Rosa
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Nicolas Dray
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Sébastien Bedu
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| |
Collapse
|
7
|
Chouly M, Bally-Cuif L. Generating neurons in the embryonic and adult brain: compared principles and mechanisms. C R Biol 2024; 347:199-221. [PMID: 39535540 DOI: 10.5802/crbiol.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Neurogenesis is a lifelong process, generating neurons in the right amount, time and place and with the correct identity to permit the growth, function, plasticity and repair of the nervous system, notably the brain. Neurogenesis originates from neural progenitor cells (NPs), endowed with the capacity to divide, renew to maintain the progenitor population, or commit to engage in the neurogenesis process. In the adult brain, these progenitors are classically called neural stem cells (NSCs). We review here the commonalities and differences between NPs and NSCs, in their cellular and molecular attributes but also in their potential, regulators and lineage, in the embryonic and adult brains. Our comparison is based on the two most studied model systems, namely the telencephalon of the zebrafish and mouse. We also discuss how the population of embryonic NPs gives rise to adult NSCs, and outstanding questions pertaining to this transition.
Collapse
|
8
|
Fu J, Martyniuk CJ, Zhou L, Guo X, Chi W. Mechanisms of mitochondrial resilience in teleostean radial glia under hypoxic stress. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:110001. [PMID: 39151815 DOI: 10.1016/j.cbpc.2024.110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Radial glial cells (RGCs) are remarkable cells, essential for normal development of the vertebrate central nervous system. In teleost fishes, RGCs play a pivotal role in neurogenesis and regeneration of injured neurons and glia. RGCs also exhibit resilience to environmental stressors like hypoxia via metabolic adaptations. In this study, we assessed the physiology of RGCs following varying degrees of hypoxia, with an emphasis on reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), mitophagy, and energy metabolism. Our findings demonstrated that hypoxia significantly elevated ROS production and induced MMP depolarization in RGCs. The mitochondrial disturbances were closely associated with increased mitophagy, based on the co-localization of mitochondria and lysosomes. Key mitophagy-related genes were also up-regulated, including those of the BNIP3/NIX mediated pathway as well as the FUNDC1 mediated pathway. Such responses suggest robust cellular mechanisms are initiated to counteract mitochondrial damage due to increasing hypoxia. A significant metabolic shift from oxidative phosphorylation to glycolysis was also observed in RGCs, which may underlie an adaptive response to sustain cellular function and viability following a reduction in oxygen availability. Furthermore, hypoxia inhibited the synthesis of mitochondrial complexes subunits in RGCs, potentially related to elevated HIF-2α expression with 3 % O2. Taken together, RGCs appear to exhibit complex adaptive responses to hypoxic stress, characterized by metabolic reprogramming and the activation of mitophagy pathways to mitigate mitochondrial dysfunction.
Collapse
Affiliation(s)
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Linbin Zhou
- School of Life Sciences, Huizhou University, Huizhou 510607, China
| | - Xiaolan Guo
- School of Life Sciences, Huizhou University, Huizhou 510607, China
| | - Wei Chi
- School of Life Sciences, Huizhou University, Huizhou 510607, China.
| |
Collapse
|
9
|
Foley T, Thetiot M, Bally-Cuif L. Neural Stem Cell Regulation in Zebrafish. Annu Rev Genet 2024; 58:249-272. [PMID: 39121542 DOI: 10.1146/annurev-genet-111523-101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Neural stem cells (NSCs) are progenitor cell populations generating glial cells and neurons and endowed with long-lasting self-renewal and differentiation potential. While some neural progenitors (NPs) in the embryonic nervous system are also long-lived and match this definition, the term NSC classically refers to such progenitor types in the adult. With the discovery of extensive NSC populations in the adult brain of Danio rerio (zebrafish) and of their high neurogenic activity, including for neuronal regeneration, this model organism has become a powerful tool to characterize and mechanistically dissect NSC properties. On these bases, this article will consider NSCs in the adult zebrafish brain, with a focus on its most extensively characterized domain, the telencephalon (notably its dorsal part, the pallium). Whenever necessary, we will also refer to other brain subdivisions, embryonic processes, and the mouse adult brain, whether for comparative purposes or because more information is available in these other systems.
Collapse
Affiliation(s)
- Tanya Foley
- Zebrafish Neurogenetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Paris, France; , ,
| | - Melina Thetiot
- Zebrafish Neurogenetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Paris, France; , ,
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Paris, France; , ,
| |
Collapse
|
10
|
Wang P, Luo L, Chen J. Her4.3 + radial glial cells maintain the brain vascular network through activation of Wnt signaling. J Biol Chem 2024; 300:107570. [PMID: 39019216 PMCID: PMC11342778 DOI: 10.1016/j.jbc.2024.107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/19/2024] Open
Abstract
During vascular development, radial glial cells (RGCs) regulate vascular patterning in the trunk and contribute to the early differentiation of the blood-brain barrier. Ablation of RGCs results in excessive sprouting vessels or the absence of bilateral vertebral arteries. However, interactions of RGCs with later brain vascular networks after pattern formation remain unknown. Here, we generated a her4.3 transgenic line to label RGCs and applied the metronidazole/nitroreductase system to ablate her4.3+ RGCs. The ablation of her4.3+ RGCs led to the collapse of the cerebral vascular network, disruption of the blood-brain barrier, and downregulation of Wnt signaling. The inhibition of Wnt signaling resulted in the collapse of cerebral vasculature, similar to that caused by her4.3+ RGC ablation. The defects in the maintenance of brain vasculature resulting from the absence of her4.3+ RGCs were partially rescued by the activation of Wnt signaling or overexpression of Wnt7aa or Wnt7bb. Together, our study suggests that her4.3+ RGCs maintain the cerebral vascular network through Wnt signaling.
Collapse
Affiliation(s)
- Pengcheng Wang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China; Department of Anaesthesia of Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingying Chen
- Department of Anaesthesia of Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Liu W, Ding Y, Shen Z, Xu C, Yi W, Wang D, Zhou Y, Zon LI, Liu JX. BF170 hydrochloride enhances the emergence of hematopoietic stem and progenitor cells. Development 2024; 151:dev202476. [PMID: 38940293 DOI: 10.1242/dev.202476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Generation of hematopoietic stem and progenitor cells (HSPCs) ex vivo and in vivo, especially the generation of safe therapeutic HSPCs, still remains inefficient. In this study, we have identified compound BF170 hydrochloride as a previously unreported pro-hematopoiesis molecule, using the differentiation assays of primary zebrafish blastomere cell culture and mouse embryoid bodies (EBs), and we demonstrate that BF170 hydrochloride promoted definitive hematopoiesis in vivo. During zebrafish definitive hematopoiesis, BF170 hydrochloride increases blood flow, expands hemogenic endothelium (HE) cells and promotes HSPC emergence. Mechanistically, the primary cilia-Ca2+-Notch/NO signaling pathway, which is downstream of the blood flow, mediated the effects of BF170 hydrochloride on HSPC induction in vivo. Our findings, for the first time, reveal that BF170 hydrochloride is a compound that enhances HSPC induction and may be applied to the ex vivo expansion of HSPCs.
Collapse
Affiliation(s)
- WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - YuYan Ding
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zheng Shen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cong Xu
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - William Yi
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yi Zhou
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I Zon
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute/Children's Hospital, 300 Longwood Avenue, Karp 8, Boston, MA 02115, USA
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
12
|
Siniscalco A, Perera RP, Greenslade JE, Masters A, Doll H, Raj B. Barcoding Notch signaling in the developing brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593533. [PMID: 38766256 PMCID: PMC11100830 DOI: 10.1101/2024.05.10.593533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Developmental signaling inputs are fundamental for shaping cell fates and behavior. However, traditional fluorescent-based signaling reporters have limitations in scalability and molecular resolution of cell types. We present SABER-seq, a CRISPR-Cas molecular recorder that stores transient developmental signaling cues as permanent mutations in cellular genomes for deconstruction at later stages via single-cell transcriptomics. We applied SABER-seq to record Notch signaling in developing zebrafish brains. SABER-seq has two components: a signaling sensor and a barcode recorder. The sensor activates Cas9 in a Notch-dependent manner with inducible control while the recorder accumulates mutations that represent Notch activity in founder cells. We combine SABER-seq with an expanded juvenile brain atlas to define cell types whose fates are determined downstream of Notch signaling. We identified examples wherein Notch signaling may have differential impact on terminal cell fates. SABER-seq is a novel platform for rapid, scalable and high-resolution mapping of signaling activity during development.
Collapse
Affiliation(s)
- Abigail Siniscalco
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Roshan Priyarangana Perera
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jessie E. Greenslade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Aiden Masters
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hannah Doll
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Bushra Raj
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
13
|
Morizet D, Foucher I, Alunni A, Bally-Cuif L. Reconstruction of macroglia and adult neurogenesis evolution through cross-species single-cell transcriptomic analyses. Nat Commun 2024; 15:3306. [PMID: 38632253 PMCID: PMC11024210 DOI: 10.1038/s41467-024-47484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Macroglia fulfill essential functions in the adult vertebrate brain, producing and maintaining neurons and regulating neuronal communication. However, we still know little about their emergence and diversification. We used the zebrafish D. rerio as a distant vertebrate model with moderate glial diversity as anchor to reanalyze datasets covering over 600 million years of evolution. We identify core features of adult neurogenesis and innovations in the mammalian lineage with a potential link to the rarity of radial glia-like cells in adult humans. Our results also suggest that functions associated with astrocytes originated in a multifunctional cell type fulfilling both neural stem cell and astrocytic functions before these diverged. Finally, we identify conserved elements of macroglial cell identity and function and their time of emergence during evolution.
Collapse
Affiliation(s)
- David Morizet
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France.
- Sorbonne Université, Collège doctoral, F-75005, Paris, France.
| | - Isabelle Foucher
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France
| | - Alessandro Alunni
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, F-91190, Gif-sur-Yvette, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France.
| |
Collapse
|
14
|
Labusch M, Thetiot M, Than-Trong E, Morizet D, Coolen M, Varet H, Legendre R, Ortica S, Mancini L, Bally-Cuif L. Prosaposin maintains adult neural stem cells in a state associated with deep quiescence. Stem Cell Reports 2024; 19:515-528. [PMID: 38518783 PMCID: PMC11096431 DOI: 10.1016/j.stemcr.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/24/2024] Open
Abstract
In most vertebrates, adult neural stem cells (NSCs) continuously give rise to neurons in discrete brain regions. A critical process for maintaining NSC pools over long periods of time in the adult brain is NSC quiescence, a reversible and tightly regulated state of cell-cycle arrest. Recently, lysosomes were identified to regulate the NSC quiescence-proliferation balance. However, it remains controversial whether lysosomal activity promotes NSC proliferation or quiescence, and a finer influence of lysosomal activity on NSC quiescence duration or depth remains unexplored. Using RNA sequencing and pharmacological manipulations, we show that lysosomes are necessary for NSC quiescence maintenance. In addition, we reveal that expression of psap, encoding the lysosomal regulator Prosaposin, is enriched in quiescent NSCs (qNSCs) that reside upstream in the NSC lineage and display a deep/long quiescence phase in the adult zebrafish telencephalon. We show that shRNA-mediated psap knockdown increases the proportion of activated NSCs (aNSCs) as well as NSCs that reside in shallower quiescence states (signed by ascl1a and deltaA expression). Collectively, our results identify the lysosomal protein Psap as a (direct or indirect) quiescence regulator and unfold the interplay between lysosomal function and NSC quiescence heterogeneities.
Collapse
Affiliation(s)
- Miriam Labusch
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Melina Thetiot
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, 75015 Paris, France
| | - Emmanuel Than-Trong
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, 75015 Paris, France
| | - David Morizet
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Marion Coolen
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, 75015 Paris, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité, Platform Biomics, 75015 Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université Paris Cité, Platform Biomics, 75015 Paris, France
| | - Sara Ortica
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, 75015 Paris, France
| | - Laure Mancini
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, 75015 Paris, France.
| |
Collapse
|
15
|
Pushchina EV, Kapustyanov IA, Kluka GG. Adult Neurogenesis of Teleost Fish Determines High Neuronal Plasticity and Regeneration. Int J Mol Sci 2024; 25:3658. [PMID: 38612470 PMCID: PMC11012045 DOI: 10.3390/ijms25073658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
Studying the properties of neural stem progenitor cells (NSPCs) in a fish model will provide new information about the organization of neurogenic niches containing embryonic and adult neural stem cells, reflecting their development, origin cell lines and proliferative dynamics. Currently, the molecular signatures of these populations in homeostasis and repair in the vertebrate forebrain are being intensively studied. Outside the telencephalon, the regenerative plasticity of NSPCs and their biological significance have not yet been practically studied. The impressive capacity of juvenile salmon to regenerate brain suggests that most NSPCs are likely multipotent, as they are capable of replacing virtually all cell lineages lost during injury, including neuroepithelial cells, radial glia, oligodendrocytes, and neurons. However, the unique regenerative profile of individual cell phenotypes in the diverse niches of brain stem cells remains unclear. Various types of neuronal precursors, as previously shown, are contained in sufficient numbers in different parts of the brain in juvenile Pacific salmon. This review article aims to provide an update on NSPCs in the brain of common models of zebrafish and other fish species, including Pacific salmon, and the involvement of these cells in homeostatic brain growth as well as reparative processes during the postraumatic period. Additionally, new data are presented on the participation of astrocytic glia in the functioning of neural circuits and animal behavior. Thus, from a molecular aspect, zebrafish radial glia cells are seen to be similar to mammalian astrocytes, and can therefore also be referred to as astroglia. However, a question exists as to if zebrafish astroglia cells interact functionally with neurons, in a similar way to their mammalian counterparts. Future studies of this fish will complement those on rodents and provide important information about the cellular and physiological processes underlying astroglial function that modulate neural activity and behavior in animals.
Collapse
Affiliation(s)
- Evgeniya Vladislavovna Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (I.A.K.); (G.G.K.)
| | | | | |
Collapse
|
16
|
Pushchina EV, Bykova ME, Varaksin AA. Post-Traumatic Expressions of Aromatase B, Glutamine Synthetase, and Cystathionine-Beta-Synthase in the Cerebellum of Juvenile Chum Salmon, Oncorhynchus keta. Int J Mol Sci 2024; 25:3299. [PMID: 38542274 PMCID: PMC10970380 DOI: 10.3390/ijms25063299] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/11/2024] [Accepted: 03/11/2024] [Indexed: 04/29/2025] Open
Abstract
In adult fish, neurogenesis occurs in many areas of the brain, including the cerebellum, with the ratio of newly formed cells relative to the total number of brain cells being several orders of magnitude greater than in mammals. Our study aimed to compare the expressions of aromatase B (AroB), glutamine synthetase (GS), and cystathionine-beta-synthase (CBS) in the cerebellum of intact juvenile chum salmon, Oncorhynchus keta. To identify the dynamics that determine the involvement of AroB, GS, and CBS in the cellular mechanisms of regeneration, we performed a comprehensive assessment of the expressions of these molecular markers during a long-term primary traumatic brain injury (TBI) and after a repeated acute TBI to the cerebellum of O. keta juveniles. As a result, in intact juveniles, weak or moderate expressions of AroB, GS, and CBS were detected in four cell types, including cells of the neuroepithelial type, migrating, and differentiated cells (graphic abstract, A). At 90 days post injury, local hypercellular areas were found in the molecular layer containing moderately labeled AroB+, GS+, and CBS+ cells of the neuroepithelial type and larger AroB+, GS+, and CBS+ cells (possibly analogous to the reactive glia of mammals); patterns of cells migration and neovascularization were also observed. A repeated TBI caused the number of AroB+, GS+, and CBS+ cells to further increase; an increased intensity of immunolabeling was recorded from all cell types (graphic abstract, C). Thus, the results of this study provide a better understanding of adult neurogenesis in teleost fishes, which is expected to clarify the issue of the reactivation of adult neurogenesis in mammalian species.
Collapse
Affiliation(s)
- Evgeniya V. Pushchina
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (M.E.B.); (A.A.V.)
| | | | | |
Collapse
|
17
|
Zhang H, Rui M, Ma Z, Gong S, Zhang S, Zhou Q, Gan C, Gong W, Wang S. Golgi-to-ER retrograde transport prevents premature differentiation of Drosophila type II neuroblasts via Notch-signal-sending daughter cells. iScience 2024; 27:108545. [PMID: 38213621 PMCID: PMC10783626 DOI: 10.1016/j.isci.2023.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Stem cells are heterogeneous to generate diverse differentiated cell types required for organogenesis; however, the underlying mechanisms that differently maintain these heterogeneous stem cells are not well understood. In this study, we identify that Golgi-to-endoplasmic reticulum (ER) retrograde transport specifically maintains type II neuroblasts (NBs) through the Notch signaling. We reveal that intermediate neural progenitors (INPs), immediate daughter cells of type II NBs, provide Delta and function as the NB niche. The Delta used by INPs is mainly produced by NBs and asymmetrically distributed to INPs. Blocking retrograde transport leads to a decrease in INP number, which reduces Notch activity and results in the premature differentiation of type II NBs. Furthermore, the reduction of Delta could suppress tumor formation caused by type II NBs. Our results highlight the crosstalk between Golgi-to-ER retrograde transport, Notch signaling, stem cell niche, and fusion as an essential step in maintaining the self-renewal of type II NB lineage.
Collapse
Affiliation(s)
- Huanhuan Zhang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Menglong Rui
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zhixin Ma
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Sifan Gong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Shuliu Zhang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Qingxia Zhou
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Congfeng Gan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Wenting Gong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Su Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| |
Collapse
|
18
|
Belmonte-Mateos C, Meister L, Pujades C. Hindbrain rhombomere centers harbor a heterogenous population of dividing progenitors which rely on Notch signaling. Front Cell Dev Biol 2023; 11:1268631. [PMID: 38020924 PMCID: PMC10652760 DOI: 10.3389/fcell.2023.1268631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Tissue growth and morphogenesis are interrelated processes, whose tight coordination is essential for the production of different cell fates and the timely precise allocation of stem cell capacities. The zebrafish embryonic brainstem, the hindbrain, exemplifies such coupling between spatiotemporal cell diversity acquisition and tissue growth as the neurogenic commitment is differentially distributed over time. Here, we combined cell lineage and in vivo imaging approaches to reveal the emergence of specific cell population properties within the rhombomeres. We studied the molecular identity of hindbrain rhombomere centers and showed that they harbor different progenitor capacities that change over time. By clonal analysis, we revealed that cells within the center of rhombomeres decrease the proliferative capacity to remain mainly in the G1 phase. Proliferating progenitors give rise to neurons by asymmetric and symmetric neurogenic divisions while maintaining the pool of progenitors. The proliferative capacity of these cells differs from their neighbors, and they are delayed in the onset of Notch activity. Through functional studies, we demonstrated that they rely on Notch3 signaling to be maintained as non-committed progenitors. In this study, we show that cells in rhombomere centers, despite the neurogenic asynchrony, might share steps of a similar program with the rhombomere counterparts, to ensure proper tissue growth.
Collapse
|
19
|
Sahai-Hernandez P, Pouget C, Eyal S, Svoboda O, Chacon J, Grimm L, Gjøen T, Traver D. Dermomyotome-derived endothelial cells migrate to the dorsal aorta to support hematopoietic stem cell emergence. eLife 2023; 12:e58300. [PMID: 37695317 PMCID: PMC10495111 DOI: 10.7554/elife.58300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/03/2023] [Indexed: 09/12/2023] Open
Abstract
Development of the dorsal aorta is a key step in the establishment of the adult blood-forming system, since hematopoietic stem and progenitor cells (HSPCs) arise from ventral aortic endothelium in all vertebrate animals studied. Work in zebrafish has demonstrated that arterial and venous endothelial precursors arise from distinct subsets of lateral plate mesoderm. Here, we profile the transcriptome of the earliest detectable endothelial cells (ECs) during zebrafish embryogenesis to demonstrate that tissue-specific EC programs initiate much earlier than previously appreciated, by the end of gastrulation. Classic studies in the chick embryo showed that paraxial mesoderm generates a subset of somite-derived endothelial cells (SDECs) that incorporate into the dorsal aorta to replace HSPCs as they exit the aorta and enter circulation. We describe a conserved program in the zebrafish, where a rare population of endothelial precursors delaminates from the dermomyotome to incorporate exclusively into the developing dorsal aorta. Although SDECs lack hematopoietic potential, they act as a local niche to support the emergence of HSPCs from neighboring hemogenic endothelium. Thus, at least three subsets of ECs contribute to the developing dorsal aorta: vascular ECs, hemogenic ECs, and SDECs. Taken together, our findings indicate that the distinct spatial origins of endothelial precursors dictate different cellular potentials within the developing dorsal aorta.
Collapse
Affiliation(s)
- Pankaj Sahai-Hernandez
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Claire Pouget
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Shai Eyal
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Ondrej Svoboda
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
- Department of Cell Differentiation, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic v.v.i, Prague, Czech Republic
| | - Jose Chacon
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Lin Grimm
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Tor Gjøen
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - David Traver
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| |
Collapse
|
20
|
Mancini L, Guirao B, Ortica S, Labusch M, Cheysson F, Bonnet V, Phan MS, Herbert S, Mahou P, Menant E, Bedu S, Tinevez JY, Baroud C, Beaurepaire E, Bellaiche Y, Bally-Cuif L, Dray N. Apical size and deltaA expression predict adult neural stem cell decisions along lineage progression. SCIENCE ADVANCES 2023; 9:eadg7519. [PMID: 37656795 PMCID: PMC10854430 DOI: 10.1126/sciadv.adg7519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Abstract
The maintenance of neural stem cells (NSCs) in the adult brain depends on their activation frequency and division mode. Using long-term intravital imaging of NSCs in the zebrafish adult telencephalon, we reveal that apical surface area and expression of the Notch ligand DeltaA predict these NSC decisions. deltaA-negative NSCs constitute a bona fide self-renewing NSC pool and systematically engage in asymmetric divisions generating a self-renewing deltaAneg daughter, which regains the size and behavior of its mother, and a neurogenic deltaApos daughter, eventually engaged in neuronal production following further quiescence-division phases. Pharmacological and genetic manipulations of Notch, DeltaA, and apical size further show that the prediction of activation frequency by apical size and the asymmetric divisions of deltaAneg NSCs are functionally independent of Notch. These results provide dynamic qualitative and quantitative readouts of NSC lineage progression in vivo and support a hierarchical organization of NSCs in differently fated subpopulations.
Collapse
Affiliation(s)
- Laure Mancini
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, Paris 75015, France
- Sorbonne Université, Collège Doctoral, Paris F-75005, France
| | - Boris Guirao
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, Paris 75005, France
| | - Sara Ortica
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, Paris 75015, France
| | - Miriam Labusch
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, Paris 75015, France
- Sorbonne Université, Collège Doctoral, Paris F-75005, France
| | - Felix Cheysson
- LPSM, Sorbonne Université, UMR CNRS 8001, Paris 75005, France
| | - Valentin Bonnet
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, Paris F-75015, France
- LadHyX, CNRS, Ecole Polytechnique, IP Paris, Palaiseau 91120, France
| | - Minh Son Phan
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
| | - Sébastien Herbert
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, CNRS, INSERM, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Emilie Menant
- Laboratory for Optics and Biosciences, CNRS, INSERM, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Sébastien Bedu
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, Paris 75015, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
| | - Charles Baroud
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, Paris F-75015, France
- LadHyX, CNRS, Ecole Polytechnique, IP Paris, Palaiseau 91120, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, CNRS, INSERM, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Yohanns Bellaiche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, Paris 75005, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, Paris 75015, France
| | - Nicolas Dray
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, Paris 75015, France
| |
Collapse
|
21
|
Abstract
Notch signaling is a highly conserved signaling pathway that coordinates cellular differentiation during the development and homeostasis in numerous organs and tissues across metazoans. Activation of Notch signaling relies on direct contact between neighboring cells and mechanical pulling of the Notch receptors by the Notch ligands. Notch signaling is commonly used in developmental processes to coordinate the differentiation into distinct cell fates of neighboring cells. In this Development at a Glance article, we describe the current understanding of the Notch pathway activation and the different regulatory levels that control the pathway. We then describe several developmental processes where Notch is crucial for coordinating differentiation. These examples include processes that are largely based on lateral inhibition mechanisms giving rise to alternating patterns (e.g. SOP selection, hair cell in the inner ear and neural stem cell maintenance), as well as processes where Notch activity is oscillatory (e.g. somitogenesis and neurogenesis in mammals).
Collapse
Affiliation(s)
- Oren Gozlan
- School of Neurobiology, Biochemistry, and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry, and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
22
|
Guo Q, Chen G, Cheng H, Qing Y, Truong L, Ma Q, Wang Y, Cheng J. Temporal regulation of notch activation improves arteriovenous fistula maturation. J Transl Med 2022; 20:543. [PMID: 36419038 PMCID: PMC9682688 DOI: 10.1186/s12967-022-03727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Arteriovenous fistula (AVF) maturation is a process involving remodeling of venous arm of the AVFs. It is a challenge to balance adaptive AVF remodeling and neointima formation. In this study we temporally controlled Notch activation to promote AVF maturation while avoiding neointima formation. METHODS Temporal Notch activation was controlled by regulating the expression of Notch transcription factor, RBP-Jκ, or dnMAML1 (dominant negative MAML2) in vascular smooth muscle cells (VSMCs). AVF mouse model was created and VSMC phenotype dynamic changes during AVF remodeling were determined. RESULTS Activated Notch was found in the nuclei of neointimal VSMCs in AVFs from uremic mice. We found that the VSMCs near the anastomosis became dedifferentiated and activated after AVF creation. These dedifferentiated VSMCs regained smooth muscle contractile markers later during AVF remodeling. However, global or VSMC-specific KO of RBP-Jκ at early stage (before or 1 week after AVF surgery) blocked VSMC differentiation and neointima formation in AVFs. These un-matured AVFs showed less intact endothelium and increased infiltration of inflammatory cells. Consequently, the VSMC fate in the neointima was completely shut down, leading to an un-arterialized AVF. In contrast, KO of RBP-Jκ at late stage (3 weeks after AVF surgery), it could not block neointima formation and vascular stenosis. Inhibition of Notch activation at week 1 or 2, could maintain VSMC contractile markers expression and facilitate AVF maturation. CONCLUSIONS This work uncovers the molecular and cellular events in each segment of AVF remodeling and found that neither sustained increasing nor blocking of Notch signaling improves AVF maturation. It highlights a novel strategy to improve AVF patency: temporally controlled Notch activation can achieve a balance between adaptive AVF remodeling and neointima formation to improve AVF maturation. TRANSLATIONAL PERSPECTIVE Adaptive vascular remodeling is required for AVF maturation. The balance of wall thickening of the vein and neointima formation in AVF determines the fate of AVF function. Sustained activation of Notch signaling in VSMCs promotes neointima formation, while deficiency of Notch signaling at early stage during AVF remodeling prevents VSMC accumulation and differentiation from forming a functional AVFs. These responses also delay EC regeneration and impair EC barrier function with increased inflammation leading to failed vascular remodeling of AVFs. Thus, a strategy to temporal regulate Notch activation will improve AVF maturation.
Collapse
Affiliation(s)
- Qunying Guo
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Ministry of Health and Guangdong Province, Guangzhou, China ,grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Guang Chen
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA ,grid.33199.310000 0004 0368 7223 Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan, China
| | - Hunter Cheng
- grid.240145.60000 0001 2291 4776Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Ying Qing
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Luan Truong
- grid.63368.380000 0004 0445 0041Department of Pathology, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Quan Ma
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yun Wang
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jizhong Cheng
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
23
|
Ilie OD, Duta R, Balmus IM, Savuca A, Petrovici A, Nita IB, Antoci LM, Jijie R, Mihai CT, Ciobica A, Nicoara M, Popescu R, Dobrin R, Solcan C, Trifan A, Stanciu C, Doroftei B. Assessing the Neurotoxicity of a Sub-Optimal Dose of Rotenone in Zebrafish ( Danio rerio) and the Possible Neuroactive Potential of Valproic Acid, Combination of Levodopa and Carbidopa, and Lactic Acid Bacteria Strains. Antioxidants (Basel) 2022; 11:2040. [PMID: 36290763 PMCID: PMC9598446 DOI: 10.3390/antiox11102040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is an enigmatic neurodegenerative disorder that is currently the subject of extensive research approaches aiming at deepening the understanding of its etiopathophysiology. Recent data suggest that distinct compounds used either as anticonvulsants or agents usually used as dopaminergic agonists or supplements consisting of live active lactic acid bacteria strains might alleviate and improve PD-related phenotypes. This is why we aimed to elucidate how the administration of rotenone (ROT) disrupts homeostasis and the possible neuroactive potential of valproic acid (VPA), antiparkinsonian agents (levodopa and carbidopa - LEV+CARB), and a mixture of six Lactobacillus and three Bifidobacterium species (PROBIO) might re-establish the optimal internal parameters. ROT causes significant changes in the central nervous system (CNS), notably reduced neurogenesis and angiogenesis, by triggering apoptosis, reflected by the increased expression of PARKIN and PINK1 gene(s), low brain dopamine (DA) levels, and as opposed to LRRK2 and SNCA compared with healthy zebrafish. VPA, LEV/CARB, and PROBIO sustain neurogenesis and angiogenesis, manifesting a neuroprotective role in diminishing the effect of ROT in zebrafish. Interestingly, none of the tested compounds influenced oxidative stress (OS), as reflected by the level of malondialdehyde (MDA) level and superoxide dismutase (SOD) enzymatic activity revealed in non-ROT-exposed zebrafish. Overall, the selected concentrations were enough to trigger particular behavioral patterns as reflected by our parameters of interest (swimming distance (mm), velocity (mm/s), and freezing episodes (s)), but sequential testing is mandatory to decipher whether they exert an inhibitory role following ROT exposure. In this way, we further offer data into how ROT may trigger a PD-related phenotype and the possible beneficial role of VPA, LEV+CARB, and PROBIO in re-establishing homeostasis in Danio rerio.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Raluca Duta
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University, Carol I Avenue, no 11, 700506 Iasi, Romania
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, 20A, 700506 Iasi, Romania
| | - Alexandra Savuca
- Doctoral School of Geosciences, Faculty of Geography-Geology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Adriana Petrovici
- Department of Molecular Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, no 3, 700490 Iasi, Romania
| | - Ilinca-Bianca Nita
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
| | - Lucian-Mihai Antoci
- Department of Medical Genetics, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
| | - Roxana Jijie
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Inderdisciplinary Research, “Alexandru Ioan Cuza” University, Carol I Avenue, no 11, 700506 Iasi, Romania
| | - Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
- Doctoral School of Geosciences, Faculty of Geography-Geology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Roxana Popescu
- Department of Medical Genetics, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
- Department of Medical Genetics, “Saint Mary” Emergency Children’s Hospital, Vasile Lupu Street, no 62, 700309 Iasi, Romania
| | - Romeo Dobrin
- Department of Psychiatry, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
| | - Carmen Solcan
- Department of Molecular Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, no 3, 700490 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, Independence Avenue, no 1, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, Independence Avenue, no 1, 700111 Iasi, Romania
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
| |
Collapse
|
24
|
Jin B, Xie L, Zhan D, Zhou L, Feng Z, He J, Qin J, Zhao C, Luo L, Li L. Nrf2 dictates the neuronal survival and differentiation of embryonic zebrafish harboring compromised alanyl-tRNA synthetase. Development 2022; 149:276217. [DOI: 10.1242/dev.200342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
tRNA synthetase deficiency leads to unfolded protein responses in neuronal disorders; however, its function in embryonic neurogenesis remains unclear. This study identified an aars1cq71/cq71 mutant zebrafish allele that showed increased neuronal apoptosis and compromised neurogenesis. aars1 transcripts were highly expressed in primary neural progenitor cells, and their aberration resulted in protein overloading and activated Perk. nfe2l2b, a paralog of mammalian Nfe2l2, which encodes Nrf2, is a pivotal executor of Perk signaling that regulates neuronal phenotypes in aars1cq71/cq71 mutants. Interference of nfe2l2b in nfe2l2bΔ1/Δ1 mutants did not affect global larval development. However, aars1cq71/cq71;nfe2l2bΔ1/Δ1 mutant embryos exhibited increased neuronal cell survival and neurogenesis compared with their aars1cq71/cq71 siblings. nfe2l2b was harnessed by Perk at two levels. Its transcript was regulated by Chop, an implementer of Perk. It was also phosphorylated by Perk. Both pathways synergistically assured the nuclear functions of nfe2l2b to control cell survival by targeting p53. Our study extends the understanding of tRNA synthetase in neurogenesis and implies that Nrf2 is a cue to mitigate neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Binbin Jin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Liqin Xie
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Dan Zhan
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Luping Zhou
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Zhi Feng
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Jiangyong He
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Jie Qin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Congjian Zhao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Biomedical Engineering and informatics, Chongqing University of Posts and Telecommunications 2 , Chongqing 40065 , China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Li Li
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences 3 , Chongqing 400714 , China
| |
Collapse
|
25
|
Hevia CF, Engel-Pizcueta C, Udina F, Pujades C. The neurogenic fate of the hindbrain boundaries relies on Notch3-dependent asymmetric cell divisions. Cell Rep 2022; 39:110915. [PMID: 35675784 DOI: 10.1016/j.celrep.2022.110915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/16/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Elucidating the cellular and molecular mechanisms that regulate the balance between progenitor cell proliferation and neuronal differentiation in the construction of the embryonic brain demands the combination of cell lineage and functional approaches. Here, we generate the comprehensive lineage of hindbrain boundary cells by using a CRISPR-based knockin zebrafish transgenic line that specifically labels the boundaries. We unveil that boundary cells asynchronously engage in neurogenesis undergoing a functional transition from neuroepithelial progenitors to radial glia cells, coinciding with the onset of Notch3 signaling that triggers their asymmetrical cell division. Upon notch3 loss of function, boundary cells lose radial glia properties and symmetrically divide undergoing neuronal differentiation. Finally, we show that the fate of boundary cells is to become neurons, the subtype of which relies on their axial position, suggesting that boundary cells contribute to refine the number and proportion of the distinct neuronal populations.
Collapse
Affiliation(s)
| | | | - Frederic Udina
- Department of Economics and Business, Universitat Pompeu Fabra, 08002 Barcelona, Spain; Data Science Center, Barcelona School of Economics, 08002 Barcelona, Spain
| | - Cristina Pujades
- Department of Medicine and Life Sciences, 08003 Barcelona, Spain.
| |
Collapse
|
26
|
Single Cell/Nucleus Transcriptomics Comparison in Zebrafish and Humans Reveals Common and Distinct Molecular Responses to Alzheimer’s Disease. Cells 2022; 11:cells11111807. [PMID: 35681503 PMCID: PMC9180693 DOI: 10.3390/cells11111807] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/21/2022] Open
Abstract
Neurogenesis is significantly reduced in Alzheimer’s disease (AD) and is a potential therapeutic target. Contrary to humans, a zebrafish can regenerate its diseased brain, and thus is ideal for studying neurogenesis. To compare the AD-related molecular pathways between humans and zebrafish, we compared single cell or nuclear transcriptomic data from a zebrafish amyloid toxicity model and its controls (N = 12) with the datasets of two human adult brains (N = 10 and N = 48 (Microglia)), and one fetal brain (N = 10). Approximately 95.4% of the human and zebrafish cells co-clustered. Within each cell type, we identified differentially expressed genes (DEGs), enriched KEGG pathways, and gene ontology terms. We studied synergistic and non-synergistic DEGs to point at either common or uniquely altered mechanisms across species. Using the top DEGs, a high concordance in gene expression changes between species was observed in neuronal clusters. On the other hand, the molecular pathways affected by AD in zebrafish astroglia differed from humans in favor of the neurogenic pathways. The integration of zebrafish and human transcriptomes shows that the zebrafish can be used as a tool to study the cellular response to amyloid proteinopathies. Uniquely altered pathways in zebrafish could highlight the specific mechanisms underlying neurogenesis, which are absent in humans, and could serve as potential candidates for therapeutic developments.
Collapse
|
27
|
Gioftsidi S, Relaix F, Mourikis P. The Notch signaling network in muscle stem cells during development, homeostasis, and disease. Skelet Muscle 2022; 12:9. [PMID: 35459219 PMCID: PMC9027478 DOI: 10.1186/s13395-022-00293-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 01/22/2023] Open
Abstract
Skeletal muscle stem cells have a central role in muscle growth and regeneration. They reside as quiescent cells in resting muscle and in response to damage they transiently amplify and fuse to produce new myofibers or self-renew to replenish the stem cell pool. A signaling pathway that is critical in the regulation of all these processes is Notch. Despite the major differences in the anatomical and cellular niches between the embryonic myotome, the adult sarcolemma/basement-membrane interphase, and the regenerating muscle, Notch signaling has evolved to support the context-specific requirements of the muscle cells. In this review, we discuss the diverse ways by which Notch signaling factors and other modifying partners are operating during the lifetime of muscle stem cells to establish an adaptive dynamic network.
Collapse
Affiliation(s)
- Stamatia Gioftsidi
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France
| | - Frederic Relaix
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France
- EnvA, IMRB, F-94700, Maisons-Alfort, France
- Etablissement Français du Sang (EFS), IMRB, F-94010, Creteil, France
- Assistance Publique-Hôpitaux de Paris, Hopital Mondor, Service d'Histologie, F-94010, Creteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France.
| |
Collapse
|
28
|
Becker T, Becker CG. Regenerative neurogenesis: the integration of developmental, physiological and immune signals. Development 2022; 149:275248. [PMID: 35502778 PMCID: PMC9124576 DOI: 10.1242/dev.199907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In fishes and salamanders, but not mammals, neural stem cells switch back to neurogenesis after injury. The signalling environment of neural stem cells is strongly altered by the presence of damaged cells and an influx of immune, as well as other, cells. Here, we summarise our recently expanded knowledge of developmental, physiological and immune signals that act on neural stem cells in the zebrafish central nervous system to directly, or indirectly, influence their neurogenic state. These signals act on several intracellular pathways, which leads to changes in chromatin accessibility and gene expression, ultimately resulting in regenerative neurogenesis. Translational approaches in non-regenerating mammals indicate that central nervous system stem cells can be reprogrammed for neurogenesis. Understanding signalling mechanisms in naturally regenerating species show the path to experimentally promoting neurogenesis in mammals.
Collapse
Affiliation(s)
- Thomas Becker
- Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh Medical School, Biomedical Science, Edinburgh, EH16 4SB, Scotland
| | - Catherina G Becker
- Center for Regenerative Therapies at the TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh Medical School, Biomedical Science, Edinburgh, EH16 4SB, Scotland
| |
Collapse
|
29
|
Paudel S, Gjorcheska S, Bump P, Barske L. Patterning of cartilaginous condensations in the developing facial skeleton. Dev Biol 2022; 486:44-55. [DOI: 10.1016/j.ydbio.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
|
30
|
mdka Expression Is Associated with Quiescent Neural Stem Cells during Constitutive and Reactive Neurogenesis in the Adult Zebrafish Telencephalon. Brain Sci 2022; 12:brainsci12020284. [PMID: 35204047 PMCID: PMC8870249 DOI: 10.3390/brainsci12020284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
In contrast to mammals, adult zebrafish display an extraordinary capacity to heal injuries and repair damage in the central nervous system. Pivotal for the regenerative capacity of the zebrafish brain at adult stages is the precise control of neural stem cell (NSC) behavior and the maintenance of the stem cell pool. The gene mdka, a member of a small family of heparin binding growth factors, was previously shown to be involved in regeneration in the zebrafish retina, heart, and fin. Here, we investigated the expression pattern of the gene mdka and its paralogue mdkb in the zebrafish adult telencephalon under constitutive and regenerative conditions. Our findings show that only mdka expression is specifically restricted to the telencephalic ventricle, a stem cell niche of the zebrafish telencephalon. In this brain region, mdka is particularly expressed in the quiescent stem cells. Interestingly, after brain injury, mdka expression remains restricted to the resting stem cell, which might suggest a role of mdka in regulating stem cell quiescence.
Collapse
|
31
|
Zhang G, Lübke L, Chen F, Beil T, Takamiya M, Diotel N, Strähle U, Rastegar S. Neuron-Radial Glial Cell Communication via BMP/Id1 Signaling Is Key to Long-Term Maintenance of the Regenerative Capacity of the Adult Zebrafish Telencephalon. Cells 2021; 10:cells10102794. [PMID: 34685774 PMCID: PMC8534405 DOI: 10.3390/cells10102794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023] Open
Abstract
The central nervous system of adult zebrafish displays an extraordinary neurogenic and regenerative capacity. In the zebrafish adult brain, this regenerative capacity relies on neural stem cells (NSCs) and the careful management of the NSC pool. However, the mechanisms controlling NSC pool maintenance are not yet fully understood. Recently, Bone Morphogenetic Proteins (BMPs) and their downstream effector Id1 (Inhibitor of differentiation 1) were suggested to act as key players in NSC maintenance under constitutive and regenerative conditions. Here, we further investigated the role of BMP/Id1 signaling in these processes, using different genetic and pharmacological approaches. Our data show that BMPs are mainly expressed by neurons in the adult telencephalon, while id1 is expressed in NSCs, suggesting a neuron-NSC communication via the BMP/Id1 signaling axis. Furthermore, manipulation of BMP signaling by conditionally inducing or repressing BMP signaling via heat-shock, lead to an increase or a decrease of id1 expression in the NSCs, respectively. Induction of id1 was followed by an increase in the number of quiescent NSCs, while knocking down id1 expression caused an increase in NSC proliferation. In agreement, genetic ablation of id1 function lead to increased proliferation of NSCs, followed by depletion of the stem cell pool with concomitant failure to heal injuries in repeatedly injured mutant telencephala. Moreover, pharmacological inhibition of BMP and Notch signaling suggests that the two signaling systems cooperate and converge onto the transcriptional regulator her4.1. Interestingly, brain injury lead to a depletion of NSCs in animals lacking BMP/Id1 signaling despite an intact Notch pathway. Taken together, our data demonstrate how neurons feedback on NSC proliferation and that BMP1/Id1 signaling acts as a safeguard of the NSC pool under regenerative conditions.
Collapse
Affiliation(s)
- Gaoqun Zhang
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Fushun Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Tanja Beil
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Nicolas Diotel
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 97400 Saint-Denis de La Réunion, France;
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
- Centre of Organismal Studies, University Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Correspondence: (U.S.); (S.R.)
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
- Correspondence: (U.S.); (S.R.)
| |
Collapse
|
32
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
33
|
Lecordier S, Manrique-Castano D, El Moghrabi Y, ElAli A. Neurovascular Alterations in Vascular Dementia: Emphasis on Risk Factors. Front Aging Neurosci 2021; 13:727590. [PMID: 34566627 PMCID: PMC8461067 DOI: 10.3389/fnagi.2021.727590] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Yara El Moghrabi
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
34
|
Sahu A, Devi S, Jui J, Goldman D. Notch signaling via Hey1 and Id2b regulates Müller glia's regenerative response to retinal injury. Glia 2021; 69:2882-2898. [PMID: 34415582 DOI: 10.1002/glia.24075] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/01/2023]
Abstract
Zebrafish Müller glia (MG) respond to retinal injury by suppressing Notch signaling and producing progenitors for retinal repair. A certain threshold of injury-derived signal must be exceeded in order to engage MG in a regenerative response (MG's injury-response threshold). Pan-retinal Notch inhibition expands the zone of injury-responsive MG at the site of focal injury, suggesting that Notch signaling regulates MG's injury-response threshold. We found that Notch signaling enhanced chromatin accessibility and gene expression at a subset of regeneration-associated genes in the uninjured retina. Two Notch effector genes, hey1 and id2b, were identified that reflect bifurcation of the Notch signaling pathway, and differentially regulate MG's injury-response threshold and proliferation of MG-derived progenitors. Furthermore, Notch signaling component gene repression in the injured retina suggests a role for Dll4, Dlb, and Notch3 in regulating Notch signaling in MG and epistasis experiments confirm that the Dll4/Dlb-Notch3-Hey1/Id2b signaling pathway regulates MG's injury-response threshold and proliferation.
Collapse
Affiliation(s)
- Aresh Sahu
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Sulochana Devi
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Jui
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel Goldman
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Bagnoli S, Terzibasi Tozzini E. Age-Dependent Regulation of Notch Family Members in the Neuronal Stem Cell Niches of the Short-Lived Killifish Nothobranchius furzeri. Front Cell Dev Biol 2021; 9:640958. [PMID: 34307342 PMCID: PMC8299727 DOI: 10.3389/fcell.2021.640958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background: The annual killifish Nothobranchius furzeri is a new experimental model organism in biology, since it represents the vertebrate species with the shortest captive life span and also shows the fastest maturation and senescence recorded in the laboratory. Here, we use this model to investigate the age-dependent decay of neurogenesis in the telencephalon (brain region sharing the same embryonic origin with the mammalian adult niches), focusing on the expression of the Notch pathway genes. Results: We observed that the major ligands/receptors of the pathway showed a negative correlation with age, indicating age-dependent downregulation of the Notch pathway. Moreover, expression of notch1a was clearly limited to active neurogenic niches and declined during aging, without changing its regional patterning. Expression of notch3 is not visibly influenced by aging. Conclusion: Both expression pattern and regulation differ between notch1a and notch3, with the former being limited to mitotically active regions and reduced by aging and the latter being present in all cells with a neurogenic potential, regardless of the level of their actual mitotic activity, and so is less influenced by age. This finally suggests a possible differential role of the two receptors in the regulation of the niche proliferative potential throughout the entire fish life.
Collapse
Affiliation(s)
- Sara Bagnoli
- Laboratory of Biology (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | - Eva Terzibasi Tozzini
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
36
|
Dray N, Mancini L, Binshtok U, Cheysson F, Supatto W, Mahou P, Bedu S, Ortica S, Than-Trong E, Krecsmarik M, Herbert S, Masson JB, Tinevez JY, Lang G, Beaurepaire E, Sprinzak D, Bally-Cuif L. Dynamic spatiotemporal coordination of neural stem cell fate decisions occurs through local feedback in the adult vertebrate brain. Cell Stem Cell 2021; 28:1457-1472.e12. [PMID: 33823144 PMCID: PMC8363814 DOI: 10.1016/j.stem.2021.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/21/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Neural stem cell (NSC) populations persist in the adult vertebrate brain over a lifetime, and their homeostasis is controlled at the population level through unknown mechanisms. Here, we combine dynamic imaging of entire NSC populations in their in vivo niche over several weeks with pharmacological manipulations, mathematical modeling, and spatial statistics and demonstrate that NSCs use spatiotemporally resolved local feedback signals to coordinate their decision to divide in adult zebrafish brains. These involve Notch-mediated short-range inhibition from transient neural progenitors and a dispersion effect from the dividing NSCs themselves exerted with a delay of 9–12 days. Simulations from a stochastic NSC lattice model capturing these interactions demonstrate that these signals are linked by lineage progression and control the spatiotemporal distribution of output neurons. These results highlight how local and temporally delayed interactions occurring between brain germinal cells generate self-propagating dynamics that maintain NSC population homeostasis and coordinate specific spatiotemporal correlations. NSC activation events are spatiotemporally coordinated within adult NSC populations This involves inhibition by neural progenitors (relying on Notch) and by dividing NSCs A dynamic lattice model shows that these interactions are linked by lineage progression NSCs dynamics generate an intrinsic niche that maintains the NSC population long-term
Collapse
Affiliation(s)
- Nicolas Dray
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France.
| | - Laure Mancini
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Udi Binshtok
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Felix Cheysson
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005 Paris, France; Epidemiology and Modeling of Bacterial Evasion to Antibacterials Unit (EMEA), Institut Pasteur, 75015 Paris, France; Anti-infective Evasion and Pharmacoepidemiology Team, Centre for Epidemiology and Public Health (CESP), INSERM/UVSQ, Villejuif Cedex, France
| | - Willy Supatto
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Sébastien Bedu
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France
| | - Sara Ortica
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France
| | - Emmanuel Than-Trong
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France
| | - Monika Krecsmarik
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France
| | - Sébastien Herbert
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; Image Analysis Hub, Institut Pasteur, 75015 Paris, France
| | - Jean-Baptiste Masson
- Department of Neuroscience and Department of Computational Biology, Institut Pasteur, 75015 Paris, France
| | | | - Gabriel Lang
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005 Paris, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - David Sprinzak
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France.
| |
Collapse
|
37
|
Reoccurring neural stem cell divisions in the adult zebrafish telencephalon are sufficient for the emergence of aggregated spatiotemporal patterns. PLoS Biol 2020; 18:e3000708. [PMID: 33290409 PMCID: PMC7748264 DOI: 10.1371/journal.pbio.3000708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/18/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Regulation of quiescence and cell cycle entry is pivotal for the maintenance of stem cell populations. Regulatory mechanisms, however, are poorly understood. In particular, it is unclear how the activity of single stem cells is coordinated within the population or if cells divide in a purely random fashion. We addressed this issue by analyzing division events in an adult neural stem cell (NSC) population of the zebrafish telencephalon. Spatial statistics and mathematical modeling of over 80,000 NSCs in 36 brain hemispheres revealed weakly aggregated, nonrandom division patterns in space and time. Analyzing divisions at 2 time points allowed us to infer cell cycle and S-phase lengths computationally. Interestingly, we observed rapid cell cycle reentries in roughly 15% of newly born NSCs. In agent-based simulations of NSC populations, this redividing activity sufficed to induce aggregated spatiotemporal division patterns that matched the ones observed experimentally. In contrast, omitting redivisions leads to a random spatiotemporal distribution of dividing cells. Spatiotemporal aggregation of dividing stem cells can thus emerge solely from the cells’ history. An interdisciplinary study of the rules governing cell divisions in a population of neural stem cells in the zebrafish brain reveals the existence of aggregated spatio-temporal division patterns of rapid cell cycles in stem cells, and shows that these patterns can be explained by a simple agent-based model relying solely on the cells‘ division history.
Collapse
|
38
|
Ortiz-Álvarez G, Spassky N. One progenitor to generate them all: new evidence for multi-fated neural progenitors. Curr Opin Neurobiol 2020; 66:186-194. [PMID: 33276241 DOI: 10.1016/j.conb.2020.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022]
Abstract
The past two decades have left behind the old conception of early fate-restricted neural progenitors. The new paradigm is that of a more plastic brain, in which the cellular potential of multi-fated progenitors is progressively restricted. This is observed in the switch from neurogenesis to gliogenesis, but also in the generation of different types of glial cells and neurons at later stages. The mechanisms that establish brain cell diversity or heterogeneity within a single population are starting to be elucidated. The role of cell cycle regulators and dynamics and the asymmetric distribution of cell cargoes during cell division are attracting more attention. Understanding these mechanisms could open the way for new treatments against brain pathologies such as brain tumors or neurodegenerative disorders.
Collapse
Affiliation(s)
- Gonzalo Ortiz-Álvarez
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, UMR8197, INSERM U1024, PSL Université Paris, 75005 Paris, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, UMR8197, INSERM U1024, PSL Université Paris, 75005 Paris, France.
| |
Collapse
|
39
|
Diving into the streams and waves of constitutive and regenerative olfactory neurogenesis: insights from zebrafish. Cell Tissue Res 2020; 383:227-253. [PMID: 33245413 DOI: 10.1007/s00441-020-03334-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
The olfactory system is renowned for its functional and structural plasticity, with both peripheral and central structures displaying persistent neurogenesis throughout life and exhibiting remarkable capacity for regenerative neurogenesis after damage. In general, fish are known for their extensive neurogenic ability, and the zebrafish in particular presents an attractive model to study plasticity and adult neurogenesis in the olfactory system because of its conserved structure, relative simplicity, rapid cell turnover, and preponderance of neurogenic niches. In this review, we present an overview of the anatomy of zebrafish olfactory structures, with a focus on the neurogenic niches in the olfactory epithelium, olfactory bulb, and ventral telencephalon. Constitutive and regenerative neurogenesis in both the peripheral olfactory organ and central olfactory bulb of zebrafish is reviewed in detail, and a summary of current knowledge about the cellular origin and molecular signals involved in regulating these processes is presented. While some features of physiologic and injury-induced neurogenic responses are similar, there are differences that indicate that regeneration is not simply a reiteration of the constitutive proliferation process. We provide comparisons to mammalian neurogenesis that reveal similarities and differences between species. Finally, we present a number of open questions that remain to be answered.
Collapse
|
40
|
Diotel N, Lübke L, Strähle U, Rastegar S. Common and Distinct Features of Adult Neurogenesis and Regeneration in the Telencephalon of Zebrafish and Mammals. Front Neurosci 2020; 14:568930. [PMID: 33071740 PMCID: PMC7538694 DOI: 10.3389/fnins.2020.568930] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
In contrast to mammals, the adult zebrafish brain shows neurogenic activity in a multitude of niches present in almost all brain subdivisions. Irrespectively, constitutive neurogenesis in the adult zebrafish and mouse telencephalon share many similarities at the cellular and molecular level. However, upon injury during tissue repair, the situation is entirely different. In zebrafish, inflammation caused by traumatic brain injury or by induced neurodegeneration initiates specific and distinct neurogenic programs that, in combination with signaling pathways implicated in constitutive neurogenesis, quickly, and efficiently overcome the loss of neurons. In the mouse brain, injury-induced inflammation promotes gliosis leading to glial scar formation and inhibition of regeneration. A better understanding of the regenerative mechanisms occurring in the zebrafish brain could help to develop new therapies to combat the debilitating consequences of brain injury, stroke, and neurodegeneration. The aim of this review is to compare the properties of neural progenitors and the signaling pathways, which control adult neurogenesis and regeneration in the zebrafish and mammalian telencephalon.
Collapse
Affiliation(s)
- Nicolas Diotel
- INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Denis, France
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
41
|
Campbell LJ, Hobgood JS, Jia M, Boyd P, Hipp RI, Hyde DR. Notch3 and DeltaB maintain Müller glia quiescence and act as negative regulators of regeneration in the light-damaged zebrafish retina. Glia 2020; 69:546-566. [PMID: 32965734 DOI: 10.1002/glia.23912] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Damage to the zebrafish retina stimulates resident Müller glia to reprogram, reenter the cell cycle, divide asymmetrically, and produce neuronal progenitor cells that amplify and differentiate into the lost neurons. The transition from quiescent to proliferative Müller glia involves both positive and negative regulators. We previously demonstrated that the Notch signaling pathway represses retinal regeneration by maintaining Müller glia quiescence in zebrafish. Here we examine which Notch receptor is necessary to maintain quiescence. Quantitative RT-PCR and RNA-Seq analyses reveal that notch3 is expressed in the undamaged retina and is downregulated in response to light damage. Additionally, Notch3 protein is expressed in quiescent Müller glia of the undamaged retina, is downregulated as Müller glia proliferate, and is reestablished in the Müller glia. Knockdown of Notch3 is sufficient to induce Müller glia proliferation in undamaged retinas and enhances proliferation during light damage. Alternatively, knockdown of Notch1a, Notch1b, or Notch2 decreases the number of proliferating cells during light damage, suggesting that Notch signaling is also required for proliferation during retinal regeneration. We also knockdown the zebrafish Delta and Delta-like proteins, ligands for the Notch receptors, and find that the deltaB morphant possesses an increased number of proliferating cells in the light-damaged retina. As with Notch3, knockdown of DeltaB is sufficient to induce Müller glia proliferation in the absence of light damage. Taken together, the negative regulation of Müller glia proliferation in zebrafish retinal regeneration is mediated by Notch3 and DeltaB.
Collapse
Affiliation(s)
- Leah J Campbell
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua S Hobgood
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Meng Jia
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patrick Boyd
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca I Hipp
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
42
|
McCallum S, Obata Y, Fourli E, Boeing S, Peddie CJ, Xu Q, Horswell S, Kelsh RN, Collinson L, Wilkinson D, Pin C, Pachnis V, Heanue TA. Enteric glia as a source of neural progenitors in adult zebrafish. eLife 2020; 9:e56086. [PMID: 32851974 PMCID: PMC7521928 DOI: 10.7554/elife.56086] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022] Open
Abstract
The presence and identity of neural progenitors in the enteric nervous system (ENS) of vertebrates is a matter of intense debate. Here, we demonstrate that the non-neuronal ENS cell compartment of teleosts shares molecular and morphological characteristics with mammalian enteric glia but cannot be identified by the expression of canonical glial markers. However, unlike their mammalian counterparts, which are generally quiescent and do not undergo neuronal differentiation during homeostasis, we show that a relatively high proportion of zebrafish enteric glia proliferate under physiological conditions giving rise to progeny that differentiate into enteric neurons. We also provide evidence that, similar to brain neural stem cells, the activation and neuronal differentiation of enteric glia are regulated by Notch signalling. Our experiments reveal remarkable similarities between enteric glia and brain neural stem cells in teleosts and open new possibilities for use of mammalian enteric glia as a potential source of neurons to restore the activity of intestinal neural circuits compromised by injury or disease.
Collapse
Affiliation(s)
- Sarah McCallum
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Yuuki Obata
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Evangelia Fourli
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefan Boeing
- Bionformatics & Biostatistics Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Christopher J Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Qiling Xu
- Neural Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stuart Horswell
- Bionformatics & Biostatistics Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Robert N Kelsh
- Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - David Wilkinson
- Neural Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carmen Pin
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaCambridgeUnited Kingdom
| | - Vassilis Pachnis
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Tiffany A Heanue
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
43
|
Labusch M, Mancini L, Morizet D, Bally-Cuif L. Conserved and Divergent Features of Adult Neurogenesis in Zebrafish. Front Cell Dev Biol 2020; 8:525. [PMID: 32695781 PMCID: PMC7338623 DOI: 10.3389/fcell.2020.00525] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Adult neurogenesis, i.e., the generation of neurons from neural stem cells (NSCs) in the adult brain, contributes to brain plasticity in all vertebrates. It varies, however, greatly in extent, location and physiological characteristics between species. During the last decade, the teleost zebrafish (D. rerio) was increasingly used to study the molecular and cellular properties of adult NSCs, in particular as a prominent NSC population was discovered at the ventricular surface of the dorsal telencephalon (pallium), in territories homologous to the adult neurogenic niches of rodents. This model, for its specific features (large NSC population, amenability to intravital imaging, high regenerative capacity) allowed rapid progress in the characterization of basic adult NSC features. We review here these findings, with specific comparisons with the situation in rodents. We specifically discuss the cellular nature of NSCs (astroglial or neuroepithelial cells), their heterogeneities and their neurogenic lineages, and the mechanisms controlling NSC quiescence and fate choices, which all impact the neurogenic output. We further discuss the regulation of NSC activity in response to physiological triggers and non-physiological conditions such as regenerative contexts.
Collapse
Affiliation(s)
- Miriam Labusch
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Laure Mancini
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - David Morizet
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
44
|
Jurisch-Yaksi N, Yaksi E, Kizil C. Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 2020; 68:2451-2470. [PMID: 32476207 DOI: 10.1002/glia.23849] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023]
Abstract
The neuroscience community has witnessed a tremendous expansion of glia research. Glial cells are now on center stage with leading roles in the development, maturation, and physiology of brain circuits. Over the course of evolution, glia have highly diversified and include the radial glia, astroglia or astrocytes, microglia, oligodendrocytes, and ependymal cells, each having dedicated functions in the brain. The zebrafish, a small teleost fish, is no exception to this and recent evidences point to evolutionarily conserved roles for glia in the development and physiology of its nervous system. Due to its small size, transparency, and genetic amenability, the zebrafish has become an increasingly prominent animal model for brain research. It has enabled the study of neural circuits from individual cells to entire brains, with a precision unmatched in other vertebrate models. Moreover, its high neurogenic and regenerative potential has attracted a lot of attention from the research community focusing on neural stem cells and neurodegenerative diseases. Hence, studies using zebrafish have the potential to provide fundamental insights about brain development and function, and also elucidate neural and molecular mechanisms of neurological diseases. We will discuss here recent discoveries on the diverse roles of radial glia and astroglia in neurogenesis, in modulating neuronal activity and in regulating brain homeostasis at the brain barriers. By comparing insights made in various animal models, particularly mammals and zebrafish, our goal is to highlight the similarities and differences in glia biology among species, which could set new paradigms relevant to humans.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany.,Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| |
Collapse
|
45
|
Zhang G, Ferg M, Lübke L, Takamiya M, Beil T, Gourain V, Diotel N, Strähle U, Rastegar S. Bone morphogenetic protein signaling regulates Id1-mediated neural stem cell quiescence in the adult zebrafish brain via a phylogenetically conserved enhancer module. Stem Cells 2020; 38:875-889. [PMID: 32246536 DOI: 10.1002/stem.3182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
In the telencephalon of adult zebrafish, the inhibitor of DNA binding 1 (id1) gene is expressed in radial glial cells (RGCs), behaving as neural stem cells (NSCs), during constitutive and regenerative neurogenesis. Id1 controls the balance between resting and proliferating states of RGCs by promoting quiescence. Here, we identified a phylogenetically conserved cis-regulatory module (CRM) mediating the specific expression of id1 in RGCs. Systematic deletion mapping and mutation of conserved transcription factor binding sites in stable transgenic zebrafish lines reveal that this CRM operates via conserved smad1/5 and 4 binding motifs under both homeostatic and regenerative conditions. Transcriptome analysis of injured and uninjured telencephala as well as pharmacological inhibition experiments identify a crucial role of bone morphogenetic protein (BMP) signaling for the function of the CRM. Our data highlight that BMP signals control id1 expression and thus NSC proliferation during constitutive and induced neurogenesis.
Collapse
Affiliation(s)
- Gaoqun Zhang
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marco Ferg
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tanja Beil
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Victor Gourain
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
46
|
Hosseini-Alghaderi S, Baron M. Notch3 in Development, Health and Disease. Biomolecules 2020; 10:biom10030485. [PMID: 32210034 PMCID: PMC7175233 DOI: 10.3390/biom10030485] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Notch3 is one of four mammalian Notch proteins, which act as signalling receptors to control cell fate in many developmental and adult tissue contexts. Notch signalling continues to be important in the adult organism for tissue maintenance and renewal and mis-regulation of Notch is involved in many diseases. Genetic studies have shown that Notch3 gene knockouts are viable and have limited developmental defects, focussed mostly on defects in the arterial smooth muscle cell lineage. Additional studies have revealed overlapping roles for Notch3 with other Notch proteins, which widen the range of developmental functions. In the adult, Notch3, in collaboration with other Notch proteins, is involved in stem cell regulation in different tissues in stem cell regulation in different tissues, and it also controls the plasticity of the vascular smooth muscle phenotype involved in arterial vessel remodelling. Overexpression, gene amplification and mis-activation of Notch3 are associated with different cancers, in particular triple negative breast cancer and ovarian cancer. Mutations of Notch3 are associated with a dominantly inherited disease CADASIL (cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy), and there is further evidence linking Notch3 misregulation to hypertensive disease. Here we discuss the distinctive roles of Notch3 in development, health and disease, different views as to the underlying mechanisms of its activation and misregulation in different contexts and potential for therapeutic intervention.
Collapse
|
47
|
Chohan MO. Deconstructing Neurogenesis, Transplantation and Genome-Editing as Neural Repair Strategies in Brain Disease. Front Cell Dev Biol 2020; 8:116. [PMID: 32232041 PMCID: PMC7082747 DOI: 10.3389/fcell.2020.00116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
Neural repair in injury and disease presents a pressing unmet need in regenerative medicine. Due to the intrinsically reduced ability of the brain to replace lost and damaged neurons, reversing long-term cognitive and functional impairments poses a unique problem. Over the years, advancements in cellular and molecular understanding of neurogenesis mechanisms coupled with sophistication of biotechnology tools have transformed neural repair into a cross-disciplinary field that integrates discoveries from developmental neurobiology, transplantation and tissue engineering to design disease- and patient-specific remedies aimed at boosting either native rehabilitation or delivering exogenous hypoimmunogenic interventions. Advances in deciphering the blueprint of neural ontogenesis and annotation of the human genome has led to the development of targeted therapeutic opportunities that have the potential of treating the most vulnerable patient populations and whose findings from benchside suggest looming clinical translation. This review discusses how findings from studies of adult neurogenesis have informed development of interventions that target endogenous neural regenerative machineries and how advances in biotechnology, including the use of new gene-editing tools, have made possible the development of promising, complex neural transplant-based strategies. Adopting a multi-pronged strategy that is tailored to underlying neural pathology and that encompasses facilitation of endogenous regeneration, correction of patient’s genomic mutations and delivery of transformed neural precursors and mature disease-relevant neuronal populations to replace injured or lost neural tissue remains no longer a fantasy.
Collapse
Affiliation(s)
- Muhammad O Chohan
- Department of Psychiatry, Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, United States.,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, United States
| |
Collapse
|
48
|
Coolen M, Labusch M, Mannioui A, Bally-Cuif L. Mosaic Heterochrony in Neural Progenitors Sustains Accelerated Brain Growth and Neurogenesis in the Juvenile Killifish N. furzeri. Curr Biol 2020; 30:736-745.e4. [PMID: 32004451 PMCID: PMC7040570 DOI: 10.1016/j.cub.2019.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/16/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022]
Abstract
Although developmental mechanisms driving an increase in brain size during vertebrate evolution are actively studied, we know less about evolutionary strategies allowing accelerated brain growth. In zebrafish and other vertebrates studied to date, apical radial glia (RG) constitute the primary neurogenic progenitor population throughout life [1]; thus, RG activity is a determining factor of growth speed. Here, we ask whether enhanced RG activity is the mechanism selected to drive explosive growth, in adaptation to an ephemeral habitat. In post-hatching larvae of the turquoise killifish, which display drastic developmental acceleration, we show that the dorsal telencephalon (pallium) grows three times faster than in zebrafish. Rather than resulting from enhanced RG activity, we demonstrate that pallial growth is the product of a second type of progenitors (that we term NGPs for non-glial progenitors) that actively sustains neurogenesis and germinal zone self-renewal. Intriguingly, NGPs appear to retain, at larval stages, features of early embryonic progenitors. In parallel, RGs enter premature quiescence and express markers of astroglial function. Altogether, we propose that mosaic heterochrony within the neural progenitor population might permit rapid pallial growth by safeguarding both continued neurogenesis and astroglial function. Two types of apical progenitors exist in the pallium of the fast-growing killifish Killifish pallial RGs enter precociously into an adult-like quiescent state NGPs, both self-renewing and neurogenic, resemble early neuroepithelial progenitors Mosaic heterochrony among progenitors sustains rapid killifish pallial growth
Collapse
Affiliation(s)
- Marion Coolen
- Zebrafish Neurogenetics Unit, Developmental & Stem Cell Biology Department, Institut Pasteur, UMR3738, CNRS, 25 rue du Dr Roux, 75015 Paris, France.
| | - Miriam Labusch
- Zebrafish Neurogenetics Unit, Developmental & Stem Cell Biology Department, Institut Pasteur, UMR3738, CNRS, 25 rue du Dr Roux, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Abdelkrim Mannioui
- Institut de Biologie Paris-Seine (IBPS), Aquatic Facility, Sorbonne Université, 7 quai Saint Bernard, 75005 Paris, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Developmental & Stem Cell Biology Department, Institut Pasteur, UMR3738, CNRS, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
49
|
Zambusi A, Ninkovic J. Regeneration of the central nervous system-principles from brain regeneration in adult zebrafish. World J Stem Cells 2020; 12:8-24. [PMID: 32110272 PMCID: PMC7031763 DOI: 10.4252/wjsc.v12.i1.8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Poor recovery of neuronal functions is one of the most common healthcare challenges for patients with different types of brain injuries and/or neurodegenerative diseases. Therapeutic interventions face two major challenges: (1) How to generate neurons de novo to replenish the neuronal loss caused by injuries or neurodegeneration (restorative neurogenesis) and (2) How to prevent or limit the secondary tissue damage caused by long-term accumulation of glial cells, including microglia, at injury site (glial scar). In contrast to mammals, zebrafish have extensive regenerative capacity in numerous vital organs, including the brain, thus making them a valuable model to improve the existing therapeutic approaches for human brain repair. In response to injuries to the central nervous system (CNS), zebrafish have developed specific mechanisms to promote the recovery of the lost tissue architecture and functionality of the damaged CNS. These mechanisms include the activation of a restorative neurogenic program in a specific set of glial cells (ependymoglia) and the resolution of both the glial scar and inflammation, thus enabling proper neuronal specification and survival. In this review, we discuss the cellular and molecular mechanisms underlying the regenerative ability in the adult zebrafish brain and conclude with the potential applicability of these mechanisms in repair of the mammalian CNS.
Collapse
Affiliation(s)
- Alessandro Zambusi
- Helmholtz Center Munich, Biomedical Center, Inst Stem Cell Res, Institute of Stem Cell Research, Department of Cell Biology and Anatomy, University of Munich, Planegg 82152, Germany
| | - Jovica Ninkovic
- Helmholtz Center Munich, Biomedical Center, Inst Stem Cell Res, Institute of Stem Cell Research, Department of Cell Biology and Anatomy, University of Munich, Planegg 82152, Germany
| |
Collapse
|
50
|
Quiescence of Adult Mammalian Neural Stem Cells: A Highly Regulated Rest. Neuron 2019; 104:834-848. [DOI: 10.1016/j.neuron.2019.09.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
|