1
|
Bellou E, Zielinska AP, Mönnich EU, Schweizer N, Politi AZ, Wellecke A, Sibold C, Tandler-Schneider A, Schuh M. Chromosome architecture and low cohesion bias acrocentric chromosomes towards aneuploidy during mammalian meiosis. Nat Commun 2024; 15:10713. [PMID: 39715766 PMCID: PMC11666783 DOI: 10.1038/s41467-024-54659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
Aneuploidy in eggs is a leading cause of miscarriages or viable developmental syndromes. Aneuploidy rates differ between individual chromosomes. For instance, chromosome 21 frequently missegregates, resulting in Down Syndrome. What causes chromosome-specific aneuploidy in meiosis is unclear. Chromosome 21 belongs to the class of acrocentric chromosomes, whose centromeres are located close to the chromosome end, resulting in one long and one short chromosome arm. We demonstrate that acrocentric chromosomes are generally more often aneuploid than metacentric chromosomes in porcine eggs. Kinetochores of acrocentric chromosomes are often partially covered by the short chromosome arm during meiosis I in human and porcine oocytes and orient less efficiently toward the spindle poles. These partially covered kinetochores are more likely to be incorrectly attached to the spindle. Additionally, sister chromatids of acrocentric chromosomes are held together by lower levels of cohesin, making them more vulnerable to age-dependent cohesin loss. Chromosome architecture and low cohesion therefore bias acrocentric chromosomes toward aneuploidy during mammalian meiosis.
Collapse
Affiliation(s)
- Eirini Bellou
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Agata P Zielinska
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Eike Urs Mönnich
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nina Schweizer
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Antonio Z Politi
- Facility for Light Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Antonina Wellecke
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | | | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
2
|
Balough JL, Dipali SS, Velez K, Kumar TR, Duncan FE. Hallmarks of female reproductive aging in physiologic aging mice. NATURE AGING 2024; 4:1711-1730. [PMID: 39672896 DOI: 10.1038/s43587-024-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
The female reproductive axis is one of the first organ systems to age, which has consequences for fertility and overall health. Here, we provide a comprehensive overview of the biological process of female reproductive aging across reproductive organs, tissues and cells based on research with widely used physiologic aging mouse models, and describe the mechanisms that underpin these phenotypes. Overall, aging is associated with dysregulation of the hypothalamic-pituitary-ovarian axis, perturbations of the ovarian stroma, reduced egg quantity and quality, and altered uterine morphology and function that contributes to reduced capacity for fertilization and impaired embryo development. Ultimately, these age-related phenotypes contribute to altered pregnancy outcomes and adverse consequences in offspring. Conserved mechanisms of aging, as well as those unique to the reproductive system, underlie these phenotypes. The knowledge of such mechanisms will lead to development of therapeutics to extend female reproductive longevity and support endocrine function and overall health.
Collapse
Affiliation(s)
- Julia L Balough
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| | - Shweta S Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca E Duncan
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA.
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Go M, Shim SH. Genomic aspects in reproductive medicine. Clin Exp Reprod Med 2024; 51:91-101. [PMID: 38263590 PMCID: PMC11140259 DOI: 10.5653/cerm.2023.06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 01/25/2024] Open
Abstract
Infertility is a complex disease characterized by extreme genetic heterogeneity, compounded by various environmental factors. While there are exceptions, individual genetic and genomic variations related to infertility are typically rare, often family-specific, and may serve as susceptibility factors rather than direct causes of the disease. Consequently, identifying the cause of infertility and developing prevention and treatment strategies based on these factors remain challenging tasks, even in the modern genomic era. In this review, we first examine the genetic and genomic variations associated with infertility, and subsequently summarize the concepts and methods of preimplantation genetic testing in light of advances in genome analysis technology.
Collapse
Affiliation(s)
- Minyeon Go
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
4
|
Mihajlović AI, Byers C, Reinholdt L, FitzHarris G. Spindle assembly checkpoint insensitivity allows meiosis-II despite chromosomal defects in aged eggs. EMBO Rep 2023; 24:e57227. [PMID: 37795949 PMCID: PMC10626445 DOI: 10.15252/embr.202357227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Chromosome segregation errors in mammalian oocyte meiosis lead to developmentally compromised aneuploid embryos and become more common with advancing maternal age. Known contributors include age-related chromosome cohesion loss and spindle assembly checkpoint (SAC) fallibility in meiosis-I. But how effective the SAC is in meiosis-II and how this might contribute to age-related aneuploidy is unknown. Here, we developed genetic and pharmacological approaches to directly address the function of the SAC in meiosis-II. We show that the SAC is insensitive in meiosis-II oocytes and that as a result misaligned chromosomes are randomly segregated. Whilst SAC ineffectiveness in meiosis-II is not age-related, it becomes most prejudicial in oocytes from older females because chromosomes that prematurely separate by age-related cohesion loss become misaligned in meiosis-II. We show that in the absence of a robust SAC in meiosis-II these age-related misaligned chromatids are missegregated and lead to aneuploidy. Our data demonstrate that the SAC fails to prevent cell division in the presence of misaligned chromosomes in oocyte meiosis-II, which explains how age-related cohesion loss can give rise to aneuploid embryos.
Collapse
Affiliation(s)
| | - Candice Byers
- The Institute for Experiential AI, Roux InstituteNortheastern UniversityPortlandMEUSA
| | | | | |
Collapse
|
5
|
Zhang FL, Li WD, Zhu KX, Zhou X, Li L, Lee TL, Shen W. Aging-related aneuploidy is associated with mitochondrial imbalance and failure of spindle assembly. Cell Death Discov 2023; 9:235. [PMID: 37422452 DOI: 10.1038/s41420-023-01539-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
Despite aging is closely linked to increased aneuploidy in the oocytes, the mechanism of how aging affects aneuploidy remains largely elusive. Here, we applied single-cell parallel methylation and transcriptome sequencing (scM&T-seq) data from the aging mouse oocyte model to decode the genomic landscape of oocyte aging. We found a decline in oocyte quality in aging mice, as manifested by a significantly lower rate of first polar body exclusion (P < 0.05), and dramatically increasing aneuploidy rate (P < 0.01). Simultaneously, scM&T data suggested that a large number of differential expression genes (DEGs) and differential methylation regions (DMRs) were obtained. Next, we identified strong association of spindle assembly and mitochondrial transmembrane transport during oocyte aging. Moreover, we verified the DEGs related to spindle assembly (such as Naip1, Aspm, Racgap1, Zfp207) by real-time quantitative PCR (RT-qPCR) and checked the mitochondrial dysfunction by JC-1 staining. Pearson correlation analysis found that receptors for mitochondrial function were strongly positively correlated with abnormal spindle assembly (P < 0.05). In conclusion, these results suggested that the mitochondrial dysfunction and abnormal spindle assembly of aging oocytes ultimately may lead to increased oocyte aneuploidy.
Collapse
Affiliation(s)
- Fa-Li Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, 266109, Qingdao, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Tai'an, China
| | - Wei-Dong Li
- Advanced Medical Research Institute, Shandong University, Jinan, China
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ke-Xin Zhu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, 266109, Qingdao, China
| | - Xu Zhou
- Advanced Medical Research Institute, Shandong University, Jinan, China
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, 266109, Qingdao, China
| | - Tin-Lap Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- EggLoigcs Limited. Hong Kong Science and Technology Park, Shatin, Hong Kong, China.
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, 266109, Qingdao, China.
| |
Collapse
|
6
|
Dunkley S, Mogessie B. Actin limits egg aneuploidies associated with female reproductive aging. SCIENCE ADVANCES 2023; 9:eadc9161. [PMID: 36662854 PMCID: PMC9858517 DOI: 10.1126/sciadv.adc9161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Aging-related centromeric cohesion loss underlies premature separation of sister chromatids and egg aneuploidy in reproductively older females. Here, we show that F-actin maintains chromatid association after cohesion deterioration in aged eggs. F-actin disruption in aged mouse eggs exacerbated untimely dissociation of sister chromatids, while its removal in young eggs induced extensive chromatid separation events generally only seen in advanced reproductive ages. In young eggs containing experimentally reduced cohesion, F-actin removal accelerated premature splitting and scattering of sister chromatids in a microtubule dynamics-dependent manner, suggesting that actin counteracts chromatid-pulling spindle forces. Consistently, F-actin stabilization restricted scattering of unpaired chromatids generated by complete degradation of centromeric cohesion proteins. We conclude that actin mitigates egg aneuploidies arising from age-related cohesion depletion by limiting microtubule-driven separation and dispersion of sister chromatids. This is supported by our finding that spindle-associated F-actin structures are disrupted in eggs of reproductively older females.
Collapse
Affiliation(s)
- Sam Dunkley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Binyam Mogessie
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
7
|
Charalambous C, Webster A, Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat Rev Mol Cell Biol 2023; 24:27-44. [PMID: 36068367 DOI: 10.1038/s41580-022-00517-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
During fertilization, the egg and the sperm are supposed to contribute precisely one copy of each chromosome to the embryo. However, human eggs frequently contain an incorrect number of chromosomes - a condition termed aneuploidy, which is much more prevalent in eggs than in either sperm or in most somatic cells. In turn, aneuploidy in eggs is a leading cause of infertility, miscarriage and congenital syndromes. Aneuploidy arises as a consequence of aberrant meiosis during egg development from its progenitor cell, the oocyte. In human oocytes, chromosomes often segregate incorrectly. Chromosome segregation errors increase in women from their mid-thirties, leading to even higher levels of aneuploidy in eggs from women of advanced maternal age, ultimately causing age-related infertility. Here, we cover the two main areas that contribute to aneuploidy: (1) factors that influence the fidelity of chromosome segregation in eggs of women from all ages and (2) factors that change in response to reproductive ageing. Recent discoveries reveal new error-causing pathways and present a framework for therapeutic strategies to extend the span of female fertility.
Collapse
Affiliation(s)
- Chloe Charalambous
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandre Webster
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
8
|
Yun Y, Lee S, So C, Manhas R, Kim C, Wibowo T, Hori M, Hunter N. Oocyte Development and Quality in Young and Old Mice following Exposure to Atrazine. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:117007. [PMID: 36367780 PMCID: PMC9651182 DOI: 10.1289/ehp11343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Egg development has unique features that render it vulnerable to environmental perturbation. The herbicide atrazine is an endocrine disruptor shown to have detrimental effects on reproduction across several vertebrate species. OBJECTIVES This study was designed to determine whether exposure to low levels of atrazine impairs meiosis in female mammals, using a mouse model; in particular, the study's researchers sought to determine whether and how the fidelity of oocyte chromosome segregation may be affected and whether aging-related aneuploidy is exacerbated. METHODS Female C57BL/6J mice were exposed to two levels of atrazine in drinking water: The higher level equaled aqueous saturation, and the lower level corresponded to detected environmental contamination. To model developmental exposure, atrazine was ingested by pregnant females at 0.5 d post coitum and continued until pups were weaned at 21 d postpartum. For adult exposure, 2-month-old females ingested atrazine for 3 months. Following exposure, various indicators of oocyte development and quality were determined, including: a) chromosome synapsis and crossing over in fetal oocytes using immunofluorescence staining of prophase-I chromosome preparations; b) sizes of follicle pools in sectioned ovaries; c) efficiencies of in vitro fertilization and early embryogenesis; d) chromosome alignment and segregation in cultured oocytes; e) chromosomal errors in metaphase-I and -II (MI and MII) preparations; and f) sister-chromatid cohesion via immunofluorescence intensity of cohesin subunit REC8 on MI-chromosome preparations, and measurement of interkinetochore distances in MII preparations. RESULTS Mice exposed to atrazine during development showed slightly higher levels of defects in chromosome synapsis, but sizes of initial follicle pools were indistinguishable from controls. However, although more eggs were ovulated, oocyte quality was lower. At the chromosome level, frequencies of spindle misalignment and numerical and structural abnormalities were greater at both meiotic divisions. In vitro fertilization was less efficient, and there were more apoptotic cells in blastocysts derived from eggs of atrazine-exposed females. Similar levels of chromosomal defects were seen in oocytes following both developmental and adult exposure regimens, suggesting quiescent primordial follicles may be a consequential target of atrazine. An important finding was that defects were observed long after exposure was terminated. Moreover, chromosomally abnormal eggs were very frequent in older mice, implying that atrazine exposure during development exacerbates effects of maternal aging on oocyte quality. Indeed, analogous to the effects of maternal age, weaker cohesion between sister chromatids was observed in oocytes from atrazine-exposed animals. CONCLUSION Low-level atrazine exposure caused persistent changes to the female mammalian germline in mice, with potential consequences for reproductive lifespan and congenital disease. https://doi.org/10.1289/EHP11343.
Collapse
Affiliation(s)
- Yan Yun
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA
| | - Sunkyung Lee
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Christina So
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Rushali Manhas
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Carol Kim
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Tabitha Wibowo
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Michael Hori
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Neil Hunter
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| |
Collapse
|
9
|
Wu T, Gu H, Luo Y, Wang L, Sang Q. Meiotic defects in human oocytes: Potential causes and clinical implications. Bioessays 2022; 44:e2200135. [PMID: 36207289 DOI: 10.1002/bies.202200135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Meiotic defects cause abnormal chromosome segregation leading to aneuploidy in mammalian oocytes. Chromosome segregation is particularly error-prone in human oocytes, but the mechanisms behind such errors remain unclear. To explain the frequent chromosome segregation errors, recent investigations have identified multiple meiotic defects and explained how these defects occur in female meiosis. In particular, we review the causes of cohesin exhaustion, leaky spindle assembly checkpoint (SAC), inherently unstable meiotic spindle, fragmented kinetochores or centromeres, abnormal aurora kinases (AURK), and clinical genetic variants in human oocytes. We mainly focus on meiotic defects in human oocytes, but also refer to the potential defects of female meiosis in mouse models.
Collapse
Affiliation(s)
- Tianyu Wu
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yuxi Luo
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Chromosome Segregation in the Oocyte: What Goes Wrong during Aging. Int J Mol Sci 2022; 23:ijms23052880. [PMID: 35270022 PMCID: PMC8911062 DOI: 10.3390/ijms23052880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 12/13/2022] Open
Abstract
Human female fertility and reproductive lifespan decrease significantly with age, resulting in an extended post-reproductive period. The central dogma in human female reproduction contains two important aspects. One is the pool of oocytes in the human ovary (the ovarian reserve; approximately 106 at birth), which diminishes throughout life until menopause around the age of 50 (approximately 103 oocytes) in women. The second is the quality of oocytes, including the correctness of meiotic divisions, among other factors. Notably, the increased rate of sub- and infertility, aneuploidy, miscarriages, and birth defects are associated with advanced maternal age, especially in women above 35 years of age. This postponement is also relevant for human evolution; decades ago, the female aging-related fertility drop was not as important as it is today because women were having their children at a younger age. Spindle assembly is crucial for chromosome segregation during each cell division and oocyte maturation, making it an important event for euploidy. Consequently, aberrations in this segregation process, especially during the first meiotic division in human eggs, can lead to implantation failure or spontaneous abortion. Today, human reproductive medicine is also facing a high prevalence of aneuploidy, even in young females. However, the shift in the reproductive phase of humans and the strong increase in errors make the problem much more dramatic at later stages of the female reproductive phase. Aneuploidy in human eggs could be the result of the non-disjunction of entire chromosomes or sister chromatids during oocyte meiosis, but partial or segmental aneuploidies are also relevant. In this review, we intend to describe the relevance of the spindle apparatus during oocyte maturation for proper chromosome segregation in the context of maternal aging and the female reproductive lifespan.
Collapse
|
11
|
Distinct classes of lagging chromosome underpin age-related oocyte aneuploidy in mouse. Dev Cell 2021; 56:2273-2283.e3. [PMID: 34428397 DOI: 10.1016/j.devcel.2021.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/07/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022]
Abstract
Chromosome segregation errors that cause oocyte aneuploidy increase in frequency with maternal age and are considered a major contributing factor of age-related fertility decline in females. Lagging anaphase chromosomes are a common age-associated phenomenon in oocytes, but whether anaphase laggards actually missegregate and cause aneuploidy is unclear. Here, we show that lagging chromosomes in mouse oocytes comprise two mechanistically distinct classes of chromosome motion that we refer to as "class-I" and "class-II" laggards. We use imaging approaches and mechanistic interventions to dissociate the two classes and find that whereas class-II laggards are largely benign, class-I laggards frequently directly lead to aneuploidy. Most notably, a controlled prolongation of meiosis I specifically lessens class-I lagging to prevent aneuploidy. Our data thus reveal lagging chromosomes to be a cause of age-related aneuploidy in mouse oocytes and suggest that manipulating the cell cycle could increase the yield of useful oocytes in some contexts.
Collapse
|
12
|
Anger M, Radonova L, Horakova A, Sekach D, Charousova M. Impact of Global Transcriptional Silencing on Cell Cycle Regulation and Chromosome Segregation in Early Mammalian Embryos. Int J Mol Sci 2021; 22:9073. [PMID: 34445775 PMCID: PMC8396661 DOI: 10.3390/ijms22169073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
The onset of an early development is, in mammals, characterized by profound changes of multiple aspects of cellular morphology and behavior. These are including, but not limited to, fertilization and the merging of parental genomes with a subsequent transition from the meiotic into the mitotic cycle, followed by global changes of chromatin epigenetic modifications, a gradual decrease in cell size and the initiation of gene expression from the newly formed embryonic genome. Some of these important, and sometimes also dramatic, changes are executed within the period during which the gene transcription is globally silenced or not progressed, and the regulation of most cellular activities, including those mentioned above, relies on controlled translation. It is known that the blastomeres within an early embryo are prone to chromosome segregation errors, which might, when affecting a significant proportion of a cell within the embryo, compromise its further development. In this review, we discuss how the absence of transcription affects the transition from the oocyte to the embryo and what impact global transcriptional silencing might have on the basic cell cycle and chromosome segregation controlling mechanisms.
Collapse
Affiliation(s)
- Martin Anger
- Central European Institute of Technology, Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic; (L.R.); (A.H.); (D.S.); (M.C.)
| | | | | | | | | |
Collapse
|
13
|
Chatzidaki EE, Powell S, Dequeker BJH, Gassler J, Silva MCC, Tachibana K. Ovulation suppression protects against chromosomal abnormalities in mouse eggs at advanced maternal age. Curr Biol 2021; 31:4038-4051.e7. [PMID: 34314679 DOI: 10.1016/j.cub.2021.06.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/01/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023]
Abstract
The frequency of egg aneuploidy and trisomic pregnancies increases with maternal age. To what extent individual approaches can delay the "maternal age effect" is unclear because multiple causes contribute to chromosomal abnormalities in mammalian eggs. We propose that ovulation frequency determines the physiological aging of oocytes, a key aspect of which is the ability to accurately segregate chromosomes and produce euploid eggs. To test this hypothesis, ovulations were reduced using successive pregnancies, hormonal contraception, and a pre-pubertal knockout mouse model, and the effects on chromosome segregation and egg ploidy were examined. We show that each intervention reduces chromosomal abnormalities in eggs of aged mice, suggesting that ovulation reduction delays oocyte aging. The protective effect can be partly explained by retention of chromosomal Rec8-cohesin that maintains sister chromatid cohesion in meiosis. In addition, single-nucleus Hi-C (snHi-C) revealed deterioration in the 3D chromatin structure including an increase in extruded loop sizes in long-lived oocytes. Artificial cleavage of Rec8 is sufficient to increase extruded loop sizes, suggesting that cohesin complexes maintaining cohesion restrict loop extrusion. These findings suggest that ovulation suppression protects against Rec8 loss, thereby maintaining both sister chromatid cohesion and 3D chromatin structure and promoting production of euploid eggs. We conclude that the maternal age effect can be delayed in mice. An implication of this work is that long-term ovulation-suppressing conditions can potentially reduce the risk of aneuploid pregnancies at advanced maternal age.
Collapse
Affiliation(s)
- Emmanouella E Chatzidaki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Sean Powell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bart J H Dequeker
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Johanna Gassler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Mariana C C Silva
- Research Institute of Molecular Pathology, Campus Vienna BioCenter 1, 1030 Vienna, Austria
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Department of Totipotency, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Munich, Germany.
| |
Collapse
|
14
|
Wartosch L, Schindler K, Schuh M, Gruhn JR, Hoffmann ER, McCoy RC, Xing J. Origins and mechanisms leading to aneuploidy in human eggs. Prenat Diagn 2021; 41:620-630. [PMID: 33860956 PMCID: PMC8237340 DOI: 10.1002/pd.5927] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 02/21/2021] [Indexed: 11/18/2022]
Abstract
The gain or loss of a chromosome-or aneuploidy-acts as one of the major triggers for infertility and pregnancy loss in humans. These chromosomal abnormalities affect more than 40% of eggs in women at both ends of the age spectrum, that is, young girls as well as women of advancing maternal age. Recent studies in human oocytes and embryos using genomics, cytogenetics, and in silico modeling all provide new insight into the rates and potential genetic and cellular factors associated with aneuploidy at varying stages of development. Here, we review recent studies that are shedding light on potential molecular mechanisms of chromosome missegregation in oocytes and embryos across the entire female reproductive life span.
Collapse
Affiliation(s)
- Lena Wartosch
- Department of MeiosisMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Karen Schindler
- Department of GeneticsRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Human Genetics Institute of New JerseyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Melina Schuh
- Department of MeiosisMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Jennifer R. Gruhn
- DNRF Center for Chromosome StabilityDepartment of Cellular and Molecular MedicineFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Eva R. Hoffmann
- DNRF Center for Chromosome StabilityDepartment of Cellular and Molecular MedicineFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Rajiv C. McCoy
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jinchuan Xing
- Department of GeneticsRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Human Genetics Institute of New JerseyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
15
|
Aneuploidy in human eggs: contributions of the meiotic spindle. Biochem Soc Trans 2021; 49:107-118. [PMID: 33449109 PMCID: PMC7925012 DOI: 10.1042/bst20200043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Human eggs frequently contain an incorrect number of chromosomes, a condition termed aneuploidy. Aneuploidy affects ∼10-25% of eggs in women in their early 30s, and more than 50% of eggs from women over 40. Most aneuploid eggs cannot develop to term upon fertilization, making aneuploidy in eggs a leading cause of miscarriages and infertility. The cellular origins of aneuploidy in human eggs are incompletely understood. Aneuploidy arises from chromosome segregation errors during the two meiotic divisions of the oocyte, the progenitor cell of the egg. Chromosome segregation is driven by a microtubule spindle, which captures and separates the paired chromosomes during meiosis I, and sister chromatids during meiosis II. Recent studies reveal that defects in the organization of the acentrosomal meiotic spindle contribute to human egg aneuploidy. The microtubules of the human oocyte spindle are very frequently incorrectly attached to meiotic kinetochores, the multi-protein complexes on chromosomes to which microtubules bind. Multiple features of human oocyte spindles favour incorrect attachments. These include spindle instability and many age-related changes in chromosome and kinetochore architecture. Here, we review how the unusual spindle assembly mechanism in human oocytes contributes to the remarkably high levels of aneuploidy in young human eggs, and how age-related changes in chromosome and kinetochore architecture cause aneuploidy levels to rise even higher as women approach their forties.
Collapse
|
16
|
Rizzo M, du Preez N, Ducheyne KD, Deelen C, Beitsma MM, Stout TAE, de Ruijter-Villani M. The horse as a natural model to study reproductive aging-induced aneuploidy and weakened centromeric cohesion in oocytes. Aging (Albany NY) 2020; 12:22220-22232. [PMID: 33139583 PMCID: PMC7695376 DOI: 10.18632/aging.104159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Aneuploidy of meiotic origin is a major contributor to age-related subfertility and an increased risk of miscarriage in women. Although age-related aneuploidy has been studied in rodents, the mare may be a more appropriate animal model to study reproductive aging. Similar to women, aged mares show reduced fertility and an increased incidence of early pregnancy loss; however, it is not known whether aging predisposes to aneuploidy in equine oocytes. We evaluated the effect of advanced mare age on (1) gene expression for cohesin components, (2) incidence of aneuploidy and (3) chromosome centromere cohesion (measured as the distance between sister kinetochores) in oocytes matured in vitro. Oocytes from aged mares showed reduced gene expression for the centromere cohesion stabilizing protein, Shugoshin 1. Moreover, in vitro matured oocytes from aged mares showed a higher incidence of aneuploidy and premature sister chromatid separation, and weakened centromeric cohesion. We therefore propose the mare as a valid model for studying effects of aging on centromeric cohesion; cohesion loss predisposes to disintegration of bivalents and premature separation of sister chromatids during the first meiotic division, leading to embryonic aneuploidy; this probably contributes to the reduced fertility and increased incidence of pregnancy loss observed in aged mares.
Collapse
Affiliation(s)
- Marilena Rizzo
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Nikola du Preez
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Kaatje D. Ducheyne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
- Sussex Equine Hospital, Ashington, RH20 3BB, United Kingdom
| | - Claudia Deelen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Mabel M. Beitsma
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| | - Tom A. E. Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
- Department of Production Animal Studies, University of Pretoria, Pretoria, 0110, South Africa
| | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM, the Netherlands
| |
Collapse
|
17
|
Llano E, Masek T, Gahurova L, Pospisek M, Koncicka M, Jindrova A, Jansova D, Iyyappan R, Roucova K, Bruce AW, Kubelka M, Susor A. Age-related differences in the translational landscape of mammalian oocytes. Aging Cell 2020; 19:e13231. [PMID: 32951297 PMCID: PMC7576272 DOI: 10.1111/acel.13231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing maternal age in mammals is associated with poorer oocyte quality, involving higher aneuploidy rates and decreased developmental competence. Prior to resumption of meiosis, fully developed mammalian oocytes become transcriptionally silent until the onset of zygotic genome activation. Therefore, meiotic progression and early embryogenesis are driven largely by translational utilization of previously synthesized mRNAs. We report that genome‐wide translatome profiling reveals considerable numbers of transcripts that are differentially translated in oocytes obtained from aged compared to young females. Additionally, we show that a number of aberrantly translated mRNAs in oocytes from aged females are associated with cell cycle. Indeed, we demonstrate that four specific maternal age‐related transcripts (Sgk1, Castor1, Aire and Eg5) with differential translation rates encode factors that are associated with the newly forming meiotic spindle. Moreover, we report substantial defects in chromosome alignment and cytokinesis in the oocytes of young females, in which candidate CASTOR1 and SGK1 protein levels or activity are experimentally altered. Our findings indicate that improper translation of specific proteins at the onset of meiosis contributes to increased chromosome segregation problems associated with female ageing.
Collapse
Affiliation(s)
- Edgar Llano
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
- Laboratory of RNA Biochemistry Department of Genetics and Microbiology Faculty of Science Charles University in Prague Prague Czech Republic
| | - Tomas Masek
- Laboratory of RNA Biochemistry Department of Genetics and Microbiology Faculty of Science Charles University in Prague Prague Czech Republic
| | - Lenka Gahurova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
- Laboratory of Early Mammalian Developmental Biology (LEMDB) Department of Molecular Biology and Genetics Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
| | - Martin Pospisek
- Laboratory of RNA Biochemistry Department of Genetics and Microbiology Faculty of Science Charles University in Prague Prague Czech Republic
| | - Marketa Koncicka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Anna Jindrova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Denisa Jansova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Kristina Roucova
- Laboratory of RNA Biochemistry Department of Genetics and Microbiology Faculty of Science Charles University in Prague Prague Czech Republic
| | - Alexander W. Bruce
- Laboratory of Early Mammalian Developmental Biology (LEMDB) Department of Molecular Biology and Genetics Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
| | - Michal Kubelka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| |
Collapse
|
18
|
Hou G, Sun QY. Maternal ageing causes changes in DNA methylation and gene expression profiles in mouse oocytes. ZYGOTE 2020; 28:1-7. [PMID: 32635949 DOI: 10.1017/s0967199420000143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although it is well known that maternal ageing causes reduced oocyte quality and fertility, little information is known about its effect on germ cell epigenetics. In the present study, we compared the gene expression and DNA methylation profiles in germinal vesicle oocytes from young (8-week-old) and aged (18-month-old) mice using single-cell RNA-sequencing and single-cell whole-genome DNA methylation sequencing. We found significant differences in the data from the two groups. Oocytes from aged mice showed significant changes in the expression of some metabolism-related genes, such as mitochondria-associated genes, that was in line with our expectations. Expression of some genes associated with reproduction also showed significant differences. DNA methylation levels were also changed in oocytes from aged mice. The two groups had significant gaps in hypermethylation and hypomethylation levels on each chromosome. These data provide useful information for further understanding the mechanisms of oocyte ageing.
Collapse
Affiliation(s)
- Guanmei Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao266109, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Qing-Yuan Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao266109, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
19
|
Mikwar M, MacFarlane AJ, Marchetti F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 785:108320. [PMID: 32800274 DOI: 10.1016/j.mrrev.2020.108320] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022]
Abstract
It is well established that maternal age is associated with a rapid decline in the production of healthy and high-quality oocytes resulting in reduced fertility in women older than 35 years of age. In particular, chromosome segregation errors during meiotic divisions are increasingly common and lead to the production of oocytes with an incorrect number of chromosomes, a condition known as aneuploidy. When an aneuploid oocyte is fertilized by a sperm it gives rise to an aneuploid embryo that, except in rare situations, will result in a spontaneous abortion. As females advance in age, they are at higher risk of infertility, miscarriage, or having a pregnancy affected by congenital birth defects such as Down syndrome (trisomy 21), Edwards syndrome (trisomy 18), and Turner syndrome (monosomy X). Here, we review the potential molecular mechanisms associated with increased chromosome segregation errors during meiosis as a function of maternal age. Our review shows that multiple exogenous and endogenous factors contribute to the age-related increase in oocyte aneuploidy. Specifically, the weight of evidence indicates that recombination failure, cohesin deterioration, spindle assembly checkpoint (SAC) disregulation, abnormalities in post-translational modification of histones and tubulin, and mitochondrial dysfunction are the leading causes of oocyte aneuploidy associated with maternal aging. There is also growing evidence that dietary and other bioactive interventions may mitigate the effect of maternal aging on oocyte quality and oocyte aneuploidy, thereby improving fertility outcomes. Maternal age is a major concern for aneuploidy and genetic disorders in the offspring in the context of an increasing proportion of mothers having children at increasingly older ages. A better understanding of the mechanisms associated with maternal aging leading to aneuploidy and of intervention strategies that may mitigate these detrimental effects and reduce its occurrence are essential for preventing abnormal reproductive outcomes in the human population.
Collapse
Affiliation(s)
- Myy Mikwar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Nutrition Research Division, Health Canada, Ottawa, Ontario, Canada
| | - Amanda J MacFarlane
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Nutrition Research Division, Health Canada, Ottawa, Ontario, Canada
| | - Francesco Marchetti
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Mechanistic Studies Division, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
20
|
Zielinska AP, Bellou E, Sharma N, Frombach AS, Seres KB, Gruhn JR, Blayney M, Eckel H, Moltrecht R, Elder K, Hoffmann ER, Schuh M. Meiotic Kinetochores Fragment into Multiple Lobes upon Cohesin Loss in Aging Eggs. Curr Biol 2019; 29:3749-3765.e7. [PMID: 31679939 PMCID: PMC6868511 DOI: 10.1016/j.cub.2019.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/23/2019] [Accepted: 09/04/2019] [Indexed: 01/02/2023]
Abstract
Chromosome segregation errors during female meiosis are a leading cause of pregnancy loss and human infertility. The segregation of chromosomes is driven by interactions between spindle microtubules and kinetochores. Kinetochores in mammalian oocytes are subjected to special challenges: they need to withstand microtubule pulling forces over multiple hours and are built on centromeric chromatin that in humans is decades old. In meiosis I, sister kinetochores are paired and oriented toward the same spindle pole. It is well established that they progressively separate from each other with advancing female age. However, whether aging also affects the internal architecture of centromeres and kinetochores is currently unclear. Here, we used super-resolution microscopy to study meiotic centromere and kinetochore organization in metaphase-II-arrested eggs from three mammalian species, including humans. We found that centromeric chromatin decompacts with advancing maternal age. Kinetochores built on decompacted centromeres frequently lost their integrity and fragmented into multiple lobes. Fragmentation extended across inner and outer kinetochore regions and affected over 30% of metaphase-II-arrested (MII) kinetochores in aged women and mice, making the lobular architecture a prominent feature of the female meiotic kinetochore. We demonstrate that a partial cohesin loss, as is known to occur in oocytes with advancing maternal age, is sufficient to trigger centromere decompaction and kinetochore fragmentation. Microtubule pulling forces further enhanced the fragmentation and shaped the arrangement of kinetochore lobes. Fragmented kinetochores were frequently abnormally attached to spindle microtubules, suggesting that kinetochore fragmentation could contribute to the maternal age effect in mammalian eggs.
Collapse
Affiliation(s)
- Agata P Zielinska
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Eirini Bellou
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Ninadini Sharma
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Ann-Sophie Frombach
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - K Bianka Seres
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany; Bourn Hall Clinic, High Street, Cambridge CB23 2TN, UK
| | - Jennifer R Gruhn
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | | | - Heike Eckel
- Kinderwunschzentrum, Kasseler Landstraße 25A, Göttingen 37081, Germany
| | - Rüdiger Moltrecht
- Kinderwunschzentrum, Kasseler Landstraße 25A, Göttingen 37081, Germany
| | - Kay Elder
- Bourn Hall Clinic, High Street, Cambridge CB23 2TN, UK
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Melina Schuh
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany.
| |
Collapse
|
21
|
Abstract
Chromosome segregation errors in human oocytes lead to aneuploid embryos that cause infertility and birth defects. Here we provide an overview of the chromosome-segregation process in the mammalian oocyte, highlighting mechanistic differences between oocytes and somatic cells that render oocytes so prone to segregation error. These differences include the extremely large size of the oocyte cytoplasm, the unique geometry of meiosis-I chromosomes, idiosyncratic function of the spindle assembly checkpoint, and dramatically altered oocyte cell-cycle control and spindle assembly, as compared to typical somatic cells. We summarise recent work suggesting that aging leads to a further deterioration in fidelity of chromosome segregation by impacting multiple components of the chromosome-segregation machinery. In addition, we compare and contrast recent results from mouse and human oocytes, which exhibit overlapping defects to differing extents. We conclude that the striking propensity of the oocyte to mis-segregate chromosomes reflects the unique challenges faced by the spindle in a highly unusual cellular environment.
Collapse
Affiliation(s)
- Aleksandar I Mihajlović
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada
| | - Greg FitzHarris
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Yun Y, Wei Z, Hunter N. Maternal obesity enhances oocyte chromosome abnormalities associated with aging. Chromosoma 2019; 128:413-421. [PMID: 31286204 DOI: 10.1007/s00412-019-00716-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022]
Abstract
Obesity is increasing globally, and maternal obesity has adverse effects on pregnancy outcomes and the long-term health of offspring. Maternal obesity has been associated with pregnancy failure through impaired oogenesis and embryogenesis. However, whether maternal obesity causes chromosome abnormalities in oocytes has remained unclear. Here we show that chromosome abnormalities are increased in the oocytes of obese mice fed a high-fat diet and identify weakened sister-chromatid cohesion as the likely cause. Numbers of full-grown follicles retrieved from obese mice were the same as controls and the efficiency of in vitro oocyte maturation remained high. However, chromosome abnormalities presenting in both metaphase-I and metaphase-II were elevated, most prominently the premature separation of sister chromatids. Weakened sister-chromatid cohesion in oocytes from obese mice was manifested both as the terminalization of chiasmata in metaphase-I and as increased separation of sister centromeres in metaphase II. Obesity-associated abnormalities were elevated in older mice implying that maternal obesity exacerbates the deterioration of cohesion seen with advancing age.
Collapse
Affiliation(s)
- Yan Yun
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA.,Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Zijie Wei
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA. .,Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA. .,Department of Molecular & Cellular Biology, University of California, Davis, Davis, CA, USA. .,Department of Cell Biology & Human Anatomy, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
23
|
Zw10 is a spindle assembly checkpoint protein that regulates meiotic maturation in mouse oocytes. Histochem Cell Biol 2019; 152:207-215. [DOI: 10.1007/s00418-019-01800-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 01/17/2023]
|
24
|
Pacchierotti F, Masumura K, Eastmond DA, Elhajouji A, Froetschl R, Kirsch-Volders M, Lynch A, Schuler M, Tweats D, Marchetti F. Chemically induced aneuploidy in germ cells. Part II of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 848:403023. [PMID: 31708072 DOI: 10.1016/j.mrgentox.2019.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022]
Abstract
As part of the 7th International Workshops on Genotoxicity Testing held in Tokyo, Japan in November 2017, a workgroup of experts reviewed and assessed the risk of aneugens for human health. The present manuscript is one of three manuscripts from the workgroup and reports on the unanimous consensus reached on the evidence for aneugens affecting germ cells, their mechanisms of action and role in hereditary diseases. There are 24 chemicals with strong or sufficient evidence for germ cell aneugenicity providing robust support for the ability of chemicals to induce germ cell aneuploidy. Interference with microtubule dynamics or inhibition of topoisomerase II function are clear characteristics of germ cell aneugens. Although there are mechanisms of chromosome segregation that are unique to germ cells, there is currently no evidence for germ cell-specific aneugens. However, the available data are heavily skewed toward chemicals that are aneugenic in somatic cells. Development of high-throughput screening assays in suitable animal models for exploring additional targets for aneuploidy induction, such as meiosis-specific proteins, and to prioritize chemicals for the potential to be germ cell aneugens is encouraged. Evidence in animal models support that: oocytes are more sensitive than spermatocytes and somatic cells to aneugens; exposure to aneugens leads to aneuploid conceptuses; and, the frequencies of aneuploidy are similar in germ cells and zygotes. Although aneuploidy in germ cells is a significant cause of infertility and pregnancy loss in humans, there is currently limited evidence that aneugens induce hereditary diseases in human populations because the great majority of aneuploid conceptuses die in utero. Overall, the present work underscores the importance of protecting the human population from exposure to chemicals that can induce aneuploidy in germ cells that, in contrast to carcinogenicity, is directly linked to an adverse outcome.
Collapse
Affiliation(s)
- Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - David A Eastmond
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, USA
| | - Azeddine Elhajouji
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | | | - Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Faculty of Sciences and Bio-Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada.
| |
Collapse
|
25
|
Kubicek D, Hornak M, Horak J, Navratil R, Tauwinklova G, Rubes J, Vesela K. Incidence and origin of meiotic whole and segmental chromosomal aneuploidies detected by karyomapping. Reprod Biomed Online 2018; 38:330-339. [PMID: 30639160 DOI: 10.1016/j.rbmo.2018.11.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
RESEARCH QUESTION What is the incidence and origin of meiotic whole and segmental aneuploidies detected by karyomapping at a blastocyst stage in human-derived IVF embryos? What is the distribution of various types of errors, including rare chromosomal abnormalities? DESIGN The incidence of chromosomal aneuploidies was assessed in 967 trophectoderm biopsies from 180 couples who underwent 215 cycles of IVF with preimplantation genetic testing for monogenetic disease with a known causal mutation with a mean maternal age of 32.7 years. DNA from both parents and a reference sample was genotyped together with the analysed trophectoderm samples by karyomapping (single-nucleotide-polymorphism-based array). RESULTS Chromosomal abnormalities were detected in 31% of the analysed samples. At least one whole chromosomal aneuploidy was detected in 27.1% of the trophectoderm biopsies, whereas a segmental aneuploidy was detected in 5.1% of the trophectoderm biopsies. Our results reveal that segmental aneuploidies predominantly affect paternally derived chromosomes (70.4%; P < 0.01) compared with whole chromosomal aneuploidies that more frequently affect maternally derived chromosomes (90.1%; P < 0.0001). Also, the frequency of meiosis I (MI) and meiosis II (MII) errors was established in meiotic trisomies; MI errors were observed to be more frequent (n = 102/147 [69.4%]) than MII errors (n = 45/147 [30.6%]). CONCLUSIONS Karyomapping is a robust method that is suitable for preimplantation genetic testing for monogenetic disease and for detecting meiotic aneuploidies, including meiotic segmental aneuploidies, and provides complex information about their parental origin. Our results revealed that segmental aneuploidy more frequently affects paternal chromosomes compared with whole chromosomal aneuploidy in human IVF embryos at the blastocyst stage.
Collapse
Affiliation(s)
- David Kubicek
- Repromeda, Clinic for Reproductive Medicine and Preimplantation Genetic Diagnosis, Biology Park, Studentská 812/6, 625 00 Brno, Czech Republic; Central European Institute of Technology - Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
| | - Miroslav Hornak
- Repromeda, Clinic for Reproductive Medicine and Preimplantation Genetic Diagnosis, Biology Park, Studentská 812/6, 625 00 Brno, Czech Republic; Central European Institute of Technology - Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Jakub Horak
- Repromeda, Clinic for Reproductive Medicine and Preimplantation Genetic Diagnosis, Biology Park, Studentská 812/6, 625 00 Brno, Czech Republic
| | - Rostislav Navratil
- Repromeda, Clinic for Reproductive Medicine and Preimplantation Genetic Diagnosis, Biology Park, Studentská 812/6, 625 00 Brno, Czech Republic
| | - Gabriela Tauwinklova
- Repromeda, Clinic for Reproductive Medicine and Preimplantation Genetic Diagnosis, Biology Park, Studentská 812/6, 625 00 Brno, Czech Republic
| | - Jiri Rubes
- Central European Institute of Technology - Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Katerina Vesela
- Repromeda, Clinic for Reproductive Medicine and Preimplantation Genetic Diagnosis, Biology Park, Studentská 812/6, 625 00 Brno, Czech Republic
| |
Collapse
|
26
|
Can peri-ovulatory putrescine supplementation improve egg quality in older infertile women? J Assist Reprod Genet 2018; 36:395-402. [PMID: 30467617 DOI: 10.1007/s10815-018-1327-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/28/2018] [Indexed: 10/27/2022] Open
Abstract
The aging-related decline in fertility is an increasingly pressing medical and economic issue in modern society where women are delaying family building. Increasingly sophisticated, costly, and often increasingly invasive, assisted reproductive clinical protocols and laboratory technologies (ART) have helped many older women achieve their reproductive goals. Current ART procedures have not been able to address the fundamental problem of oocyte aging, the increased rate of egg aneuploidy, and the decline of developmental potential of the eggs. Oocyte maturation, which is triggered by luteinizing hormone (LH) in vivo or by injection of human chorionic gonadotropin (hCG) in an in vitro fertilization (IVF) clinic, is the critical stage at which the majority of egg aneuploidies arise and when much of an egg's developmental potential is established. Our proposed strategy focuses on improving egg quality in older women by restoring a robust oocyte maturation process. We have identified putrescine deficiency as one of the causes of poor egg quality in an aged mouse model. Putrescine is a biogenic polyamine naturally produced in peri-ovulatory ovaries. Peri-ovulatory putrescine supplementation has reduced egg aneuploidy, improved embryo quality, and reduced miscarriage rates in aged mice. In this paper, we review the literature on putrescine, its occurrence and physiology in living organisms, and its unique role in oocyte maturation. Preliminary human data demonstrates that there is a maternal aging-related deficiency in ovarian ornithine decarboxylase (ODC), the enzyme responsible for putrescine production. We argue that peri-ovulatory putrescine supplementation holds great promise as a natural and effective therapy for infertility in women of advanced maternal age, applicable in natural conception and in combination with current ART therapies.
Collapse
|
27
|
Spindle tubulin and MTOC asymmetries may explain meiotic drive in oocytes. Nat Commun 2018; 9:2952. [PMID: 30054463 PMCID: PMC6063951 DOI: 10.1038/s41467-018-05338-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/30/2018] [Indexed: 12/31/2022] Open
Abstract
In the first meiotic division (MI) of oocytes, the cortically positioned spindle causes bivalent segregation in which only the centre-facing homologue pairs are retained. 'Selfish' chromosomes are known to exist, which bias their spindle orientation and hence retention in the egg, a process known as 'meiotic drive'. Here we report on this phenomenon in oocytes from F1 hybrid mice, where parental strain differences in centromere size allows distinction of the two homologue pairs of a bivalent. Bivalents with centromere and kinetochore asymmetry show meiotic drive by rotating during prometaphase, in a process dependent on aurora kinase activity. Cortically positioned homologue pairs appear to be under greater stretch than their centre-facing partners. Additionally the cortex spindle-half contain a greater density of tubulin and microtubule organising centres. A model is presented in which meiotic drive is explained by the impact of microtubule force asymmetry on chromosomes with different sized centromeres and kinetochores.
Collapse
|
28
|
Intrinsically Defective Microtubule Dynamics Contribute to Age-Related Chromosome Segregation Errors in Mouse Oocyte Meiosis-I. Curr Biol 2018; 27:1040-1047. [PMID: 28376326 DOI: 10.1016/j.cub.2017.02.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
Abstract
Chromosome segregation errors in mammalian oocytes compromise development and are particularly prevalent in older females, but the aging-related cellular changes that promote segregation errors remain unclear [1, 2]. Aging causes a loss of meiotic chromosome cohesion, which can explain premature disjunction of sister chromatids [3-7], but why intact sister pairs should missegregate in meiosis-I (termed non-disjunction) remains unknown. Here, we show that oocytes from naturally aged mice exhibit substantially altered spindle microtubule dynamics, resulting in transiently multipolar spindles that predispose the oocytes to kinetochore-microtubule attachment defects and missegregation of intact sister chromatid pairs. Using classical micromanipulation approaches, including reciprocally transferring nuclei between young and aged oocytes, we show that altered microtubule dynamics are not attributable to age-related chromatin changes. We therefore report that altered microtubule dynamics is a novel primary lesion contributing to age-related oocyte segregation errors. We propose that, whereas cohesion loss can explain premature sister separation, classical non-disjunction is instead explained by altered microtubule dynamics, leading to aberrant spindle assembly.
Collapse
|
29
|
Mihajlović AI, FitzHarris G. Meiosis: SUMO Keeps a Tight Grip on Sister Chromatids. Curr Biol 2018; 28:R671-R674. [PMID: 29870709 DOI: 10.1016/j.cub.2018.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maintaining cohesion between sister chromatids during the first meiotic cell division is crucial for preventing oocyte aneuploidy. In a new paper in Current Biology, Yi and colleagues present evidence that the Small Ubiquitin-related Modifier (SUMO) pathway protects centromeric sister cohesion during the meiosis I-II transition in mouse oocytes.
Collapse
Affiliation(s)
| | - Greg FitzHarris
- CRCHUM, Université De Montréal, 900 Rue St Denis, Montreal, H2X0A9 Canada.
| |
Collapse
|
30
|
Abstract
Human eggs frequently carry an incorrect number of chromosomes, which is a leading cause of pregnancy loss and congenital disorders. The origins of high aneuploidy rates in human eggs have remained largely unclear. This is due to two main reasons: first, the availability of human eggs is limited so that studies of fixed human eggs typically involve very small numbers and limited quantifications. Second, methods for studying meiosis in live human eggs have been missing. The ever rising prevalence of Assisted Reproductive Technologies has facilitated a recent breakthrough in the field. The mechanistic basis of meiosis in humans can now be examined directly in live eggs. Here, we present a robust method for culturing human eggs in vitro and describe how meiotic processes in human eggs can be studied in real time using fluorescent reporters. We further describe methods for the in-depth analysis of immunolabeled eggs by super-resolution light microscopy.
Collapse
|
31
|
The Post-anaphase SUMO Pathway Ensures the Maintenance of Centromeric Cohesion through Meiosis I-II Transition in Mammalian Oocytes. Curr Biol 2018; 28:1661-1669.e4. [PMID: 29754905 DOI: 10.1016/j.cub.2018.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/23/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
Abstract
The production of haploid gametes requires the maintenance of centromeric cohesion between sister chromatids through the transition between two successive meiotic divisions, meiosis I and meiosis II. One mechanism for the cohesion maintenance is shugoshin-dependent protection of centromeric cohesin at anaphase I onset [1-3]. However, how centromeric cohesion is maintained during late anaphase I and telophase I, when centromeric shugoshin is undetectable [1-3], remains largely unexplored. Here we show that the centromeric small ubiquitin-related modifier (SUMO) pathway is critical for the maintenance of centromeric cohesion during post-anaphase-I periods in mouse oocytes. SUMO2/3 and E3 ligase PIAS are enriched near centromeres during late anaphase I and telophase I. Specific perturbation of the centromeric SUMO pathway results in precocious loss of centromeric cohesin at telophase I, although shugoshin-dependent centromeric protection at anaphase I onset remains largely intact. Prevention of the SUMO perturbation during post-anaphase-I periods restores the maintenance of centromeric cohesion through the meiosis I-II transition. Thus, the post-anaphase-I centromeric SUMO pathway ensures continuous maintenance of centromeric cohesion through the meiosis I-II transition.
Collapse
|
32
|
Haverfield J, Dean NL, Nöel D, Rémillard-Labrosse G, Paradis V, Kadoch IJ, FitzHarris G. Tri-directional anaphases as a novel chromosome segregation defect in human oocytes. Hum Reprod 2018; 32:1293-1303. [PMID: 28449121 DOI: 10.1093/humrep/dex083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/07/2017] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION What are the chromosome segregation errors in human oocyte meiosis-I that may underlie oocyte aneuploidy? SUMMARY ANSWER Multiple modes of chromosome segregation error were observed, including tri-directional anaphases, which we attribute to loss of bipolar spindle structure at anaphase-I. WHAT IS KNOWN ALREADY Oocyte aneuploidy is common and associated with infertility, but mechanistic information on the chromosome segregation errors underlying these defects is scarce. Lagging chromosomes were recently reported as a possible mechanism by which segregation errors occur. STUDY DESIGN, SIZE, DURATION Long-term confocal imaging of chromosome dynamics in 50 human oocytes collected between January 2015 and May 2016. PARTICIPANTS/MATERIALS, SETTING, METHODS Germinal vesicle (GV) stage oocytes were collected from women undergoing intracytoplasmic sperm injection cycles and also CD1 mice. Oocytes were microinjected with complementary RNAs to label chromosomes, and in a subset of oocytes, the meiotic spindle. Oocytes were imaged live through meiosis-I using confocal microscopy. 3D image reconstruction was used to classify chromosome segregation phenotypes at anaphase-I. Segregation phenotypes were related to spindle dynamics and cell cycle timings. MAIN RESULTS AND THE ROLE OF CHANCE Most (87%) mouse oocytes segregated chromosomes with no obvious defects. We found that 20% of human oocytes segregated chromosomes bi-directionally with no lagging chromosomes. The rest were categorised as bi-directional anaphase with lagging chromosomes (20%), bi-directional anaphase with chromatin mass separation (34%) or tri-directional anaphase (26%). Segregation errors correlated with chromosome misalignment prior to anaphase. Spindles were tripolar when tri-directional anaphases occurred. Anaphase phenotypes did not correlate with meiosis-I duration (P = 0.73). LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION Oocytes were recovered at GV stage after gonadotrophin-stimulation, and the usual oocyte quality caveats apply. Whilst the possibility that imaging may affect oocyte physiology cannot be formally excluded, detailed controls and justifications are presented. WIDER IMPLICATIONS OF THE FINDINGS This is one of the first reports of live imaging of chromosome dynamics in human oocytes, introducing tri-directional anaphases as a novel potential mechanism for oocyte aneuploidy. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by grants from Fondation Jean-Louis Lévesque (Canada), CIHR (MOP142334) and CFI (32711) to GF. JH is supported by Postdoctoral Fellowships from The Lalor Foundation and CIHR (146703). The authors have no conflict of interest.
Collapse
Affiliation(s)
- Jenna Haverfield
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montréal, 900 Rue St Denis, Montréal, Québec, Canada H2X 0A9.,Department of Obstetrics and Gynaecology, University of Montréal, Montréal, Québec, Canada H3T 1J4
| | - Nicola L Dean
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montréal, 900 Rue St Denis, Montréal, Québec, Canada H2X 0A9.,Clinique de Procréation Assistée (CPA) du CHUM, Montréal, Québec, Canada H2L 4S8
| | - Diana Nöel
- Clinique de Procréation Assistée (CPA) du CHUM, Montréal, Québec, Canada H2L 4S8
| | - Gaudeline Rémillard-Labrosse
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montréal, 900 Rue St Denis, Montréal, Québec, Canada H2X 0A9
| | - Veronique Paradis
- Clinique de Procréation Assistée (CPA) du CHUM, Montréal, Québec, Canada H2L 4S8
| | - Isaac-Jacques Kadoch
- Department of Obstetrics and Gynaecology, University of Montréal, Montréal, Québec, Canada H3T 1J4.,Clinique de Procréation Assistée (CPA) du CHUM, Montréal, Québec, Canada H2L 4S8
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montréal, 900 Rue St Denis, Montréal, Québec, Canada H2X 0A9.,Department of Obstetrics and Gynaecology, University of Montréal, Montréal, Québec, Canada H3T 1J4
| |
Collapse
|
33
|
Abstract
Just as it is important to understand the cell biology of signaling pathways, it is valuable also to understand mechanical forces in cells. The field of mechanobiology has a rich history, including study of cellular mechanics during mitosis and meiosis in echinoderm oocytes and zygotes dating back to the 1930s. This chapter addresses the use of micropipette aspiration (MPA) to assess cellular mechanics, specifically cortical tension, in mammalian oocytes.
Collapse
Affiliation(s)
- Janice P Evans
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
34
|
Perkins AT, Bickel SE. Using Fluorescence In Situ Hybridization (FISH) to Monitor the State of Arm Cohesion in Prometaphase and Metaphase I Drosophila Oocytes. J Vis Exp 2017. [PMID: 29286418 DOI: 10.3791/56802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In humans, chromosome segregation errors in oocytes are responsible for the majority of miscarriages and birth defects. Moreover, as women age, their risk of conceiving an aneuploid fetus increases dramatically and this phenomenon is known as the maternal age effect. One requirement for accurate chromosome segregation during the meiotic divisions is maintenance of sister chromatid cohesion during the extended prophase period that oocytes experience. Cytological evidence in both humans and model organisms suggests that meiotic cohesion deteriorates during the aging process. In addition, segregation errors in human oocytes are most prevalent during meiosis I, consistent with premature loss of arm cohesion. The use of model organisms is critical for unraveling the mechanisms that underlie age-dependent loss of cohesion. Drosophila melanogaster offers several advantages for studying the regulation of meiotic cohesion in oocytes. However, until recently, only genetic tests were available to assay for loss of arm cohesion in oocytes of different genotypes or under different experimental conditions. Here, a detailed protocol is provided for using fluorescence in situ hybridization (FISH) to directly visualize defects in arm cohesion in prometaphase I and metaphase I arrested Drosophila oocytes. By generating a FISH probe that hybridizes to the distal arm of the X chromosome and collecting confocal Z stacks, a researcher can visualize the number of individual FISH signals in three dimensions and determine whether sister chromatid arms are separated. The procedure outlined makes it possible to quantify arm cohesion defects in hundreds of Drosophila oocytes. As such, this method provides an important tool for investigating the mechanisms that contribute to cohesion maintenance as well as the factors that lead to its demise during the aging process.
Collapse
|
35
|
Mitochondrial DNA content is associated with ploidy status, maternal age, and oocyte maturation methods in mouse blastocysts. J Assist Reprod Genet 2017; 34:1587-1594. [PMID: 29063991 DOI: 10.1007/s10815-017-1070-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022] Open
Abstract
PURPOSE It was reported that mitochondrial DNA (mtDNA) was significantly increased in aneuploid human embryos compared to euploid embryos and was also associated with maternal age. In this study, we further established the mouse model of mtDNA quantitation in reproductive samples based on whole-genome amplification (WGA) and next-generation sequencing (NGS). METHODS WGA followed by NGS-based mtDNA quantitation was first performed on 6 single- and 100-cell samples from a tumor-derived mouse cell line, which was exposed to ethidium bromide to reduce mtDNA content. The relative mtDNA content was normalized to nuclear DNA. This method was then applied to mouse reproductive samples, including 40 pairs of oocytes and polar bodies from 8 CD-1 female mice of advanced reproductive age and 171 blastocysts derived via in vitro maturation (IVM) or in vivo maturation (IVO) from young (6-9 weeks) and reproductively aged (13.5 months) female CF-1 mice. RESULTS Exposure to ethidium bromide for 3 and 6 days decreased mtDNA levels in both the single- and 100-cell samples as expected. Results demonstrated that the first polar body contained an average of 0.9% of mtDNA relative to oocytes. Compared to the cells in blastocysts, oocytes contained about 180 times as much mtDNA per cell. mtDNA levels were compared among blastocysts from reproductively young and old female mice that had either been produced by IVM or IVO. Cells in blastocysts from younger mice contained significantly lower amounts of mtDNA compared to aged mice (P < 0.0001). Cells in blastocysts produced via IVO had higher mtDNA content than IVM-derived blastocysts (P = 0.0001). Cells in aneuploid blastocysts were found to have significantly higher (1.74-fold) levels of mtDNA compared to euploid blastocysts (P = 0.0006). CONCLUSION A reliable method for assessing mtDNA content in mouse gametes and embryos was established. Relative mtDNA levels were elevated in aneuploid embryos relative to euploid embryos, were higher in blastocysts from reproductively old mice relative to young mice, and were lower in embryos derived from IVM compared to IVO.
Collapse
|
36
|
El Yakoubi W, Buffin E, Cladière D, Gryaznova Y, Berenguer I, Touati SA, Gómez R, Suja JA, van Deursen JM, Wassmann K. Mps1 kinase-dependent Sgo2 centromere localisation mediates cohesin protection in mouse oocyte meiosis I. Nat Commun 2017; 8:694. [PMID: 28947820 PMCID: PMC5612927 DOI: 10.1038/s41467-017-00774-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/27/2017] [Indexed: 01/10/2023] Open
Abstract
A key feature of meiosis is the step-wise removal of cohesin, the protein complex holding sister chromatids together, first from arms in meiosis I and then from the centromere region in meiosis II. Centromeric cohesin is protected by Sgo2 from Separase-mediated cleavage, in order to maintain sister chromatids together until their separation in meiosis II. Failures in step-wise cohesin removal result in aneuploid gametes, preventing the generation of healthy embryos. Here, we report that kinase activities of Bub1 and Mps1 are required for Sgo2 localisation to the centromere region. Mps1 inhibitor-treated oocytes are defective in centromeric cohesin protection, whereas oocytes devoid of Bub1 kinase activity, which cannot phosphorylate H2A at T121, are not perturbed in cohesin protection as long as Mps1 is functional. Mps1 and Bub1 kinase activities localise Sgo2 in meiosis I preferentially to the centromere and pericentromere respectively, indicating that Sgo2 at the centromere is required for protection.In meiosis I centromeric cohesin is protected by Sgo2 from Separase-mediated cleavage ensuring that sister chromatids are kept together until their separation in meiosis II. Here the authors demonstrate that Bub1 and Mps1 kinase activities are required for Sgo2 localisation to the centromere region.
Collapse
Affiliation(s)
- Warif El Yakoubi
- Sorbonne Universités, UPMC Univ. Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, Paris, 75005, France
- CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, 75005, France
| | - Eulalie Buffin
- Sorbonne Universités, UPMC Univ. Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, Paris, 75005, France
- CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, 75005, France
| | - Damien Cladière
- Sorbonne Universités, UPMC Univ. Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, Paris, 75005, France
- CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, 75005, France
| | - Yulia Gryaznova
- Sorbonne Universités, UPMC Univ. Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, Paris, 75005, France
- CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, 75005, France
| | - Inés Berenguer
- Sorbonne Universités, UPMC Univ. Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, Paris, 75005, France
- CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, 75005, France
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Sandra A Touati
- Sorbonne Universités, UPMC Univ. Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, Paris, 75005, France
- CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, 75005, France
- Chromosome Segregation Laboratory, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, WC2A 3LY, UK
| | - Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José A Suja
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Katja Wassmann
- Sorbonne Universités, UPMC Univ. Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, Paris, 75005, France.
- CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, 75005, France.
| |
Collapse
|
37
|
Lane SIR, Morgan SL, Wu T, Collins JK, Merriman JA, ElInati E, Turner JM, Jones KT. DNA damage induces a kinetochore-based ATM/ATR-independent SAC arrest unique to the first meiotic division in mouse oocytes. Development 2017; 144:3475-3486. [PMID: 28851706 PMCID: PMC5665484 DOI: 10.1242/dev.153965] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/18/2017] [Indexed: 12/31/2022]
Abstract
Mouse oocytes carrying DNA damage arrest in meiosis I, thereby preventing creation of embryos with deleterious mutations. The arrest is dependent on activation of the spindle assembly checkpoint, which results in anaphase-promoting complex (APC) inhibition. However, little is understood about how this checkpoint is engaged following DNA damage. Here, we find that within minutes of DNA damage checkpoint proteins are assembled at the kinetochore, not at damage sites along chromosome arms, such that the APC is fully inhibited within 30 min. Despite this robust response, there is no measurable loss in k-fibres, or tension across the bivalent. Through pharmacological inhibition we observed that the response is dependent on Mps1 kinase, aurora kinase and Haspin. Using oocyte-specific knockouts we find the response does not require the DNA damage response kinases ATM or ATR. Furthermore, checkpoint activation does not occur in response to DNA damage in fully mature eggs during meiosis II, despite the divisions being separated by just a few hours. Therefore, mouse oocytes have a unique ability to sense DNA damage rapidly by activating the checkpoint at their kinetochores.
Collapse
Affiliation(s)
- Simon I R Lane
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Stephanie L Morgan
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tianyu Wu
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Josie K Collins
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julie A Merriman
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Elias ElInati
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - James M Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Keith T Jones
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
38
|
Cheng JM, Liu YX. Age-Related Loss of Cohesion: Causes and Effects. Int J Mol Sci 2017; 18:E1578. [PMID: 28737671 PMCID: PMC5536066 DOI: 10.3390/ijms18071578] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/25/2022] Open
Abstract
Aneuploidy is a leading genetic cause of birth defects and lower implantation rates in humans. Most errors in chromosome number originate from oocytes. Aneuploidy in oocytes increases with advanced maternal age. Recent studies support the hypothesis that cohesion deterioration with advanced maternal age represents a leading cause of age-related aneuploidy. Cohesin generates cohesion, and is established only during the premeiotic S phase of fetal development without any replenishment throughout a female's period of fertility. Cohesion holds sister chromatids together until meiosis resumes at puberty, and then chromosome segregation requires the release of sister chromatid cohesion from chromosome arms and centromeres at anaphase I and anaphase II, respectively. The time of cohesion cleavage plays an important role in correct chromosome segregation. This review focuses specifically on the causes and effects of age-related cohesion deterioration in female meiosis.
Collapse
Affiliation(s)
- Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
39
|
Cheng JM, Li J, Tang JX, Hao XX, Wang ZP, Sun TC, Wang XX, Zhang Y, Chen SR, Liu YX. Merotelic kinetochore attachment in oocyte meiosis II causes sister chromatids segregation errors in aged mice. Cell Cycle 2017; 16:1404-1413. [PMID: 28590163 DOI: 10.1080/15384101.2017.1327488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mammalian oocyte chromosomes undergo 2 meiotic divisions to generate haploid gametes. The frequency of chromosome segregation errors during meiosis I increase with age. However, little attention has been paid to the question of how aging affects sister chromatid segregation during oocyte meiosis II. More importantly, how aneuploid metaphase II (MII) oocytes from aged mice evade the spindle assembly checkpoint (SAC) mechanism to complete later meiosis II to form aneuploid embryos remains unknown. Here, we report that MII oocytes from naturally aged mice exhibited substantial errors in chromosome arrangement and configuration compared with young MII oocytes. Interestingly, these errors in aged oocytes had no impact on anaphase II onset and completion as well as 2-cell formation after parthenogenetic activation. Further study found that merotelic kinetochore attachment occurred more frequently and could stabilize the kinetochore-microtubule interaction to ensure SAC inactivation and anaphase II onset in aged MII oocytes. This orientation could persist largely during anaphase II in aged oocytes, leading to severe chromosome lagging and trailing as well as delay of anaphase II completion. Therefore, merotelic kinetochore attachment in oocyte meiosis II exacerbates age-related genetic instability and is a key source of age-dependent embryo aneuploidy and dysplasia.
Collapse
Affiliation(s)
- Jin-Mei Cheng
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China.,c Institute of Reproductive Medicine , School of Medicine, Nantong University , Nantong, Jiangsu , China
| | - Jian Li
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Ji-Xin Tang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Xiao-Xia Hao
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Zhi-Peng Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Tie-Cheng Sun
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Xiu-Xia Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing , China
| | - Yan Zhang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing , China
| | - Su-Ren Chen
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing , China
| | - Yi-Xun Liu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
40
|
Maternal age-dependent APC/C-mediated decrease in securin causes premature sister chromatid separation in meiosis II. Nat Commun 2017; 8:15346. [PMID: 28516917 PMCID: PMC5454377 DOI: 10.1038/ncomms15346] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/21/2017] [Indexed: 12/27/2022] Open
Abstract
Sister chromatid attachment during meiosis II (MII) is maintained by securin-mediated inhibition of separase. In maternal ageing, oocytes show increased inter-sister kinetochore distance and premature sister chromatid separation (PSCS), suggesting aberrant separase activity. Here, we find that MII oocytes from aged mice have less securin than oocytes from young mice and that this reduction is mediated by increased destruction by the anaphase promoting complex/cyclosome (APC/C) during meiosis I (MI) exit. Inhibition of the spindle assembly checkpoint (SAC) kinase, Mps1, during MI exit in young oocytes replicates this phenotype. Further, over-expression of securin or Mps1 protects against the age-related increase in inter-sister kinetochore distance and PSCS. These findings show that maternal ageing compromises the oocyte SAC–APC/C axis leading to a decrease in securin that ultimately causes sister chromatid cohesion loss. Manipulating this axis and/or increasing securin may provide novel therapeutic approaches to alleviating the risk of oocyte aneuploidy in maternal ageing. Sister chromatid cohesion during meiosis II (MII), maintained by securin-mediated inhibition of separase, is reduced in aged mouse oocytes. Here the authors show that, in MII oocytes, securin levels are reduced by increased destruction by the anaphase promoting complex/cyclosome.
Collapse
|
41
|
Jonak K, Zagoriy I, Oz T, Graf P, Rojas J, Mengoli V, Zachariae W. APC/C-Cdc20 mediates deprotection of centromeric cohesin at meiosis II in yeast. Cell Cycle 2017; 16:1145-1152. [PMID: 28514186 DOI: 10.1080/15384101.2017.1320628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage. While chromatids disjoin upon cleavage of centromeric Rec8 at meiosis II, it was unclear how and when centromeric Rec8 is liberated from its protector PP2A. One proposal is that bipolar spindle forces separate PP2A from Rec8 as cells enter metaphase II. We show here that sister centromere biorientation is not sufficient to "deprotect" Rec8 at meiosis II in yeast. Instead, our data suggest that the ubiquitin-ligase APC/CCdc20 removes PP2A from centromeres by targeting for degradation the shugoshin Sgo1 and the kinase Mps1. This implies that Rec8 remains protected until entry into anaphase II when it is phosphorylated concurrently with the activation of separase. Here, we provide further support for this model and speculate on its relevance to mammalian oocytes.
Collapse
Affiliation(s)
- Katarzyna Jonak
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Ievgeniia Zagoriy
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Tugce Oz
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Peter Graf
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Julie Rojas
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Valentina Mengoli
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Wolfgang Zachariae
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| |
Collapse
|
42
|
Loss of Centromere Cohesion in Aneuploid Human Oocytes Correlates with Decreased Kinetochore Localization of the Sac Proteins Bub1 and Bubr1. Sci Rep 2017; 7:44001. [PMID: 28287092 PMCID: PMC5347135 DOI: 10.1038/srep44001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/03/2017] [Indexed: 12/11/2022] Open
Abstract
In human eggs, aneuploidy increases with age and can result in infertility and genetic diseases. Studies in mouse oocytes suggest that reduced centromere cohesion and spindle assembly checkpoint (SAC) activity could be at the origin of chromosome missegregation. Little is known about these two features in humans. Here, we show that in human eggs, inter-kinetochore distances of bivalent chromosomes strongly increase with age. This results in the formation of univalent chromosomes during metaphase I (MI) and of single chromatids in metaphase II (MII). We also investigated SAC activity by checking the localization of BUB1 and BUBR1. We found that they localize at the kinetochore with a similar temporal timing than in mitotic cells and in a MPS1-dependent manner, suggesting that the SAC signalling pathway is active in human oocytes. Moreover, our data also suggest that this checkpoint is inactivated when centromere cohesion is lost in MI and consequently cannot inhibit premature sister chromatid separation. Finally, we show that the kinetochore localization of BUB1 and BUBR1 decreases with the age of the oocyte donors. This could contribute to oocyte aneuploidy.
Collapse
|
43
|
Huang CJ, Yuan YF, Wu D, Khan FA, Jiao XF, Huo LJ. The cohesion stabilizer sororin favors DNA repair and chromosome segregation during mouse oocyte meiosis. In Vitro Cell Dev Biol Anim 2017; 53:258-264. [PMID: 27826797 DOI: 10.1007/s11626-016-0107-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
Abstract
Maintenance and timely termination of cohesion on chromosomes ensures accurate chromosome segregation to guard against aneuploidy in mammalian oocytes and subsequent chromosomally abnormal pregnancies. Sororin, a cohesion stabilizer whose relevance in antagonizing the anti-cohesive property of Wings-apart like protein (Wapl), has been characterized in mitosis; however, the role of Sororin remains unclear during mammalian oocyte meiosis. Here, we show that Sororin is required for DNA damage repair and cohesion maintenance on chromosomes, and consequently, for mouse oocyte meiotic program. Sororin is constantly expressed throughout meiosis and accumulates on chromatins at germinal vesicle (GV) stage/G2 phase. It localizes onto centromeres from germinal vesicle breakdown (GVBD) to metaphase II stage. Inactivation of Sororin compromises the GVBD and first polar body extrusion (PBE). Furthermore, Sororin inactivation induces DNA damage indicated by positive γH2AX foci in GV oocytes and precocious chromatin segregation in MII oocytes. Finally, our data indicate that PlK1 and MPF dissociate Sororin from chromosome arms without affecting its centromeric localization. Our results define Sororin as a determinant during mouse oocyte meiotic maturation by favoring DNA damage repair and chromosome separation, and thereby, maintaining the genome stability and generating haploid gametes.
Collapse
Affiliation(s)
- Chun-Jie Huang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry Education, Huazhong Agricultural University, Wuhan, China
| | - Yi-Feng Yuan
- Department of Gynecology and Obstetrics, Peking University Third University, Beijing, China
| | - Di Wu
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry Education, Huazhong Agricultural University, Wuhan, China
| | - Faheem Ahmed Khan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry Education, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Fei Jiao
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry Education, Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Huo
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry Education, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
44
|
Baumann C, Wang X, Yang L, Viveiros MM. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin. J Cell Sci 2017; 130:1251-1262. [PMID: 28193732 DOI: 10.1242/jcs.196188] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/06/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse oocytes lack canonical centrosomes and instead contain unique acentriolar microtubule-organizing centers (aMTOCs). To test the function of these distinct aMTOCs in meiotic spindle formation, pericentrin (Pcnt), an essential centrosome/MTOC protein, was knocked down exclusively in oocytes by using a transgenic RNAi approach. Here, we provide evidence that disruption of aMTOC function in oocytes promotes spindle instability and severe meiotic errors that lead to pronounced female subfertility. Pcnt-depleted oocytes from transgenic (Tg) mice were ovulated at the metaphase-II stage, but show significant chromosome misalignment, aneuploidy and premature sister chromatid separation. These defects were associated with loss of key Pcnt-interacting proteins (γ-tubulin, Nedd1 and Cep215) from meiotic spindle poles, altered spindle structure and chromosome-microtubule attachment errors. Live-cell imaging revealed disruptions in the dynamics of spindle assembly and organization, together with chromosome attachment and congression defects. Notably, spindle formation was dependent on Ran GTPase activity in Pcnt-deficient oocytes. Our findings establish that meiotic division is highly error-prone in the absence of Pcnt and disrupted aMTOCs, similar to what reportedly occurs in human oocytes. Moreover, these data underscore crucial differences between MTOC-dependent and -independent meiotic spindle assembly.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Xiaotian Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Luhan Yang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA .,Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
45
|
Condensin, master organizer of the genome. Chromosome Res 2017; 25:61-76. [PMID: 28181049 DOI: 10.1007/s10577-017-9553-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/19/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
A fundamental requirement in nature is for a cell to correctly package and divide its replicated genome. Condensin is a mechanical multisubunit complex critical to this process. Condensin uses ATP to power conformational changes in DNA to enable to correct DNA compaction, organization, and segregation of DNA from the simplest bacteria to humans. The highly conserved nature of the condensin complex and the structural similarities it shares with the related cohesin complex have provided important clues as to how it functions in cells. The fundamental requirement for condensin in mitosis and meiosis is well established, yet the precise mechanism of action is still an open question. Mutation or removal of condensin subunits across a range of species disrupts orderly chromosome condensation leading to errors in chromosome segregation and likely death of the cell. There are divergences in function across species for condensin. Once considered to function solely in mitosis and meiosis, an accumulating body of evidence suggests that condensin has key roles in also regulating the interphase genome. This review will examine how condensin organizes our genomes, explain where and how it binds the genome at a mechanical level, and highlight controversies and future directions as the complex continues to fascinate and baffle biologists.
Collapse
|
46
|
Potapova T, Gorbsky GJ. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. BIOLOGY 2017; 6:biology6010012. [PMID: 28208750 PMCID: PMC5372005 DOI: 10.3390/biology6010012] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/21/2022]
Abstract
Mistakes during cell division frequently generate changes in chromosome content, producing aneuploid or polyploid progeny cells. Polyploid cells may then undergo abnormal division to generate aneuploid cells. Chromosome segregation errors may also involve fragments of whole chromosomes. A major consequence of segregation defects is change in the relative dosage of products from genes located on the missegregated chromosomes. Abnormal expression of transcriptional regulators can also impact genes on the properly segregated chromosomes. The consequences of these perturbations in gene expression depend on the specific chromosomes affected and on the interplay of the aneuploid phenotype with the environment. Most often, these novel chromosome distributions are detrimental to the health and survival of the organism. However, in a changed environment, alterations in gene copy number may generate a more highly adapted phenotype. Chromosome segregation errors also have important implications in human health. They may promote drug resistance in pathogenic microorganisms. In cancer cells, they are a source for genetic and phenotypic variability that may select for populations with increased malignance and resistance to therapy. Lastly, chromosome segregation errors during gamete formation in meiosis are a primary cause of human birth defects and infertility. This review describes the consequences of mitotic and meiotic errors focusing on novel concepts and human health.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
47
|
Faridi R, Rehman AU, Morell RJ, Friedman PL, Demain L, Zahra S, Khan AA, Tohlob D, Assir MZ, Beaman G, Khan SN, Newman WG, Riazuddin S, Friedman TB. Mutations of SGO2 and CLDN14 collectively cause coincidental Perrault syndrome. Clin Genet 2017; 91:328-332. [PMID: 27629923 PMCID: PMC5272805 DOI: 10.1111/cge.12867] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 01/27/2023]
Abstract
Perrault syndrome (PS) is a genetically heterogeneous disorder characterized by primary ovarian insufficiency (POI) in females and sensorineural hearing loss in males and females. In many PS subjects, causative variants have not been found in the five reported PS genes. The objective of this study was to identify the genetic cause of PS in an extended consanguineous family with six deaf individuals. Whole exome sequencing (WES) was completed on four affected members of a large family, and variants and co-segregation was confirmed by Sanger sequencing. All hearing impaired individuals, including the proband, are homozygous for a pathogenic variant of CLDN14, but this only explains the deafness. The PS proband is also homozygous for a frameshift variant (c.1453_1454delGA, p.(Glu485Lysfs*5)) in exon 7 of SGO2 encoding shugoshin 2, which is the likely cause of her concurrent ovarian insufficiency. In mouse, Sgol2a encoding shugoshin-like 2a is necessary during meiosis in both sexes to maintain the integrity of the cohesin complex that tethers sister chromatids. Human SGO2 has not previously been implicated in any disorder, but in this case of POI and perhaps others, it is a candidate for unexplained infertility.
Collapse
Affiliation(s)
- Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Atteeq U. Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Robert J. Morell
- Genomics and Computational Biology Core, NIDCD, NIH, Bethesda, MD 20892, USA
| | | | - Leigh Demain
- Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals, NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Sana Zahra
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Asma Ali Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Dalia Tohlob
- Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals, NHS Foundation Trust, Manchester, M13 9WL, UK
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Muhammad Zaman Assir
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan, Institute of Medical Sciences, Islamabad, Pakistan
| | - Glenda Beaman
- Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals, NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Shaheen N. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - William G. Newman
- Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals, NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Sheikh Riazuddin
- Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, Lahore 54550, Pakistan
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
48
|
Argüello-Miranda O, Zagoriy I, Mengoli V, Rojas J, Jonak K, Oz T, Graf P, Zachariae W. Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II. Dev Cell 2017; 40:37-52. [PMID: 28017619 DOI: 10.1016/j.devcel.2016.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/08/2023]
Abstract
Meiosis consists of DNA replication followed by two consecutive nuclear divisions and gametogenesis or spore formation. While meiosis I has been studied extensively, less is known about the regulation of meiosis II. Here we show that Hrr25, the conserved casein kinase 1δ of budding yeast, links three mutually independent key processes of meiosis II. First, Hrr25 induces nuclear division by priming centromeric cohesin for cleavage by separase. Hrr25 simultaneously phosphorylates Rec8, the cleavable subunit of cohesin, and removes from centromeres the cohesin protector composed of shugoshin and the phosphatase PP2A. Second, Hrr25 initiates the sporulation program by inducing the synthesis of membranes that engulf the emerging nuclei at anaphase II. Third, Hrr25 mediates exit from meiosis II by activating pathways that trigger the destruction of M-phase-promoting kinases. Thus, Hrr25 synchronizes formation of the single-copy genome with gamete differentiation and termination of meiosis.
Collapse
Affiliation(s)
- Orlando Argüello-Miranda
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ievgeniia Zagoriy
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Valentina Mengoli
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Julie Rojas
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Katarzyna Jonak
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tugce Oz
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Peter Graf
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Zachariae
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
49
|
El Yakoubi W, Wassmann K. Meiotic Divisions: No Place for Gender Equality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:1-17. [PMID: 28600780 DOI: 10.1007/978-3-319-57127-0_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In multicellular organisms the fusion of two gametes with a haploid set of chromosomes leads to the formation of the zygote, the first cell of the embryo. Accurate execution of the meiotic cell division to generate a female and a male gamete is required for the generation of healthy offspring harboring the correct number of chromosomes. Unfortunately, meiosis is error prone. This has severe consequences for fertility and under certain circumstances, health of the offspring. In humans, female meiosis is extremely error prone. In this chapter we will compare male and female meiosis in humans to illustrate why and at which frequency errors occur, and describe how this affects pregnancy outcome and health of the individual. We will first introduce key notions of cell division in meiosis and how they differ from mitosis, followed by a detailed description of the events that are prone to errors during the meiotic divisions.
Collapse
Affiliation(s)
- Warif El Yakoubi
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, Paris, 75252, France.,CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, 75252, France
| | - Katja Wassmann
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, Paris, 75252, France. .,CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, 75252, France.
| |
Collapse
|
50
|
Webster A, Schuh M. Mechanisms of Aneuploidy in Human Eggs. Trends Cell Biol 2016; 27:55-68. [PMID: 27773484 DOI: 10.1016/j.tcb.2016.09.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 01/24/2023]
Abstract
Eggs and sperm develop through a specialized cell division called meiosis. During meiosis, the number of chromosomes is reduced by two sequential divisions in preparation for fertilization. In human female meiosis, chromosomes frequently segregate incorrectly, resulting in eggs with an abnormal number of chromosomes. When fertilized, these eggs give rise to aneuploid embryos that usually fail to develop. As women become older, errors in meiosis occur more frequently, resulting in increased risks of infertility, miscarriage, and congenital syndromes, such as Down's syndrome. Here, we review recent studies that identify the mechanisms causing aneuploidy in female meiosis, with a particular emphasis on studies in humans.
Collapse
Affiliation(s)
- Alexandre Webster
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077, Göttingen, Germany.
| |
Collapse
|