1
|
Yeap YJ, Teddy TJW, Lee MJ, Goh M, Lim KL. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. Int J Mol Sci 2023; 24:ijms24032523. [PMID: 36768843 PMCID: PMC9917335 DOI: 10.3390/ijms24032523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder that is characterized pathologically by the loss of A9-specific dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Despite intensive research, the etiology of PD is currently unresolved, and the disease remains incurable. This, in part, is due to the lack of an experimental disease model that could faithfully recapitulate the features of human PD. However, the recent advent of induced pluripotent stem cell (iPSC) technology has allowed PD models to be created from patient-derived cells. Indeed, DA neurons from PD patients are now routinely established in many laboratories as monolayers as well as 3D organoid cultures that serve as useful toolboxes for understanding the mechanism underlying PD and also for drug discovery. At the same time, the iPSC technology also provides unprecedented opportunity for autologous cell-based therapy for the PD patient to be performed using the patient's own cells as starting materials. In this review, we provide an update on the molecular processes underpinning the development and differentiation of human pluripotent stem cells (PSCs) into midbrain DA neurons in both 2D and 3D cultures, as well as the latest advancements in using these cells for drug discovery and regenerative medicine. For the novice entering the field, the cornucopia of differentiation protocols reported for the generation of midbrain DA neurons may seem daunting. Here, we have distilled the essence of the different approaches and summarized the main factors driving DA neuronal differentiation, with the view to provide a useful guide to newcomers who are interested in developing iPSC-based models of PD.
Collapse
Affiliation(s)
- Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tng J. W. Teddy
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore 639798, Singapore
| | - Mok Jung Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Micaela Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- National Neuroscience Institute, Singapore 308433, Singapore
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
2
|
Tan AL, Mohanty S, Guo J, Lekven AC, Riley BB. Pax2a, Sp5a and Sp5l act downstream of Fgf and Wnt to coordinate sensory-neural patterning in the inner ear. Dev Biol 2022; 492:139-153. [PMID: 36244503 DOI: 10.1016/j.ydbio.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 01/21/2023]
Abstract
In zebrafish, sensory epithelia and neuroblasts of the inner ear form simultaneously in abutting medial and lateral domains, respectively, in the floor of the otic vesicle. Previous studies support regulatory roles for Fgf and Wnt, but how signaling is coordinated is poorly understood. We investigated this problem using pharmacological and transgenic methods to alter Fgf or Wnt signaling from early placodal stages to evaluate later changes in growth and patterning. Blocking Fgf at any stage reduces proliferation of otic tissue and terminates both sensory and neural specification. Wnt promotes proliferation in the otic vesicle but is not required for sensory or neural development. However, sustained overactivation of Wnt laterally expands sensory epithelia and blocks neurogenesis. pax2a, sp5a and sp5l are coregulated by Fgf and Wnt and show overlapping expression in the otic placode and vesicle. Gain- and loss-of-function studies show that these genes are together required for Wnt's suppression of neurogenesis, as well as some aspects of sensory development. Thus, pax2a, sp5a and sp5l are critical for mediating Fgf and Wnt signaling to promote spatially localized sensory and neural development.
Collapse
Affiliation(s)
- Amy L Tan
- Biology Department, Texas A&M University, College Station, TX, United States
| | - Saurav Mohanty
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Jinbai Guo
- Biology Department, Texas A&M University, College Station, TX, United States
| | - Arne C Lekven
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Bruce B Riley
- Biology Department, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
3
|
Hidalgo-Sánchez M, Andreu-Cervera A, Villa-Carballar S, Echevarria D. An Update on the Molecular Mechanism of the Vertebrate Isthmic Organizer Development in the Context of the Neuromeric Model. Front Neuroanat 2022; 16:826976. [PMID: 35401126 PMCID: PMC8987131 DOI: 10.3389/fnana.2022.826976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
A crucial event during the development of the central nervous system (CNS) is the early subdivision of the neural tube along its anterior-to-posterior axis to form neuromeres, morphogenetic units separated by transversal constrictions and programed for particular genetic cascades. The narrower portions observed in the developing neural tube are responsible for relevant cellular and molecular processes, such as clonal restrictions, expression of specific regulatory genes, and differential fate specification, as well as inductive activities. In this developmental context, the gradual formation of the midbrain-hindbrain (MH) constriction has been an excellent model to study the specification of two major subdivisions of the CNS containing the mesencephalic and isthmo-cerebellar primordia. This MH boundary is coincident with the common Otx2-(midbrain)/Gbx2-(hindbrain) expressing border. The early interactions between these two pre-specified areas confer positional identities and induce the generation of specific diffusible morphogenes at this interface, in particular FGF8 and WNT1. These signaling pathways are responsible for the gradual histogenetic specifications and cellular identity acquisitions with in the MH domain. This review is focused on the cellular and molecular mechanisms involved in the specification of the midbrain/hindbrain territory and the formation of the isthmic organizer. Emphasis will be placed on the chick/quail chimeric experiments leading to the acquisition of the first fate mapping and experimental data to, in this way, better understand pioneering morphological studies and innovative gain/loss-of-function analysis.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Matías Hidalgo-Sánchez Diego Echevarria
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Sergio Villa-Carballar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Diego Echevarria
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
- *Correspondence: Matías Hidalgo-Sánchez Diego Echevarria
| |
Collapse
|
4
|
Liu Y, Wang Y, Li N, Jiang S. Avobenzone and nanoplastics affect the development of zebrafish nervous system and retinal system and inhibit their locomotor behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150681. [PMID: 34599957 DOI: 10.1016/j.scitotenv.2021.150681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/08/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The use of cosmetics is growing with each passing day, arousing widespread attention to their ingredients. Avobenzone (AVO) and nanoplastics (NPs) are typical ingredients in cosmetics, which coexist in the aquatic environment and have a combined effect on aquatic organisms. In this study, the accumulation of AVO and NPs in zebrafish larvae and effects on gene expression and enzymatic activity related to nervous functions, and locomotor behavior were investigated. AVO and NPs accumulated continuously in zebrafish, and the combined exposure enhanced AVO accumulation. After recovery, the accumulated concentrations of AVO and NPs in zebrafish remained unchanged, suggesting that AVO and NPs could not be eliminated in 72 h. The genes regulated nervous system development were affected mainly by AVO exposure, while the genes regulated retinal system development were affected by NPs exposure. Single and combined exposures of AVO and NPs affected the activities of acetylcholinesterase and antioxidant enzymes in zebrafish, and superoxide dismutase activity could not return to normal level after 72 h of recovery period. The locomotor activity of zebrafish larvae was significantly inhibited by AVO and NPs, which might be related to the alterations in functions of nervous system development and retinal system development as well as the interference of neurotransmitter system and antioxidant system.
Collapse
Affiliation(s)
- Yuxuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Na Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Shengnan Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
5
|
Sharma A, Mir R, Galande S. Epigenetic Regulation of the Wnt/β-Catenin Signaling Pathway in Cancer. Front Genet 2021; 12:681053. [PMID: 34552611 PMCID: PMC8450413 DOI: 10.3389/fgene.2021.681053] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies over the past four decades have elucidated the role of Wnt/β-catenin mediated regulation in cell proliferation, differentiation and migration. These processes are fundamental to embryonic development, regeneration potential of tissues, as well as cancer initiation and progression. In this review, we focus on the epigenetic players which influence the Wnt/β-catenin pathway via modulation of its components and coordinated regulation of the Wnt target genes. The role played by crosstalk with other signaling pathways mediating tumorigenesis is also elaborated. The Hippo/YAP pathway is particularly emphasized due to its extensive crosstalk via the Wnt destruction complex. Further, we highlight the recent advances in developing potential therapeutic interventions targeting the epigenetic machinery based on the characterization of these regulatory networks for effective treatment of various cancers and also for regenerative therapies.
Collapse
Affiliation(s)
- Ankita Sharma
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Rafeeq Mir
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
6
|
Chico TJA, Kugler EC. Cerebrovascular development: mechanisms and experimental approaches. Cell Mol Life Sci 2021; 78:4377-4398. [PMID: 33688979 PMCID: PMC8164590 DOI: 10.1007/s00018-021-03790-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature. In this review we summarise the experimental approaches used to study the cerebral vessels and the mechanisms that contribute to their development.
Collapse
Affiliation(s)
- Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| | - Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| |
Collapse
|
7
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
8
|
Liu Y, Wang Y, Ling X, Yan Z, Wu D, Liu J, Lu G. Effects of Nanoplastics and Butyl Methoxydibenzoylmethane on Early Zebrafish Embryos Identified by Single-Cell RNA Sequencing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1885-1896. [PMID: 33445878 DOI: 10.1021/acs.est.0c06479] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoplastics with small particle sizes and high surface area/volume ratios easily absorb environmental pollutants and affect their bioavailability. In this study, polystyrene nanoplastic beads (PS-NPBs) with a particle size of 100 nm and butyl methoxydibenzoylmethane (BMDBM) sunscreen in personal-care products were chosen as target pollutants to study their developmental toxicity and interactive effects on zebrafish embryos. The exposure period was set from 2 to 12 h postfertilization (hpf). BMDBM and PS-NPBs significantly upregulated genes related to antioxidant enzymes and downregulated the gene expression of aromatase and DNA methyltransferases, but the influenced genes were not exactly the same. The combined exposure reduced the adverse effects on the expression of all genes. With the help of the single-cell RNA sequencing technology, neural mid cells were identified as the target cells of both pollutants, and brain development, head development, and the notch signaling pathway were the functions they commonly altered. The key genes and functions that are specifically affected by BMDBM and/or PS-NPBs were identified. BMDBM mainly affects the differentiation and fate of neurons in the central nervous system through the regulation of her5, her6, her11, lfng, pax2a, and fgfr4. The PS-NPBs regulate the expression of olig2, foxg1a, fzd8b, six3a, rx1, lhx2b, nkx2.1a, and sfrp5 to alter nervous system development, retinal development, and stem cell differentiation. The phenotypic responses of zebrafish larvae at 120 hpf were tested, and significant inhibition of locomotor activity was found, indicating that early effects on the central nervous system would have a sustained impact on the behavior of zebrafish.
Collapse
Affiliation(s)
- Yuxuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xin Ling
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Donghai Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
9
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
10
|
Dianat-Moghadam H, Teimoori-Toolabi L. Implications of Fibroblast Growth Factors (FGFs) in Cancer: From Prognostic to Therapeutic Applications. Curr Drug Targets 2019; 20:852-870. [DOI: 10.2174/1389450120666190112145409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factors (FGFs) are pleiotropic molecules exerting autocrine, intracrine
and paracrine functions via activating four tyrosine kinase FGF receptors (FGFR), which further trigger
a variety of cellular processes including angiogenesis, evasion from apoptosis, bone formation,
embryogenesis, wound repair and homeostasis. Four major mechanisms including angiogenesis, inflammation,
cell proliferation, and metastasis are active in FGF/FGFR-driven tumors. Furthermore,
gain-of-function or loss-of-function in FGFRs1-4 which is due to amplification, fusions, mutations,
and changes in tumor–stromal cells interactions, is associated with the development and progression
of cancer. Although, the developed small molecule or antibodies targeting FGFR signaling offer immense
potential for cancer therapy, emergence of drug resistance, activation of compensatory pathways
and systemic toxicity of modulators are bottlenecks in clinical application of anti-FGFRs. In this
review, we present FGF/FGFR structure and the mechanisms of its function, as well as cross-talks
with other nodes and/or signaling pathways. We describe deregulation of FGF/FGFR-related mechanisms
in human disease and tumor progression leading to the presentation of emerging therapeutic approaches,
resistance to FGFR targeting, and clinical potentials of individual FGF family in several
human cancers. Additionally, the underlying biological mechanisms of FGF/FGFR signaling, besides
several attempts to develop predictive biomarkers and combination therapies for different cancers
have been explored.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Baeuml SW, Biechl D, Wullimann MF. Adult islet1 Expression Outlines Ventralized Derivatives Along Zebrafish Neuraxis. Front Neuroanat 2019; 13:19. [PMID: 30863287 PMCID: PMC6399416 DOI: 10.3389/fnana.2019.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/01/2019] [Indexed: 01/16/2023] Open
Abstract
Signals issued by dorsal roof and ventral floor plates, respectively, underlie the major patterning process of dorsalization and ventralization during vertebrate neural tube development. The ventrally produced morphogen Sonic hedgehog (SHH) is crucial for vertebrate hindbrain and spinal motor neuron development. One diagnostic gene for motor neurons is the LIM/homeodomain gene islet1, which has additional ventral expression domains extending into mid- and forebrain. In order to corroborate motor neuron development and, in particular, to improve on the identification of poorly documented zebrafish forebrain islet1 populations, we studied adult brains of transgenic islet1-GFP zebrafish (3 and 6 months). This molecular neuroanatomical analysis was supported by immunostaining these brains for tyrosine hydroxylase (TH) or choline acetyltransferase (ChAT), respectively, revealing zebrafish catecholaminergic and cholinergic neurons. The present analysis of ChAT and islet1-GFP label confirms ongoing adult expression of islet1 in zebrafish (basal plate) midbrain, hindbrain, and spinal motor neurons. In contrast, non-motor cholinergic systems lack islet1 expression. Additional presumed basal plate islet1 positive systems are described in detail, aided by TH staining which is particularly informative in the diencephalon. Finally, alar plate zebrafish forebrain systems with islet1 expression are described (i.e., thalamus, preoptic region, and subpallium). We conclude that adult zebrafish continue to express islet1 in the same brain systems as in the larva. Further, pending functional confirmation we hypothesize that the larval expression of sonic hedgehog (shh) might causally underlie much of adult islet1 expression because it explains findings beyond ventrally located systems, for example regarding shh expression in the zona limitans intrathalamica and correlated islet1-GFP expression in the thalamus.
Collapse
Affiliation(s)
- Stephan W Baeuml
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Biechl
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mario F Wullimann
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
12
|
Brodski C, Blaess S, Partanen J, Prakash N. Crosstalk of Intercellular Signaling Pathways in the Generation of Midbrain Dopaminergic Neurons In Vivo and from Stem Cells. J Dev Biol 2019; 7:jdb7010003. [PMID: 30650592 PMCID: PMC6473842 DOI: 10.3390/jdb7010003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Dopamine-synthesizing neurons located in the mammalian ventral midbrain are at the center stage of biomedical research due to their involvement in severe human neuropsychiatric and neurodegenerative disorders, most prominently Parkinson’s Disease (PD). The induction of midbrain dopaminergic (mDA) neurons depends on two important signaling centers of the mammalian embryo: the ventral midline or floor plate (FP) of the neural tube, and the isthmic organizer (IsO) at the mid-/hindbrain boundary (MHB). Cells located within and close to the FP secrete sonic hedgehog (SHH), and members of the wingless-type MMTV integration site family (WNT1/5A), as well as bone morphogenetic protein (BMP) family. The IsO cells secrete WNT1 and the fibroblast growth factor 8 (FGF8). Accordingly, the FGF8, SHH, WNT, and BMP signaling pathways play crucial roles during the development of the mDA neurons in the mammalian embryo. Moreover, these morphogens are essential for the generation of stem cell-derived mDA neurons, which are critical for the modeling, drug screening, and cell replacement therapy of PD. This review summarizes our current knowledge about the functions and crosstalk of these signaling pathways in mammalian mDA neuron development in vivo and their applications in stem cell-based paradigms for the efficient derivation of these neurons in vitro.
Collapse
Affiliation(s)
- Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany.
| | - Juha Partanen
- Faculty of Biological and Environmental Sciences, FIN00014-University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014 Helsinki, Finland.
| | - Nilima Prakash
- Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, 59063 Hamm, Germany.
| |
Collapse
|
13
|
Yang YHC, Kawakami K, Stainier DY. A new mode of pancreatic islet innervation revealed by live imaging in zebrafish. eLife 2018; 7:34519. [PMID: 29916364 PMCID: PMC6039180 DOI: 10.7554/elife.34519] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/18/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic islets are innervated by autonomic and sensory nerves that influence their function. Analyzing the innervation process should provide insight into the nerve-endocrine interactions and their roles in development and disease. Here, using in vivo time-lapse imaging and genetic analyses in zebrafish, we determined the events leading to islet innervation. Comparable neural density in the absence of vasculature indicates that it is dispensable for early pancreatic innervation. Neural crest cells are in close contact with endocrine cells early in development. We find these cells give rise to neurons that extend axons toward the islet as they surprisingly migrate away. Specific ablation of these neurons partly prevents other neurons from migrating away from the islet resulting in diminished innervation. Thus, our studies establish the zebrafish as a model to interrogate mechanisms of organ innervation, and reveal a novel mode of innervation whereby neurons establish connections with their targets before migrating away.
Collapse
Affiliation(s)
- Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
14
|
Gibbs HC, Chang-Gonzalez A, Hwang W, Yeh AT, Lekven AC. Midbrain-Hindbrain Boundary Morphogenesis: At the Intersection of Wnt and Fgf Signaling. Front Neuroanat 2017; 11:64. [PMID: 28824384 PMCID: PMC5541008 DOI: 10.3389/fnana.2017.00064] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023] Open
Abstract
A constriction in the neural tube at the junction of the midbrain and hindbrain is a conserved feature of vertebrate embryos. The constriction is a defining feature of the midbrain-hindbrain boundary (MHB), a signaling center that patterns the adjacent midbrain and rostral hindbrain and forms at the junction of two gene expression domains in the early neural plate: an anterior otx2/wnt1 positive domain and a posterior gbx/fgf8 positive domain. otx2 and gbx genes encode mutually repressive transcription factors that create a lineage restriction boundary at their expression interface. Wnt and Fgf genes form a mutually dependent feedback system that maintains their expression domains on the otx2 or gbx side of the boundary, respectively. Constriction morphogenesis occurs after these conserved gene expression domains are established and while their mutual interactions maintain their expression pattern; consequently, mutant studies in zebrafish have led to the suggestion that constriction morphogenesis should be considered a unique phase of MHB development. We analyzed MHB morphogenesis in fgf8 loss of function zebrafish embryos using a reporter driven by the conserved wnt1 enhancer to visualize anterior boundary cells. We found that fgf8 loss of function results in a re-activation of wnt1 reporter expression posterior to the boundary simultaneous with an inactivation of the wnt1 reporter in the anterior boundary cells, and that these events correlate with relaxation of the boundary constriction. In consideration of other results that correlate the boundary constriction with Wnt and Fgf expression, we propose that the maintenance of an active Wnt-Fgf feedback loop is a key factor in driving the morphogenesis of the MHB constriction.
Collapse
Affiliation(s)
- Holly C Gibbs
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Ana Chang-Gonzalez
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States.,Department of Materials Science and Engineering, Texas A&M UniversityCollege Station, TX, United States.,School of Computational Sciences, Korea Institute for Advanced StudySeoul, South Korea
| | - Alvin T Yeh
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Arne C Lekven
- Department of Biology, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|
15
|
Lipovsek M, Ledderose J, Butts T, Lafont T, Kiecker C, Wizenmann A, Graham A. The emergence of mesencephalic trigeminal neurons. Neural Dev 2017. [PMID: 28637511 PMCID: PMC5480199 DOI: 10.1186/s13064-017-0088-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background The cells of the mesencephalic trigeminal nucleus (MTN) are the proprioceptive sensory neurons that innervate the jaw closing muscles. These cells differentiate close to the two key signalling centres that influence the dorsal midbrain, the isthmus, which mediates its effects via FGF and WNT signalling and the roof plate, which is a major source of BMP signalling as well as WNT signalling. Methods In this study, we have set out to analyse the importance of FGF, WNT and BMP signalling for the development of the MTN. We have employed pharmacological inhibitors of these pathways in explant cultures as well as utilising the electroporation of inhibitory constructs in vivo in the chick embryo. Results We find that interfering with either FGF or WNT signalling has pronounced effects on MTN development whilst abrogation of BMP signalling has no effect. We show that treatment of explants with either FGF or WNT antagonists results in the generation of fewer MTN neurons and affects MTN axon extension and that inhibition of both these pathways has an additive effect. To complement these studies, we have used in vivo electroporation to inhibit BMP, FGF and WNT signalling within dorsal midbrain cells prior to, and during, their differentiation as MTN neurons. Again, we find that inhibition of BMP signalling has no effect on the development of MTN neurons. We additionally find that cells electroporated with inhibitory constructs for either FGF or WNT signalling can differentiate as MTN neurons suggesting that these pathways are not required cell intrinsically for the emergence of these neurons. Indeed, we also show that explants of dorsal mesencephalon lacking both the isthmus and roof plate can generate MTN neurons. However, we did find that inhibiting FGF or WNT signalling had consequences for MTN differentiation. Conclusions Our results suggest that the emergence of MTN neurons is an intrinsic property of the dorsal mesencephalon of gnathostomes, and that this population undergoes expansion, and maturation, along with the rest of the dorsal midbrain under the influence of FGF and WNT signalling.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK
| | - Julia Ledderose
- Institute of Clinical Anatomy and Cell Analysis, Department of Anatomy, University of Tübingen, Oesterbergstrasse 3, 72074, Tuebingen, Germany.,Universitätsmedizin Berlin, NeuroCure - Institute of Biochemistry, ChariteCrossOver, Virchowweg, 610117, Berlin, Germany
| | - Thomas Butts
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK.,School of Life Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Tanguy Lafont
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK
| | - Clemens Kiecker
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, Department of Anatomy, University of Tübingen, Oesterbergstrasse 3, 72074, Tuebingen, Germany
| | - Anthony Graham
- Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL, UK.
| |
Collapse
|
16
|
Asadollahi R, Zweier M, Gogoll L, Schiffmann R, Sticht H, Steindl K, Rauch A. Genotype-phenotype evaluation of MED13L defects in the light of a novel truncating and a recurrent missense mutation. Eur J Med Genet 2017. [PMID: 28645799 DOI: 10.1016/j.ejmg.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A decade after the designation of MED13L as a gene and its link to intellectual disability (ID) and dextro-looped transposition of great arteries in 2003, we previously described a recognizable syndrome due to MED13L haploinsufficiency. Subsequent reports of 22 further patients diagnosed by genome-wide testing further delineated the syndrome with expansion of the phenotypic spectrum and showed reduced penetrance for congenital heart defects. We now report two novel patients identified by whole exome sequencing, one with a de novo MED13L truncating mutation and the other with a de novo missense mutation. The first patient indicates some facial resemblance to Kleefstra syndrome as a novel differential diagnosis, and the second patient shows, for the first time, recurrence of a MED13L missense mutation (p.(Asp860Gly)). Notably, our in silico modelling predicted this missense mutation to decrease the stability of an alpha-helix and thereby affecting the MED13L secondary structure, while the majority of published missense mutations remain variants of uncertain significance. Review of the reported patients with MED13L haploinsufficiency indicates moderate to severe ID and facial anomalies in all patients, as well as severe speech delay and muscular hypotonia in the majority. Further common signs include abnormal MRI findings of myelination defects and abnormal corpus callosum, ataxia and coordination problems, autistic features, seizures/abnormal EEG, or congenital heart defects, present in about 20-50% of the patients. With reference to facial anomalies, the majority of patients were reported to show broad/prominent forehead, low set ears, bitemporal narrowing, upslanting palpebral fissures, depressed/flat nasal bridge, bulbous nose, and abnormal chin, but macroglossia and horizontal eyebrows were also observed in ∼30%. The latter are especially important in the differential diagnosis of 1p36 deletion and Kleefstra syndromes, while the more common facial gestalt shows some resemblance to 22q11.2 deletion syndrome. Despite the fact that MED13L was found to be one of the most common ID genes in the Deciphering Developmental Disorders Study, further detailed patient descriptions are needed to explore the full clinical spectrum, potential genotype-phenotype correlations, as well as the role of missense mutations and potential mutational hotspots along the gene.
Collapse
Affiliation(s)
- Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Heinrich Sticht
- Institute of Biochemistry, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Zahir FR, Mwenifumbo JC, Chun HJE, Lim EL, Van Karnebeek CDM, Couse M, Mungall KL, Lee L, Makela N, Armstrong L, Boerkoel CF, Langlois SL, McGillivray BM, Jones SJM, Friedman JM, Marra MA. Comprehensive whole genome sequence analyses yields novel genetic and structural insights for Intellectual Disability. BMC Genomics 2017; 18:403. [PMID: 28539120 PMCID: PMC5442678 DOI: 10.1186/s12864-017-3671-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intellectual Disability (ID) is among the most common global disorders, yet etiology is unknown in ~30% of patients despite clinical assessment. Whole genome sequencing (WGS) is able to interrogate the entire genome, providing potential to diagnose idiopathic patients. METHODS We conducted WGS on eight children with idiopathic ID and brain structural defects, and their normal parents; carrying out an extensive data analyses, using standard and discovery approaches. RESULTS We verified de novo pathogenic single nucleotide variants (SNV) in ARID1B c.1595delG and PHF6 c.820C > T, potentially causative de novo two base indels in SQSTM1 c.115_116delinsTA and UPF1 c.1576_1577delinsA, and de novo SNVs in CACNB3 c.1289G > A, and SPRY4 c.508 T > A, of uncertain significance. We report results from a large secondary control study of 2081 exomes probing the pathogenicity of the above genes. We analyzed structural variation by four different algorithms including de novo genome assembly. We confirmed a likely contributory 165 kb de novo heterozygous 1q43 microdeletion missed by clinical microarray. The de novo assembly resulted in unmasking hidden genome instability that was missed by standard re-alignment based algorithms. We also interrogated regulatory sequence variation for known and hypothesized ID genes and present useful strategies for WGS data analyses for non-coding variation. CONCLUSION This study provides an extensive analysis of WGS in the context of ID, providing genetic and structural insights into ID and yielding diagnoses.
Collapse
Affiliation(s)
- Farah R Zahir
- Canada's Michael Smith Genome Sciences Center, Vancouver, BC, V5Z 4S6, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. .,Qatar Biomedical Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.
| | - Jill C Mwenifumbo
- Canada's Michael Smith Genome Sciences Center, Vancouver, BC, V5Z 4S6, Canada
| | - Hye-Jung E Chun
- Canada's Michael Smith Genome Sciences Center, Vancouver, BC, V5Z 4S6, Canada
| | - Emilia L Lim
- Canada's Michael Smith Genome Sciences Center, Vancouver, BC, V5Z 4S6, Canada
| | - Clara D M Van Karnebeek
- Department of Pediatrics, Centre for Molecular Medicine & Therapeutics Child & Family Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Madeline Couse
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Center, Vancouver, BC, V5Z 4S6, Canada
| | - Leora Lee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nancy Makela
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Linlea Armstrong
- Provincial Medical Genetics Programme, Children's & Women's Health Centre of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Cornelius F Boerkoel
- Provincial Medical Genetics Programme, Children's & Women's Health Centre of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Sylvie L Langlois
- Provincial Medical Genetics Programme, Children's & Women's Health Centre of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Barbara M McGillivray
- Provincial Medical Genetics Programme, Children's & Women's Health Centre of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Center, Vancouver, BC, V5Z 4S6, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Center, Vancouver, BC, V5Z 4S6, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
18
|
Lin MJ, Lee SJ. Stathmin-like 4 is critical for the maintenance of neural progenitor cells in dorsal midbrain of zebrafish larvae. Sci Rep 2016; 6:36188. [PMID: 27819330 PMCID: PMC5098158 DOI: 10.1038/srep36188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/12/2016] [Indexed: 11/09/2022] Open
Abstract
A delicate balance between proliferating and differentiating signals is necessary to ensure proper growth and neuronal specification. By studying the developing zebrafish brain, we observed a specific and dynamic expression of a microtubule destabilizer gene, stathmin-like 4 (stmn4), in the dorsal midbrain region. The expression of stmn4 was mutually exclusive to a pan-neuronal marker, elavl3 that indicates its role in regulating neurogenesis. We showed the knockdown or overexpression of stmn4 resulted in premature neuronal differentiation in dorsal midbrain. We also generated stmn4 maternal-zygotic knockout zebrafish by the CRISPR/Cas9 system. Unexpectedly, only less than 10% of stmn4 mutants showed similar phenotypes observed in that of stmn4 morphants. It might be due to the complementation of the increased stmn1b expression observed in stmn4 mutants. In addition, time-lapse recordings revealed the changes in cellular proliferation and differentiation in stmn4 morphants. Stmn4 morphants displayed a longer G2 phase that could be rescued by Cdc25a. Furthermore, the inhibition of Wnt could reduce stmn4 transcripts. These results suggest that the Wnt-mediated Stmn4 homeostasis is crucial for preventing dorsal midbrain from premature differentiation via the G2 phase control during the neural keel stage.
Collapse
Affiliation(s)
- Meng-Ju Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei, Taiwan
| |
Collapse
|
19
|
Pricola Fehnel K, Duggins-Warf M, Zurakowski D, McKee-Proctor M, Majumder R, Raber M, Han X, Smith ER. Using urinary bFGF and TIMP3 levels to predict the presence of juvenile pilocytic astrocytoma and establish a distinct biomarker signature. J Neurosurg Pediatr 2016; 18:396-407. [PMID: 27314542 DOI: 10.3171/2015.12.peds15448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The authors report the use of urinary biomarkers as a novel, noninvasive technique to detect juvenile pilocytic astrocytomas (JPAs), capable of distinguishing JPAs from other CNS diseases, including other brain tumors. Preliminary screening of an array of tumors implicated proteases (including matrix metalloproteinases [MMPs]) and their inhibitors (tissue inhibitors of metalloproteinase [TIMPs]) as well as growth factors (including basic fibroblast growth factor [bFGF]) as candidate biomarkers. These data led the authors to hypothesize that tissue inhibitor of metalloproteinase 3 (TIMP3) and bFGF would represent high-probability candidates as JPA-specific biomarkers. METHODS Urine was collected from 107 patients, which included children with JPA (n = 21), medulloblastoma (n = 17), glioblastoma (n = 9), arteriovenous malformations (n = 25), moyamoya (n = 14), and age- and sex-matched controls (n = 21). Biomarker levels were quantified with enzyme-linked immunosorbent assay, tumor tissue expression was confirmed with immunohistochemical analysis, and longitudinal biomarker expression was correlated with imaging. Results were subjected to univariate and multivariate statistical analyses. RESULTS Using optimal urinary cutoff values of bFGF > 1.0 pg/μg and TIMP3 > 3.5 pg/μg, multiplexing bFGF and TIMP3 predicts JPA presence with 98% accuracy. Multiplexing bFGF and MMP13 distinguishes JPA from other brain tumor subtypes with up to 98% accuracy. Urinary biomarker expression correlated with both tumor immunohistochemistry and in vitro tumor levels. Urinary bFGF and TIMP3 decrease following successful tumor treatment and correlate with changes in tumor size. CONCLUSIONS This study identifies 2 urinary biomarkers-bFGF and TIMP3-that successfully detect one of the most common pediatric brain tumors with high accuracy. These data highlight potential benefits of urinary biomarkers and support their utility as diagnostic tools in the treatment of children with JPA.
Collapse
Affiliation(s)
- Katie Pricola Fehnel
- Vascular Biology Program, and.,Departments of 2 Neurosurgery and.,Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | | - Michael Raber
- Vascular Biology Program, and.,Departments of 2 Neurosurgery and
| | - Xuezhe Han
- Vascular Biology Program, and.,Departments of 2 Neurosurgery and
| | - Edward R Smith
- Vascular Biology Program, and.,Departments of 2 Neurosurgery and
| |
Collapse
|
20
|
Rapacioli M, Palma V, Flores V. Morphogenetic and Histogenetic Roles of the Temporal-Spatial Organization of Cell Proliferation in the Vertebrate Corticogenesis as Revealed by Inter-specific Analyses of the Optic Tectum Cortex Development. Front Cell Neurosci 2016; 10:67. [PMID: 27013978 PMCID: PMC4794495 DOI: 10.3389/fncel.2016.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022] Open
Abstract
The central nervous system areas displaying the highest structural and functional complexity correspond to the so called cortices, i.e., concentric alternating neuronal and fibrous layers. Corticogenesis, i.e., the development of the cortical organization, depends on the temporal-spatial organization of several developmental events: (a) the duration of the proliferative phase of the neuroepithelium, (b) the relative duration of symmetric (expansive) versus asymmetric (neuronogenic) sub phases, (c) the spatial organization of each kind of cell division, (e) the time of determination and cell cycle exit and (f) the time of onset of the post-mitotic neuronal migration and (g) the time of onset of the neuronal structural and functional differentiation. The first five events depend on molecular mechanisms that perform a fine tuning of the proliferative activity. Changes in any of them significantly influence the cortical size or volume (tangential expansion and radial thickness), morphology, architecture and also impact on neuritogenesis and synaptogenesis affecting the cortical wiring. This paper integrates information, obtained in several species, on the developmental roles of cell proliferation in the development of the optic tectum (OT) cortex, a multilayered associative area of the dorsal (alar) midbrain. The present review (1) compiles relevant information on the temporal and spatial organization of cell proliferation in different species (fish, amphibians, birds, and mammals), (2) revises the main molecular events involved in the isthmic organizer (IsO) determination and localization, (3) describes how the patterning installed by IsO is translated into spatially organized neural stem cell proliferation (i.e., by means of growth factors, receptors, transcription factors, signaling pathways, etc.) and (4) describes the morpho- and histogenetic effect of a spatially organized cell proliferation in the above mentioned species. A brief section on the OT evolution is also included. This section considers how the differential operation of cell proliferation could explain differences among species.
Collapse
Affiliation(s)
- Melina Rapacioli
- Interdisciplinary Group in Theoretical Biology, Department of Biostructural Sciences, Favaloro UniversityBuenos Aires, Argentina
| | - Verónica Palma
- Laboratory of Stem Cell and Developmental Biology, Faculty of Science, University of ChileSantiago, Chile
| | - Vladimir Flores
- Interdisciplinary Group in Theoretical Biology, Department of Biostructural Sciences, Favaloro UniversityBuenos Aires, Argentina
| |
Collapse
|
21
|
Zeilbeck LF, Müller BB, Leopold SA, Senturk B, Langmann T, Tamm ER, Ohlmann A. Norrin mediates angiogenic properties via the induction of insulin-like growth factor-1. Exp Eye Res 2015; 145:317-326. [PMID: 26706283 DOI: 10.1016/j.exer.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/29/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
Norrin is an angiogenic signaling molecule that activates canonical Wnt/β-catenin signaling, and is involved in capillary formation in retina and brain. Moreover, Norrin induces vascular repair following an oxygen-induced retinopathy (OIR), the model of retinopathy of prematurity in mice. Since insulin-like growth factor (IGF)-1 is a very potent angiogenic molecule, we investigated if IGF-1 is a downstream mediator of Norrin's angiogenic properties. In retinae of transgenic mice with an ocular overexpression of Norrin (βB1-Norrin), we found at postnatal day (P)11 a significant increase of IGF-1 mRNA compared to wild-type littermates. In addition, after treatment of cultured Müller cells or dermal microvascular endothelial cells with Norrin we observed an increase of IGF-1 and its mRNA, an effect that could be blocked with DKK-1, an inhibitor of Wnt/β-catenin signaling. When OIR was induced, the expression of IGF-1 was significantly suppressed in both transgenic βB1-Norrin mice and wild-type littermates when compared to wild-type animals that were housed in room air. Furthermore, at P13, one day after the mice had returned to normoxic conditions, IGF-1 levels were significantly higher in transgenic mice compared to wild-type littermates. Finally, after intravitreal injections of inhibitory α-IGF-1 antibodies at P12 or at P12 and P14, the Norrin-mediated vascular repair was significantly attenuated. We conclude that Norrin induces the expression of IGF-1 via an activation of the Wnt/β-catenin signaling pathway, an effect that significantly contributes to the protective effects of Norrin against an OIR.
Collapse
Affiliation(s)
- Ludwig F Zeilbeck
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Birgit B Müller
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Stephanie A Leopold
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Berna Senturk
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Andreas Ohlmann
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
22
|
Dyer C, Blanc E, Stanley RJ, Knight RD. Dissecting the role of Wnt signaling and its interactions with FGF signaling during midbrain neurogenesis. NEUROGENESIS 2015; 2:e1057313. [PMID: 27606327 PMCID: PMC4973611 DOI: 10.1080/23262133.2015.1057313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/07/2015] [Accepted: 05/27/2015] [Indexed: 11/14/2022]
Abstract
Interactions between FGF and Wnt/ bcat signaling control development of the midbrain. The nature of this interaction and how these regulate patterning, growth and differentiation is less clear, as it has not been possible to temporally dissect the effects of one pathway relative to the other. We have employed pharmacological and genetic tools to probe the temporal and spatial roles of FGF and Wnt in controlling the specification of early midbrain neurons. We identify a β-catenin (bcat) independent role for GSK-3 in modulating FGF activity and hence neuronal patterning. This function is complicated by an overlap with bcat-dependent regulation of FGF signaling, through the regulation of sprouty4. Additionally we reveal how attenuation of Axin protein function can promote fluctuating levels of bcat activity that are dependent on FGF activity. This highlights the complex nature of the interactions between FGF and Wnt/ bcat and reveals that they act at multiple levels to control each others activity in the midbrain.
Collapse
Affiliation(s)
- Carlene Dyer
- Craniofacial Development and Stem Cell Biology; King's College London ; London, UK
| | - Eric Blanc
- MRC Centre for Developmental Neurobiology; King's College London ; London, UK
| | - Rob J Stanley
- Department of Cell and Developmental Biology; University College London; London, UK; CoMPLEX; University College London; London, UK
| | - Robert D Knight
- Craniofacial Development and Stem Cell Biology; King's College London ; London, UK
| |
Collapse
|
23
|
Ware M, Dupé V, Schubert FR. Evolutionary Conservation of the Early Axon Scaffold in the Vertebrate Brain. Dev Dyn 2015; 244:1202-14. [PMID: 26228689 DOI: 10.1002/dvdy.24312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 11/11/2022] Open
Abstract
The early axon scaffold is the first axonal structure to appear in the rostral brain of vertebrates, paving the way for later, more complex connections. Several early axon scaffold components are conserved between all vertebrates; most notably two main ventral longitudinal tracts, the tract of the postoptic commissure and the medial longitudinal fascicle. While the overall structure is remarkably similar, differences both in the organization and the development of the early tracts are apparent. This review will bring together extensive data from the last 25 years in different vertebrates and for the first time, the timing and anatomy of these early tracts have been directly compared. Representatives of major vertebrate clades, including cat shark, Xenopus, chick, and mouse embryos, will be compared using immunohistochemistry staining based on previous results. There is still confusion over the nomenclature and homology of these tracts which this review will aim to address. The discussion here is relevant both for understanding the evolution of the early axon scaffold and for future studies into the molecular regulation of its formation.
Collapse
Affiliation(s)
- Michelle Ware
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom.,Institut de Génétique et Développement, CNRS UMR6290, Université de Rennes1, IFR140, GFAS, Faculté de Médecine, Rennes, France
| | - Valérie Dupé
- Institut de Génétique et Développement, CNRS UMR6290, Université de Rennes1, IFR140, GFAS, Faculté de Médecine, Rennes, France
| | - Frank R Schubert
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
24
|
Knosp WM, Knox SM, Lombaert IMA, Haddox CL, Patel VN, Hoffman MP. Submandibular parasympathetic gangliogenesis requires sprouty-dependent Wnt signals from epithelial progenitors. Dev Cell 2015; 32:667-77. [PMID: 25805134 DOI: 10.1016/j.devcel.2015.01.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 10/23/2022]
Abstract
Parasympathetic innervation is critical for submandibular gland (SMG) development and regeneration. Parasympathetic ganglia (PSG) are derived from Schwann cell precursors that migrate along nerves, differentiate into neurons, and coalesce within their target tissue to form ganglia. However, signals that initiate gangliogenesis after the precursors differentiate into neurons are unknown. We found that deleting negative regulators of FGF signaling, Sprouty1 and Sprouty2 (Spry1/2DKO), resulted in a striking loss of gangliogenesis, innervation, and keratin 5-positive (K5+) epithelial progenitors in the SMG. Here we identify Wnts produced by K5+ progenitors in the SMG as key mediators of gangliogenesis. Wnt signaling increases survival and proliferation of PSG neurons, and inhibiting Wnt signaling disrupts gangliogenesis and organ innervation. Activating Wnt signaling and reducing FGF gene dosage rescues gangliogenesis and innervation in both the Spry1/2DKO SMG and pancreas. Thus, K5+ progenitors produce Wnt signals to establish the PSG-epithelial communication required for organ innervation and progenitor cell maintenance.
Collapse
Affiliation(s)
- Wendy M Knosp
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Sarah M Knox
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA
| | | | - Candace L Haddox
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
26
|
Šestak MS, Domazet-Lošo T. Phylostratigraphic profiles in zebrafish uncover chordate origins of the vertebrate brain. Mol Biol Evol 2014; 32:299-312. [PMID: 25415965 PMCID: PMC4298178 DOI: 10.1093/molbev/msu319] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An elaborated tripartite brain is considered one of the important innovations of vertebrates. Other extant chordate groups have a more basic brain organization. For instance, cephalochordates possess a relatively simple brain possibly homologous to the vertebrate forebrain and hindbrain, whereas tunicates display the tripartite organization, but without the specialized brain centers. The difference in anatomical complexity is even more pronounced if one compares chordates with other deuterostomes that have only a diffuse nerve net or alternatively a rather simple central nervous system. To gain a new perspective on the evolutionary roots of the complex vertebrate brain, we made here a phylostratigraphic analysis of gene expression patterns in the developing zebrafish (Danio rerio). The recovered adaptive landscape revealed three important periods in the evolutionary history of the zebrafish brain. The oldest period corresponds to preadaptive events in the first metazoans and the emergence of the nervous system at the metazoan-eumetazoan transition. The origin of chordates marks the next phase, where we found the overall strongest adaptive imprint in almost all analyzed brain regions. This finding supports the idea that the vertebrate brain evolved independently of the brains within the protostome lineage. Finally, at the origin of vertebrates we detected a pronounced signal coming from the dorsal telencephalon, in agreement with classical theories that consider this part of the cerebrum a genuine vertebrate innovation. Taken together, these results reveal a stepwise adaptive history of the vertebrate brain where most of its extant organization was already present in the chordate ancestor.
Collapse
Affiliation(s)
- Martin Sebastijan Šestak
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
27
|
Petrovic J, Gálvez H, Neves J, Abelló G, Giraldez F. Differential regulation of Hes/Hey genes during inner ear development. Dev Neurobiol 2014; 75:703-20. [PMID: 25363712 DOI: 10.1002/dneu.22243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/28/2014] [Indexed: 11/09/2022]
Abstract
Notch signaling plays a crucial role during inner ear development and regeneration. Hes/Hey genes encode for bHLH transcription factors identified as Notch targets. We have studied the expression and regulation of Hes/Hey genes during inner ear development in the chicken embryo. Among several Hes/Hey genes examined, only Hey1 and Hes5 map to the sensory regions, although with salient differences. Hey1 expression follows Jag1 expression except at early prosensory stages while Hes5 expression corresponds well to Dl1 expression throughout otic development. Although Hey1 and Hes5 are direct Notch downstream targets, they differ in the level of Notch required for activation. Moreover, they also differ in mRNA stability, showing different temporal decays after Notch blockade. In addition, Bmp, Wnt and Fgf pathways also modify Hey1 and Hes5 expression in the inner ear. Particularly, the Wnt pathway modulates Hey1 and Jag1 expression. Finally, gain of function experiments show that Hey1 and Hes5 cross-regulate each other in a complex manner. Both Hey1 and Hes5 repress Dl1 and Hes5 expression, suggesting that they prevent the transition to differentiation stages, probably by preventing Atoh1 expression. In spite of its association with Jag1, Hey1 does not seem to be instrumental for lateral induction as it does not promote Jag1 expression. We suggest that, besides being both targets of Notch, Hey1 and Hes5 are subject to a rather complex regulation that includes the stability of their transcripts, cross regulation and other signaling pathways.
Collapse
Affiliation(s)
- Jelena Petrovic
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Hector Gálvez
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Joana Neves
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Gina Abelló
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Fernando Giraldez
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| |
Collapse
|
28
|
Dyer C, Linker C, Graham A, Knight R. Specification of sensory neurons occurs through diverse developmental programs functioning in the brain and spinal cord. Dev Dyn 2014; 243:1429-39. [PMID: 25179866 DOI: 10.1002/dvdy.24184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Vertebrates possess two populations of sensory neurons located within the central nervous system: Rohon-Beard (RB) and mesencephalic trigeminal nucleus (MTN) neurons. RB neurons are transient spinal cord neurons whilst MTN neurons are the proprioceptive cells that innervate the jaw muscles. It has been suggested that MTN and RB neurons share similarities and may have a common developmental program, but it is unclear how similar or different their development is. RESULTS We have dissected RB and MTN neuronal specification in zebrafish. We find that RB and MTN neurons express a core set of genes indicative of sensory neurons, but find these are also expressed by adjacent diencephalic neurons. Unlike RB neurons, our evidence argues against a role for the neural crest during MTN development. We additionally find that neurogenin1 function is dispensable for MTN differentiation, unlike RB cells and all other sensory neurons. Finally, we demonstrate that, although Notch signalling is involved in RB development, it is not involved in the generation of MTN cells. CONCLUSIONS Our work reveals fundamental differences between the development of MTN and RB neurons and suggests that these populations are non-homologous and thus have distinct developmental and, probably, evolutionary origins.
Collapse
Affiliation(s)
- Carlene Dyer
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|