1
|
Esteban-Collado J, Fernández-Mañas M, Fernández-Moreno M, Maeso I, Corominas M, Serras F. Reactive oxygen species activate the Drosophila TNF receptor Wengen for damage-induced regeneration. EMBO J 2024; 43:3604-3626. [PMID: 39020149 PMCID: PMC11377715 DOI: 10.1038/s44318-024-00155-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/19/2024] Open
Abstract
Tumor necrosis factor receptors (TNFRs) control pleiotropic pro-inflammatory functions that range from apoptosis to cell survival. The ability to trigger a particular function will depend on the upstream cues, association with regulatory complexes, and downstream pathways. In Drosophila melanogaster, two TNFRs have been identified, Wengen (Wgn) and Grindelwald (Grnd). Although several reports associate these receptors with JNK-dependent apoptosis, it has recently been found that Wgn activates a variety of other functions. We demonstrate that Wgn is required for survival by protecting cells from apoptosis. This is mediated by dTRAF1 and results in the activation of p38 MAP kinase. Remarkably, Wgn is required for apoptosis-induced regeneration and is activated by the reactive oxygen species (ROS) produced following apoptosis. This ROS activation is exclusive for Wgn, but not for Grnd, and can occur after knocking down Eiger/TNFα. The extracellular cysteine-rich domain of Grnd is much more divergent than that of Wgn, which is more similar to TNFRs from other animals, including humans. Our results show a novel TNFR function that responds to stressors by ensuring p38-dependent regeneration.
Collapse
Affiliation(s)
- José Esteban-Collado
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Mar Fernández-Mañas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manuel Fernández-Moreno
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute for Biodiversity Research (IRBio), Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute for Biodiversity Research (IRBio), Barcelona, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
2
|
Bose A, Schuster K, Kodali C, Sonam S, Smith-Bolton R. The pioneer transcription factor Zelda facilitates the exit from regeneration and restoration of patterning in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596672. [PMID: 38854062 PMCID: PMC11160785 DOI: 10.1101/2024.05.30.596672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
For a damaged tissue to regenerate, the injured site must repair the wound, proliferate, and restore the correct patterning and cell types. We found that Zelda, a pioneer transcription factor largely known for its role in embryonic zygotic genome activation, is dispensable for normal wing development but crucial for wing disc patterning during regeneration. Impairing Zelda function during disc regeneration resulted in adult wings with a plethora of cell fate errors, affecting the veins, margins, and posterior compartment identity. Using CUT&RUN, we identified and validated targets of Zelda including the cell fate genes cut, Delta and achaete, which failed to return to their normal expression patterns upon loss of Zelda. In addition, Zelda controls expression of factors previously established to preserve cell fate during regeneration like taranis and osa, which stabilizes engrailed expression during regeneration, thereby preserving posterior identity. Finally, Zelda ensures proper expression of the integrins encoded by multiple edematous wings and myospheroid during regeneration to prevent blisters in the resuting adult wing. Thus, Zelda is crucial for maintaining cell fate and structural architecture of the regenerating tissue.
Collapse
Affiliation(s)
- Anish Bose
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Keaton Schuster
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chandril Kodali
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Surabhi Sonam
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rachel Smith-Bolton
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Harris RE. Investigating Tissue Regeneration Using the DUAL Control Genetic Ablation System. Methods Mol Biol 2023; 2599:255-270. [PMID: 36427155 DOI: 10.1007/978-1-0716-2847-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Genetic ablation is a highly efficient method to study regeneration in vivo by stimulating tissue-specific cell death that subsequently induces regrowth and repair in a developing organism. This approach has been particularly successful in Drosophila, for which various temperature-based genetic ablation tools have been developed to explore the complexities of regeneration in larval imaginal discs. Here, we describe the use of a recently established ablation system called DUAL Control, which can be used to both characterize the damage response and genetically manipulate blastema cells to identify novel regulators of regeneration.
Collapse
Affiliation(s)
- R E Harris
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
4
|
Serras F. The sooner, the better: ROS, kinases and nutrients at the onset of the damage response in Drosophila. Front Cell Dev Biol 2022; 10:1047823. [PMID: 36353511 PMCID: PMC9637634 DOI: 10.3389/fcell.2022.1047823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
One of the main topics in regeneration biology is the nature of the early signals that trigger the damage response. Recent advances in Drosophila point to the MAP3 kinase Ask1 as a molecular hub that integrates several signals at the onset of regeneration. It has been discovered that reactive oxygen species (ROS) produced in damaged imaginal discs and gut epithelia will activate the MAP3 kinase Ask1. Severely damaged and apoptotic cells produce an enormous amount of ROS, which ensures their elimination by activating Ask1 and in turn the pro-apoptotic function of JNK. However, this creates an oxidative stress environment with beneficial effects that is sensed by neighboring healthy cells. This environment, in addition to the Pi3K/Akt nutrient sensing pathway, can be integrated into Ask1 to launch regeneration. Ultimately the activity of Ask1 depends on these and other inputs and modulates its signaling to achieve moderate levels of p38 and low JNK signaling and thus promote survival and regeneration. This model based on the dual function of Ask1 for early response to damage is discussed here.
Collapse
Affiliation(s)
- Florenci Serras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Paci G, Mao Y. Forced into shape: Mechanical forces in Drosophila development and homeostasis. Semin Cell Dev Biol 2021; 120:160-170. [PMID: 34092509 PMCID: PMC8681862 DOI: 10.1016/j.semcdb.2021.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/03/2022]
Abstract
Mechanical forces play a central role in shaping tissues during development and maintaining epithelial integrity in homeostasis. In this review, we discuss the roles of mechanical forces in Drosophila development and homeostasis, starting from the interplay of mechanics with cell growth and division. We then discuss several examples of morphogenetic processes where complex 3D structures are shaped by mechanical forces, followed by a closer look at patterning processes. We also review the role of forces in homeostatic processes, including cell elimination and wound healing. Finally, we look at the interplay of mechanics and developmental robustness and discuss open questions in the field, as well as novel approaches that will help tackle them in the future.
Collapse
Affiliation(s)
- Giulia Paci
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
7
|
Herrera SC, Bach EA. The Emerging Roles of JNK Signaling in Drosophila Stem Cell Homeostasis. Int J Mol Sci 2021; 22:ijms22115519. [PMID: 34073743 PMCID: PMC8197226 DOI: 10.3390/ijms22115519] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
The Jun N-terminal kinase (JNK) pathway is an evolutionary conserved kinase cascade best known for its roles during stress-induced apoptosis and tumor progression. Recent findings, however, have identified new roles for this pleiotropic pathway in stem cells during regenerative responses and in cellular plasticity. Here, we provide an overview of recent findings about the new roles of JNK signaling in stem cell biology using two well-established Drosophila models: the testis and the intestine. We highlight the pathway’s roles in processes such as proliferation, death, self-renewal and reprogramming, and discuss the known parallels between flies and mammals.
Collapse
Affiliation(s)
- Salvador C. Herrera
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41018 Sevilla, Spain
- Correspondence: (S.C.H.); (E.A.B.)
| | - Erika A. Bach
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Correspondence: (S.C.H.); (E.A.B.)
| |
Collapse
|
8
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
9
|
Abstract
Drosophila melanogaster has historically been a workhorse model organism for studying developmental biology. In addition, Drosophila is an excellent model for studying how damaged tissues and organs can regenerate. Recently, new precision approaches that enable both highly targeted injury and genetic manipulation have accelerated progress in this field. Here, we highlight these techniques and review examples of recently discovered mechanisms that regulate regeneration in Drosophila larval and adult tissues. We also discuss how, by applying these powerful approaches, studies of Drosophila can continue to guide the future of regeneration research.
Collapse
Affiliation(s)
- Donald T Fox
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Erez Cohen
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Rachel Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Guzmán-Herrera A, Mao Y. Polarity during tissue repair, a multiscale problem. Curr Opin Cell Biol 2020; 62:31-36. [PMID: 31514044 PMCID: PMC7036748 DOI: 10.1016/j.ceb.2019.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Tissue repair is essential for all organisms, as it protects the integrity and function of tissues and prevents infections and diseases. It takes place at multiple scales, from macroscopic to microscopic levels. Most mechanisms driving tissue repair rely on the correct polarisation of collective cell behaviours, such as migration and proliferation, and polarisation of cytoskeletal and junctional components. Furthermore, re-establishment and maintenance of cell polarity are fundamental for a tissue to be fully repaired and for withstanding mechanical stress during homeostasis and repair. Recent evidence highlights an important role for the interplay between cell polarity and tissue mechanics that are critical in tissue repair.
Collapse
Affiliation(s)
- Alejandra Guzmán-Herrera
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London, UK; College of Information and Control, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, People's Republic of China.
| |
Collapse
|
11
|
Chromatin dynamics in regeneration epithelia: Lessons from Drosophila imaginal discs. Semin Cell Dev Biol 2020; 97:55-62. [DOI: 10.1016/j.semcdb.2019.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
|
12
|
Camilleri-Robles C, Serras F, Corominas M. Role of D-GADD45 in JNK-Dependent Apoptosis and Regeneration in Drosophila. Genes (Basel) 2019; 10:378. [PMID: 31109086 PMCID: PMC6562583 DOI: 10.3390/genes10050378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
The GADD45 proteins are induced in response to stress and have been implicated in the regulation of several cellular functions, including DNA repair, cell cycle control, senescence, and apoptosis. In this study, we investigate the role of D-GADD45 during Drosophila development and regeneration of the wing imaginal discs. We find that higher expression of D-GADD45 results in JNK-dependent apoptosis, while its temporary expression does not have harmful effects. Moreover, D-GADD45 is required for proper regeneration of wing imaginal discs. Our findings demonstrate that a tight regulation of D-GADD45 levels is required for its correct function both, in development and during the stress response after cell death.
Collapse
Affiliation(s)
- Carlos Camilleri-Robles
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Spain.
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Spain.
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
13
|
Santabárbara-Ruiz P, Esteban-Collado J, Pérez L, Viola G, Abril JF, Milán M, Corominas M, Serras F. Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila. PLoS Genet 2019; 15:e1007926. [PMID: 30677014 PMCID: PMC6363233 DOI: 10.1371/journal.pgen.1007926] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/05/2019] [Accepted: 01/01/2019] [Indexed: 12/30/2022] Open
Abstract
How cells communicate to initiate a regenerative response after damage has captivated scientists during the last few decades. It is known that one of the main signals emanating from injured cells is the Reactive Oxygen Species (ROS), which propagate to the surrounding tissue to trigger the replacement of the missing cells. However, the link between ROS production and the activation of regenerative signaling pathways is not yet fully understood. We describe here the non-autonomous ROS sensing mechanism by which living cells launch their regenerative program. To this aim, we used Drosophila imaginal discs as a model system due to its well-characterized regenerative ability after injury or cell death. We genetically-induced cell death and found that the Apoptosis signal-regulating kinase 1 (Ask1) is essential for regenerative growth. Ask1 senses ROS both in dying and living cells, but its activation is selectively attenuated in living cells by Akt1, the core kinase component of the insulin/insulin-like growth factor pathway. Akt1 phosphorylates Ask1 in a secondary site outside the kinase domain, which attenuates its activity. This modulation of Ask1 activity results in moderate levels of JNK signaling in the living tissue, as well as in activation of p38 signaling, both pathways required to turn on the regenerative response. Our findings demonstrate a non-autonomous activation of a ROS sensing mechanism by Ask1 and Akt1 to replace the missing tissue after damage. Collectively, these results provide the basis for understanding the molecular mechanism of communication between dying and living cells that triggers regeneration.
Collapse
Affiliation(s)
- Paula Santabárbara-Ruiz
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - José Esteban-Collado
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Lidia Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Giacomo Viola
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Josep F. Abril
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, Barcelona, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, Barcelona, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Vizcaya-Molina E, Klein CC, Serras F, Mishra RK, Guigó R, Corominas M. Damage-responsive elements in Drosophila regeneration. Genome Res 2018; 28:1852-1866. [PMID: 30459214 PMCID: PMC6280756 DOI: 10.1101/gr.233098.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
One of the most important questions in regenerative biology is to unveil how and when genes change expression and trigger regeneration programs. The resetting of gene expression patterns during response to injury is governed by coordinated actions of genomic regions that control the activity of multiple sequence-specific DNA binding proteins. Using genome-wide approaches to interrogate chromatin function, we here identify the elements that regulate tissue recovery in Drosophila imaginal discs, which show a high regenerative capacity after genetically induced cell death. Our findings indicate there is global coregulation of gene expression as well as a regeneration program driven by different types of regulatory elements. Novel enhancers acting exclusively within damaged tissue cooperate with enhancers co-opted from other tissues and other developmental stages, as well as with endogenous enhancers that show increased activity after injury. Together, these enhancers host binding sites for regulatory proteins that include a core set of conserved transcription factors that control regeneration across metazoans.
Collapse
Affiliation(s)
- Elena Vizcaya-Molina
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| | - Cecilia C Klein
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| | - Rakesh K Mishra
- The Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
15
|
Meserve JH, Duronio RJ. Fate mapping during regeneration: Cells that undergo compensatory proliferation in damaged Drosophila eye imaginal discs differentiate into multiple retinal accessory cell types. Dev Biol 2018; 444:43-49. [PMID: 30347187 DOI: 10.1016/j.ydbio.2018.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
Regeneration of tissues that have been damaged by cell loss requires new growth, often via proliferation of precursor cells followed by differentiation to replace loss of specific cell types. When regeneration occurs after normal differentiation of the tissue is complete, developmental pathways driving differentiation must be re-activated. How proliferation and differentiation are induced and balanced during regeneration is not well understood. To investigate these processes, we utilized a paradigm for tissue damage and regeneration in the developing Drosophila melanogaster eye. Previous studies have demonstrated that tissue damage resulting from extensive cell death stimulates quiescent, undifferentiated cells in the developing larval eye to re-enter the cell cycle and proliferate. Whether these cells are restricted to certain fates or can contribute to all retinal cell types and thus potentially be fully regenerative is not known. Here we found by fate mapping experiments that these cells are competent to differentiate into all accessory cell types in the retina but do not differentiate into photoreceptors, likely because cell cycle re-entry in response to damage occurs after photoreceptor differentiation has completed. We conclude that the ability to re-enter the cell cycle in response to tissue damage in the developing Drosophila eye is not restricted to precursors of a specific cell type and that cell cycle re-entry following damage does not disrupt developmental programs that control differentiation.
Collapse
Affiliation(s)
- Joy H Meserve
- Curriculum in Genetics&Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics&Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Departments of Biology and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center; University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Ahmed-de-Prado S, Diaz-Garcia S, Baonza A. JNK and JAK/STAT signalling are required for inducing loss of cell fate specification during imaginal wing discs regeneration in Drosophila melanogaster. Dev Biol 2018; 441:31-41. [PMID: 29870691 DOI: 10.1016/j.ydbio.2018.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022]
Abstract
The regenerative process after tissue damage relies on a variety of cellular responses that includes compensatory cell proliferation and cell fate re-specification. The identification of the signalling networks regulating these cellular events is a central question in regenerative biology. Tissue regeneration models in Drosophila have shown that two of the signals that play a fundamental role during the early stages of regeneration are the c-Jun N-terminal kinase (JNK) and JAK/STAT signalling pathways. These pathways have been shown to be required for controlling regenerative proliferation, however their contribution to the processes of cellular reprogramming and cell fate re-specification that take place during regeneration are largely unknown. Here, we present evidence for a previously unrecognised function of the cooperative activities of JNK and JAK/STAT signalling pathways in inducing loss of cell fate specification in imaginal discs. We show that co-activation of these signalling pathways induces both the cell fate changes in injured areas, as well as in adjacent cells. We have also found that this function relies on the activity of the Caspase initiator encoded by the gene dronc.
Collapse
Affiliation(s)
- Sara Ahmed-de-Prado
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, C/Nicolás Cabrera 1, Madrid 28049, Spain
| | - Sandra Diaz-Garcia
- University of California, San Diego Section of Cell&Developmental Biology, La Jolla, CA 92093-0349, USA
| | - Antonio Baonza
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, C/Nicolás Cabrera 1, Madrid 28049, Spain.
| |
Collapse
|
17
|
Drosophila as a Model System to Study Cell Signaling in Organ Regeneration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7359267. [PMID: 29750169 PMCID: PMC5884440 DOI: 10.1155/2018/7359267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
Regeneration is a fascinating phenomenon that allows organisms to replace or repair damaged organs or tissues. This ability occurs to varying extents among metazoans. The rebuilding of the damaged structure depends on regenerative proliferation that must be accompanied by proper cell fate respecification and patterning. These cellular processes are regulated by the action of different signaling pathways that are activated in response to the damage. The imaginal discs of Drosophila melanogaster have the ability to regenerate and have been extensively used as a model system to study regeneration. Drosophila provides an opportunity to use powerful genetic tools to address fundamental problems about the genetic mechanisms involved in organ regeneration. Different studies in Drosophila have helped to elucidate the genes and signaling pathways that initiate regeneration, promote regenerative growth, and induce cell fate respecification. Here we review the signaling networks involved in regulating the variety of cellular responses that are required for discs regeneration.
Collapse
|
18
|
Hariharan IK, Serras F. Imaginal disc regeneration takes flight. Curr Opin Cell Biol 2017; 48:10-16. [PMID: 28376317 PMCID: PMC5591769 DOI: 10.1016/j.ceb.2017.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022]
Abstract
Drosophila imaginal discs, the larval precursors of adult structures such as the wing and leg, are capable of regenerating after damage. During the course of regeneration, discs can sometimes generate structures that are appropriate for a different type of disc, a phenomenon termed transdetermination. Until recently, these phenomena were studied by physically fragmenting discs and then transplanting them into the abdomens of adult female flies. This field has experienced a renaissance following the development of genetic ablation systems that can damage precisely defined regions of the disc without the need for surgery. Together with more traditional approaches, these newer methods have generated many novel insights into wound healing, the mechanisms that drive regenerative growth, plasticity during regeneration and systemic effects of tissue damage and regeneration.
Collapse
Affiliation(s)
- Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| | - Florenci Serras
- Departament de Genètica, Facultat de Biologia and Institute de Biomedicina (IBUB), Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
19
|
Kaucka M, Zikmund T, Tesarova M, Gyllborg D, Hellander A, Jaros J, Kaiser J, Petersen J, Szarowska B, Newton PT, Dyachuk V, Li L, Qian H, Johansson AS, Mishina Y, Currie JD, Tanaka EM, Erickson A, Dudley A, Brismar H, Southam P, Coen E, Chen M, Weinstein LS, Hampl A, Arenas E, Chagin AS, Fried K, Adameyko I. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. eLife 2017; 6. [PMID: 28414273 PMCID: PMC5417851 DOI: 10.7554/elife.25902] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022] Open
Abstract
Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale. DOI:http://dx.doi.org/10.7554/eLife.25902.001
Collapse
Affiliation(s)
- Marketa Kaucka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Daniel Gyllborg
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Hellander
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Josef Jaros
- Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Julian Petersen
- Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Bara Szarowska
- Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Phillip T Newton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Lei Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hong Qian
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, United States
| | - Joshua D Currie
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Elly M Tanaka
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Alek Erickson
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
| | - Andrew Dudley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
| | - Hjalmar Brismar
- Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
| | | | | | - Min Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Lee S Weinstein
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Ales Hampl
- Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Ernest Arenas
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
20
|
Montes AJ, Morata G. Homeostatic response to blocking cell division in Drosophila imaginal discs: Role of the Fat/Dachsous (Ft/Ds) pathway. Dev Biol 2017; 424:113-123. [PMID: 28300568 DOI: 10.1016/j.ydbio.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/28/2022]
Abstract
One major problem in developmental biology is the identification of the mechanisms that control the final size of tissues and organs. We are addressing this issue in the imaginal discs of Drosophila by analysing the response to blocking cell division in large domains in the wing and leg discs. The affected domains may be zones of restricted lineage like compartments, or zones of open lineage that may integrate cells from the surrounding territory. Our results reveal the existence of a powerful homeostatic mechanism that can compensate for gross differences in growth rates and builds structures of normal size. This mechanism functions at the level of whole discs, inducing additional cell proliferation to generate the cells that populate the cell division-arrested territory and generating an active recruitment process to integrate those cells. The activation of this response mechanism is mediated by alterations in the normal activity of PCP genes of the Fat/Ds system: in discs mutant for dachs, ds or four jointed the response mechanism is not activated.
Collapse
Affiliation(s)
| | - Ginés Morata
- Centro de Biología Molecular CSIC-UAM, Madrid, Spain.
| |
Collapse
|
21
|
Jaszczak JS, Halme A. Arrested development: coordinating regeneration with development and growth in Drosophila melanogaster. Curr Opin Genet Dev 2016; 40:87-94. [PMID: 27394031 PMCID: PMC5135572 DOI: 10.1016/j.gde.2016.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/19/2016] [Accepted: 06/16/2016] [Indexed: 01/01/2023]
Abstract
The capacity for tissues to regenerate often varies during development. A better understanding how developmental context regulates regenerative capacity will be an important step towards enhancing the regenerative capacity of tissues to repair disease or damage. Recent work examining the regeneration of imaginal discs in the fruit fly, Drosophila melanogaster, has begun to identify mechanisms by which developmental progress restricts regeneration, and elucidate how Drosophila coordinates regenerative repair with the growth and development of the entire organism. Here we review recent advances in describing the interplay between development and tissue regeneration in Drosophila and identify questions that arise from these findings.
Collapse
Affiliation(s)
- Jacob S Jaszczak
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Adrian Halme
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| |
Collapse
|
22
|
Morata G, Herrera SC. Cell reprogramming during regeneration in Drosophila: transgression of compartment boundaries. Curr Opin Genet Dev 2016; 40:11-16. [PMID: 27266970 DOI: 10.1016/j.gde.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/11/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
We discuss recent work about cellular reprogramming during regeneration of the imaginal discs of Drosophila. These contain various lineage blocks, compartments, which express distinct genetic programmes. It has been found that after massive damage to a compartment cells from a neighbour compartment can transgress the compartment border and contribute to its regeneration. The transgressing cells are genetically reprogrammed and acquire a new identity, a process facilitated by up regulation of the JNK pathway and transient loss of epigenetic control by the Pc-G and trx-G genes. The final acquisition of the new identity appears to be mediated by induction by neighbour cells, a phenomenon akin the Community Effect described for the specification of amphibian muscle cells.
Collapse
Affiliation(s)
- Ginés Morata
- Centro de Biología Molecular, CSIC-UAM, Madrid, Spain
| | | |
Collapse
|
23
|
Smith-Bolton R. Drosophila Imaginal Discs as a Model of Epithelial Wound Repair and Regeneration. Adv Wound Care (New Rochelle) 2016; 5:251-261. [PMID: 27274435 DOI: 10.1089/wound.2014.0547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Significance: The Drosophila larval imaginal discs, which form the adult fly during metamorphosis, are an established model system for the study of epithelial tissue damage. The disc proper is a simple columnar epithelium, but it contains complex patterning and cell-fate specification, and is genetically tractable. These features enable unbiased genetic screens to identify genes involved in all aspects of the wound response, from sensing damage to wound closure, initiation of regeneration, and re-establishment of proper cell fates. Identification of the genes that facilitate epithelial wound closure and regeneration will enable development of more sophisticated wound treatments for clinical use. Recent Advances: Imaginal disc epithelia can be damaged in many different ways, including fragmentation, induction of cell death, and irradiation. Recent work has demonstrated that the tissue's response to damage varies depending on how the wound was induced. Here, we summarize the different responses activated in these epithelial tissues after the different types of damage. Critical Issues: These studies highlight that not all wounds elicit the same response from the surrounding tissue. A complete understanding of the various wound-healing mechanisms in Drosophila will be a first step in understanding how to manage damaged human tissues and optimize healing in different clinical contexts. Future Directions: Further work is necessary to understand the similarities and differences among an epithelial tissue's responses to different insults. Ongoing studies will identify the genes and pathways employed by injured imaginal discs. Thus, work in this genetically tractable system complements work in more conventional wound-healing models.
Collapse
Affiliation(s)
- Rachel Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
24
|
Abstract
Recent work has strengthened Drosophila imaginal discs as a model system for regeneration studies. Evidence is accumulating that oxidative stress drives the cellular responses for repair and regeneration. Drosophila imaginal discs generate a burst of reactive oxygen species (ROS) upon damage that is necessary for the activation of the Jun N-terminal kinase (JNK) and p38 MAP kinase signaling pathways. Moreover, these pathways are pivotal in the activation of regenerative growth. A hypothetical mechanism of how the ROS are initiated, and how repair and regeneration is activated is discussed here.
Collapse
Affiliation(s)
- Florenci Serras
- a Institute of Biomedicine of the University of Barcelona (IBUB) , Barcelona , Spain.,b Departament de Genètica, Facultat de Biologia , Universitat de Barcelona , Barcelona , Spain
| |
Collapse
|
25
|
Abstract
The study of Drosophila imaginal discs has contributed to a number of discoveries in developmental and cellular biology. In addition to the elucidation of the role of tissue compartments and organ-specific master regulator genes during development, imaginal discs have also become well established as models for studying cellular interactions and complex genetic pathways. Here, we review key discoveries resulting from investigations of these epithelial precursor organs, ranging from cell fate determination and transdetermination to tissue patterning. Furthermore, the design of increasingly sophisticated genetic tools over the last decades has added value to the use of imaginal discs as model systems. As a result of tissue-specific genetic screens, several components of developmentally regulated signaling pathways were identified and epistasis revealed the levels at which they function. Discs have been widely used to assess cellular interactions in their natural tissue context, contributing to a better understanding of growth regulation, tissue regeneration, and cancer. With the continuous implementation of novel tools, imaginal discs retain significant potential as model systems to address emerging questions in biology and medicine.
Collapse
|
26
|
La Fortezza M, Schenk M, Cosolo A, Kolybaba A, Grass I, Classen AK. JAK/STAT signalling mediates cell survival in response to tissue stress. Development 2016; 143:2907-19. [DOI: 10.1242/dev.132340] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Tissue homeostasis relies on the ability of tissues to respond to stress. Tissue regeneration and tumour models in Drosophila have shown that JNK is a prominent stress-response pathway promoting injury-induced apoptosis and compensatory proliferation. A central question remaining unanswered is how both responses are balanced by activation of a single pathway. JAK/STAT signalling, a potential JNK target, is implicated in promoting compensatory proliferation. While we observe JAK/STAT activation in imaginal discs upon damage, our data demonstrates that JAK/STAT and its downstream effector Zfh2 promote survival of JNK-signalling cells instead. The JNK component fos and the pro-apoptotic gene hid are regulated in a JAK/STAT-dependent manner. This molecular pathway restrains JNK-induced apoptosis and spatial propagation of JNK-signalling, thereby limiting the extent of tissue damage, as well as facilitating systemic and proliferative responses to injury. We find that the pro-survival function of JAK/STAT also drives tumour growth under conditions of chronic stress. Our study defines JAK/STAT function in tissue stress and illustrates how crosstalk between conserved signalling pathways establishes an intricate equilibrium between proliferation, apoptosis and survival to restore tissue homeostasis.
Collapse
Affiliation(s)
- Marco La Fortezza
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Madlin Schenk
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Andrea Cosolo
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Addie Kolybaba
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Isabelle Grass
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Anne-Kathrin Classen
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
27
|
Santabárbara-Ruiz P, López-Santillán M, Martínez-Rodríguez I, Binagui-Casas A, Pérez L, Milán M, Corominas M, Serras F. ROS-Induced JNK and p38 Signaling Is Required for Unpaired Cytokine Activation during Drosophila Regeneration. PLoS Genet 2015; 11:e1005595. [PMID: 26496642 PMCID: PMC4619769 DOI: 10.1371/journal.pgen.1005595] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 09/18/2015] [Indexed: 12/26/2022] Open
Abstract
Upon apoptotic stimuli, epithelial cells compensate the gaps left by dead cells by activating proliferation. This has led to the proposal that dying cells signal to surrounding living cells to maintain homeostasis. Although the nature of these signals is not clear, reactive oxygen species (ROS) could act as a signaling mechanism as they can trigger pro-inflammatory responses to protect epithelia from environmental insults. Whether ROS emerge from dead cells and what is the genetic response triggered by ROS is pivotal to understand regeneration of Drosophila imaginal discs. We genetically induced cell death in wing imaginal discs, monitored the production of ROS and analyzed the signals required for repair. We found that cell death generates a burst of ROS that propagate to the nearby surviving cells. Propagated ROS activate p38 and induce tolerable levels of JNK. The activation of JNK and p38 results in the expression of the cytokines Unpaired (Upd), which triggers the JAK/STAT signaling pathway required for regeneration. Our findings demonstrate that this ROS/JNK/p38/Upd stress responsive module restores tissue homeostasis. This module is not only activated after cell death induction but also after physical damage and reveals one of the earliest responses for imaginal disc regeneration. Regenerative biology pursues to unveil the genetic networks triggered by tissue damage. Regeneration can occur after damage by cell death or by injury. We used the imaginal disc of Drosophila in which we genetically activated apoptosis or physically removed some parts and monitored the capacity to repair the damage. We found that dying cells generate a burst of reactive oxygen species (ROS) necessary to activate JNK and p38 signaling pathways in the surrounding living cells. The action of these pathways is necessary for the activation of the cytokines Unpaired (Upd). Eventually, Upd will turn on the JAK/STAT signaling pathway to induce regenerative growth. Thus, we present here a module of signals that depends on oxidative stress and that, through the p38-JNK interplay, will activate cytokine-dependent regeneration.
Collapse
Affiliation(s)
- Paula Santabárbara-Ruiz
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Mireya López-Santillán
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Irene Martínez-Rodríguez
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Anahí Binagui-Casas
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Lídia Pérez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain; ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Montserrat Corominas
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Florenci Serras
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Dewey EB, Sanchez D, Johnston CA. Warts phosphorylates mud to promote pins-mediated mitotic spindle orientation in Drosophila, independent of Yorkie. Curr Biol 2015; 25:2751-2762. [PMID: 26592339 DOI: 10.1016/j.cub.2015.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 01/12/2023]
Abstract
Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here, we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily conserved cell proliferation pathway.
Collapse
Affiliation(s)
- Evan B Dewey
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Desiree Sanchez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | |
Collapse
|
29
|
Matamoro-Vidal A, Salazar-Ciudad I, Houle D. Making quantitative morphological variation from basic developmental processes: Where are we? The case of the Drosophila wing. Dev Dyn 2015; 244:1058-1073. [PMID: 25619644 DOI: 10.1002/dvdy.24255] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
One of the aims of evolutionary developmental biology is to discover the developmental origins of morphological variation. The discipline has mainly focused on qualitative morphological differences (e.g., presence or absence of a structure) between species. Studies addressing subtle, quantitative variation are less common. The Drosophila wing is a model for the study of development and evolution, making it suitable to investigate the developmental mechanisms underlying the subtle quantitative morphological variation observed in nature. Previous reviews have focused on the processes involved in wing differentiation, patterning and growth. Here, we investigate what is known about how the wing achieves its final shape, and what variation in development is capable of generating the variation in wing shape observed in nature. Three major developmental stages need to be considered: larval development, pupariation, and pupal development. The major cellular processes involved in the determination of tissue size and shape are cell proliferation, cell death, oriented cell division and oriented cell intercalation. We review how variation in temporal and spatial distribution of growth and transcription factors affects these cellular mechanisms, which in turn affects wing shape. We then discuss which aspects of the wing morphological variation are predictable on the basis of these mechanisms. Developmental Dynamics 244:1058-1073, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexis Matamoro-Vidal
- Department of Biological Science, Florida State University, Tallahassee, Florida.,Genomics, Bioinformatics and Evolution Group, Department de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution Group, Department de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain.,Center of Excellence in Experimental and Computational Developmental Biology, Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - David Houle
- Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
30
|
Kashio S, Obata F, Miura M. Interplay of cell proliferation and cell death in Drosophila tissue regeneration. Dev Growth Differ 2014; 56:368-75. [PMID: 24819984 DOI: 10.1111/dgd.12139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 01/08/2023]
Abstract
Regeneration is a fascinating process that allows some organisms to reconstruct damaged tissues. In addition to the classical regeneration model of the Drosophila larval imaginal discs, the genetically induced tissue ablation model has promoted the understanding of molecular mechanisms underlying cell death, proliferation, and remodeling for tissue regeneration. Recent studies have also revealed that tissue injury responses occur not only locally but also systemically, even in the uninjured region. Genetic studies in Drosophila have demonstrated the dynamic role of the cell death-induced tissue response in the reconstruction of damaged tissues.
Collapse
Affiliation(s)
- Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033
| | | | | |
Collapse
|
31
|
Ruiz PSB, Serras F. Mind the gap: cells respond to tissue damage by changing orientation of cell divisions. Fly (Austin) 2014; 8:33-5. [PMID: 24406337 DOI: 10.4161/fly.27690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nature presents plenty of examples of cellular behavior that determines the shape of an organ during development, such as epithelial polarity and cell division orientation. Little is known, however, about how organs regenerate or how cellular behavior affects regeneration. One of the most exciting aspects of regeneration biology is understanding how proliferation and patterning are coordinated, since it means that cells not only have to proliferate but also have to do so in an ordered manner so that organs are reconstructed proportionally. Drosophila wing imaginal discs and adult wings are models used in different approaches to investigate this issue; they have recently been used to reveal that, after localized cell death, neighboring cells change their cell division orientation toward the damaged zone. During this process, cell polarity and spindle orientation operate in coordination with cell proliferation to regenerate proper organ size and shape.
Collapse
Affiliation(s)
- Paula Santa Bárbara Ruiz
- Departament de Genètica, Facultat de Biologia; Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Barcelona, Spain
| | - Florenci Serras
- Departament de Genètica, Facultat de Biologia; Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Barcelona, Spain
| |
Collapse
|
32
|
Abstract
In many animals, regenerative processes can replace lost body parts. Organ and tissue regeneration consequently also hold great medical promise. The regulation of regenerative processes is achieved through concerted actions of multiple organizational levels of the organism, from diffusing molecules and cellular gene expression patterns up to tissue mechanics. Our intuition is usually not adapted well to this degree of complexity and the quantitative aspects of the regulation of regenerative processes remain poorly understood. One way out of this dilemma lies in the combination of experimentation and mathematical modeling within an iterative process of model development/refinement, model predictions for novel experimental conditions, quantitative experiments testing these predictions, and subsequent model refinement. This interdisciplinary approach has already provided key insights into smaller scale processes during embryonic development and a so-far limited number of more complex regeneration processes. This review discusses selected theoretical and interdisciplinary studies and is structured along the three phases of regeneration: (1) initiation of a regeneration response, (2) tissue patterning during regenerate growth, (3) arresting the regeneration response. Moreover, we highlight the opportunities provided by extensions of mathematical models from developmental processes toward the study of related regenerative processes.
Collapse
Affiliation(s)
- Osvaldo Chara
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany
| | - Elly M Tanaka
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Lutz Brusch
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|