1
|
Zhao T, Yu XQ. Signaling pathways in Drosophila testis niche: Local signals that regulate stem cell fate. INSECT SCIENCE 2025. [PMID: 40394950 DOI: 10.1111/1744-7917.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 05/22/2025]
Abstract
Stem cells are located in a well-structured and specialized microenvironment called the niche. The niche provides signaling molecules to control the survival, self-renewal, and differentiation of stem cells. As tissues generally contain different types of stem cells, it is important to understand how these stem cells are coordinately regulated by various signaling pathways. The Drosophila testis niche serves as an excellent model for studying such processes, because it harbors 2 types of stem cells, germline stem cells and somatic cyst stem cells. In this review, we summarize the roles of key signaling pathways in stem cell maintenance and differentiation in the Drosophila testis.
Collapse
Affiliation(s)
- Ting Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
2
|
Zhang R, Shi P, Xu S, Ming Z, Liu Z, He Y, Dai J, Matunis E, Xu J, Ma Q. Soma-germline communication drives sex maintenance in the Drosophila testis. Natl Sci Rev 2024; 11:nwae215. [PMID: 39183747 PMCID: PMC11342250 DOI: 10.1093/nsr/nwae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 08/27/2024] Open
Abstract
In adult gonads, disruption of somatic sexual identity leads to defective gametogenesis and infertility. However, the underlying mechanisms by which somatic signals regulate germline cells to achieve proper gametogenesis remain unclear. In our previous study, we introduced the chinmoSex Transformation (chinmoST ) mutant Drosophila testis phenotype as a valuable model for investigating the mechanisms underlying sex maintenance. In chinmoST testes, depletion of the Janus Kinase-Signal Transducer and Activator of Transcription downstream effector Chinmo from somatic cyst stem cells (CySCs) feminizes somatic cyst cells and arrests germline differentiation. Here, we use single-cell RNA sequencing to uncover chinmoST -specific cell populations and their transcriptomic changes during sex transformation. Comparative analysis of intercellular communication networks between wild-type and chinmoST testes revealed disruptions in several soma-germline signaling pathways in chinmoST testes. Notably, the insulin signaling pathway exhibited significant enhancement in germline stem cells (GSCs). Chinmo cleavage under targets and tagmentation (CUT&Tag) assay revealed that Chinmo directly regulates two male sex determination factors, doublesex (dsx) and fruitless (fru), as well as Ecdysone-inducible gene L2 (ImpL2), a negative regulator of the insulin signaling pathway. Further genetic manipulations confirmed that the impaired gametogenesis observed in chinmoST testes was partly contributed by dysregulation of the insulin signaling pathway. In summary, our study demonstrates that somatic sex maintenance promotes normal spermatogenesis through Chinmo-mediated conserved sex determination and the insulin signaling pathway. Our work offers new insights into the complex mechanisms of somatic stem cell sex maintenance and soma-germline communication at the single-cell level. Additionally, our discoveries highlight the potential significance of stem cell sex instability as a novel mechanism contributing to testicular tumorigenesis.
Collapse
Affiliation(s)
- Rui Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peiyu Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuyang Xu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhe Ming
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zicong Liu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan He
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junbiao Dai
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Erika Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Liu J, Wang Y, Liu X, Han J, Tian Y. Spatiotemporal changes in Netrin/Dscam1 signaling dictate axonal projection direction in Drosophila small ventral lateral clock neurons. eLife 2024; 13:RP96041. [PMID: 39052321 PMCID: PMC11272162 DOI: 10.7554/elife.96041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Axon projection is a spatial- and temporal-specific process in which the growth cone receives environmental signals guiding axons to their final destination. However, the mechanisms underlying changes in axonal projection direction without well-defined landmarks remain elusive. Here, we present evidence showcasing the dynamic nature of axonal projections in Drosophila's small ventral lateral clock neurons (s-LNvs). Our findings reveal that these axons undergo an initial vertical projection in the early larval stage, followed by a subsequent transition to a horizontal projection in the early-to-mid third instar larvae. The vertical projection of s-LNv axons correlates with mushroom body calyx expansion, while the s-LNv-expressed Down syndrome cell adhesion molecule (Dscam1) interacts with Netrins to regulate the horizontal projection. During a specific temporal window, locally newborn dorsal clock neurons secrete Netrins, facilitating the transition of axonal projection direction in s-LNvs. Our study establishes a compelling in vivo model to probe the mechanisms of axonal projection direction switching in the absence of clear landmarks. These findings underscore the significance of dynamic local microenvironments in the complementary regulation of axonal projection direction transitions.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Yuedong Wang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Xian Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
- Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| |
Collapse
|
4
|
Li WX. Computational simulation of JAK/STAT signaling in somatic versus germline stem cells. Dev Dyn 2024; 253:648-658. [PMID: 38126664 PMCID: PMC11190031 DOI: 10.1002/dvdy.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/20/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway regulates a variety of cellular processes. A major activation event in this pathway involves the phosphorylation of a tyrosine of STAT, converting unphosphorylated STAT (uSTAT) to phosphorylated STAT (pSTAT), an active transcription factor. In a noncanonical role, uSTAT contributes to the maintenance of heterochromatin stability. As such, an increase in pSTAT concurrently reduces uSTAT, resulting in heterochromatin loss, as observed in Drosophila somatic tissues. Paradoxically, an opposing phenomenon occurs in Drosophila male germline stem cells (GSCs), where the JAK/STAT pathway remains persistently active due to a continuous supply of ligands. Here, computational simulations were employed to dissect JAK/STAT pathway activation under different cellular contexts, mimicking somatic and germline cells. In these simulations, ordinary differential equations were leveraged to replicate the chemical reactions governing JAK/STAT signaling under different conditions. RESULTS The outcomes indicate that transient ligand stimulation, typical in somatic tissues, led to a momentary reduction in uSTAT levels. Conversely, sustained ligand stimulation, a characteristic feature of the GSC niche, resulted in elevated uSTAT levels at equilibrium. CONCLUSION The simulation suggests that the duration of ligand exposure could explain the observed opposite effects of JAK/STAT activation on heterochromatin in somatic versus GSCs.
Collapse
Affiliation(s)
- Willis X Li
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Roach TV, Lenhart KF. Mating-induced Ecdysone in the testis disrupts soma-germline contacts and stem cell cytokinesis. Development 2024; 151:dev202542. [PMID: 38832826 PMCID: PMC11190578 DOI: 10.1242/dev.202542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024]
Abstract
Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.
Collapse
Affiliation(s)
- Tiffany V. Roach
- Department of Biology, Drexel University, Chestnut St, Philadelphia, PA 19104, USA
| | - Kari F. Lenhart
- Department of Biology, Drexel University, Chestnut St, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Verma S, Lin X, Coulson-Thomas VJ. The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective. Cells 2024; 13:748. [PMID: 38727284 PMCID: PMC11083486 DOI: 10.3390/cells13090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Stem cells (SCs) undergo asymmetric division, producing transit-amplifying cells (TACs) with increased proliferative potential that move into tissues and ultimately differentiate into a specialized cell type. Thus, TACs represent an intermediary state between stem cells and differentiated cells. In the cornea, a population of stem cells resides in the limbal region, named the limbal epithelial stem cells (LESCs). As LESCs proliferate, they generate TACs that move centripetally into the cornea and differentiate into corneal epithelial cells. Upon limbal injury, research suggests a population of progenitor-like cells that exists within the cornea can move centrifugally into the limbus, where they dedifferentiate into LESCs. Herein, we summarize recent advances made in understanding the mechanism that governs the differentiation of LESCs into TACs, and thereafter, into corneal epithelial cells. We also outline the evidence in support of the existence of progenitor-like cells in the cornea and whether TACs could represent a population of cells with progenitor-like capabilities within the cornea. Furthermore, to gain further insights into the dynamics of TACs in the cornea, we outline the most recent findings in other organ systems that support the hypothesis that TACs can dedifferentiate into SCs.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Xiao Lin
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
| | | |
Collapse
|
7
|
Roach TV, Lenhart KF. Mating-induced ecdysone in the testis disrupts soma-germline contacts and stem cell cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562562. [PMID: 37905121 PMCID: PMC10614927 DOI: 10.1101/2023.10.16.562562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.
Collapse
|
8
|
Nagai H, Nagai LAE, Tasaki S, Nakato R, Umetsu D, Kuranaga E, Miura M, Nakajima Y. Nutrient-driven dedifferentiation of enteroendocrine cells promotes adaptive intestinal growth in Drosophila. Dev Cell 2023; 58:1764-1781.e10. [PMID: 37689060 DOI: 10.1016/j.devcel.2023.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/05/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
Post-developmental organ resizing improves organismal fitness under constantly changing nutrient environments. Although stem cell abundance is a fundamental determinant of adaptive resizing, our understanding of its underlying mechanisms remains primarily limited to the regulation of stem cell division. Here, we demonstrate that nutrient fluctuation induces dedifferentiation in the Drosophila adult midgut to drive adaptive intestinal growth. From lineage tracing and single-cell RNA sequencing, we identify a subpopulation of enteroendocrine (EE) cells that convert into functional intestinal stem cells (ISCs) in response to dietary glucose and amino acids by activating the JAK-STAT pathway. Genetic ablation of EE-derived ISCs severely impairs ISC expansion and midgut growth despite the retention of resident ISCs, and in silico modeling further indicates that EE dedifferentiation enables an efficient increase in the midgut cell number while maintaining epithelial cell composition. Our findings identify a physiologically induced dedifferentiation that ensures ISC expansion during adaptive organ growth in concert with nutrient conditions.
Collapse
Affiliation(s)
- Hiroki Nagai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan.
| | | | - Sohei Tasaki
- Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Daiki Umetsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan; Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Erina Kuranaga
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Masayuki Miura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuichiro Nakajima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan.
| |
Collapse
|
9
|
Xing Y, Larson K, Li J, Li WX. Canonical and non-canonical functions of STAT in germline stem cell maintenance. Dev Dyn 2023; 252:728-741. [PMID: 36866634 PMCID: PMC10238624 DOI: 10.1002/dvdy.576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Maintenance of the Drosophila male germline stem cells (GSCs) requires activation of the Janus kinase/signal transducer and activators of transcription (JAK/STAT) pathway by niche signals. The precise role of JAK/STAT signaling in GSC maintenance, however, remains incompletely understood. RESULTS Here, we show that, GSC maintenance requires both canonical and non-canonical JAK/STAT signaling, in which unphosphorylated STAT (uSTAT) maintains heterochromatin stability by binding to heterochromatin protein 1 (HP1). We found that GSC-specific overexpressing STAT, or even the transcriptionally inactive mutant STAT, increases GSC number and partially rescues the GSC-loss mutant phenotype due to reduced JAK activity. Furthermore, we found that both HP1 and STAT are transcriptional targets of the canonical JAK/STAT pathway in GSCs, and that GSCs exhibit higher heterochromatin content. CONCLUSIONS These results suggest that persistent JAK/STAT activation by niche signals leads to the accumulation of HP1 and uSTAT in GSCs, which promote heterochromatin formation important for maintaining GSC identity. Thus, the maintenance of Drosophila GSCs requires both canonical and non-canonical STAT functions within GSCs for heterochromatin regulation.
Collapse
Affiliation(s)
- Yalan Xing
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642
| | - Kimberly Larson
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642
| | - Jinghong Li
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Willis X. Li
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
10
|
Yuen AC, Hillion KH, Wang R, Amoyel M. Germ cells commit somatic stem cells to differentiation following priming by PI3K/Tor activity in the Drosophila testis. PLoS Genet 2021; 17:e1009609. [PMID: 34898607 PMCID: PMC8699969 DOI: 10.1371/journal.pgen.1009609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/23/2021] [Accepted: 11/27/2021] [Indexed: 01/05/2023] Open
Abstract
How and when potential becomes restricted in differentiating stem cell daughters is poorly understood. While it is thought that signals from the niche are actively required to prevent differentiation, another model proposes that stem cells can reversibly transit between multiple states, some of which are primed, but not committed, to differentiate. In the Drosophila testis, somatic cyst stem cells (CySCs) generate cyst cells, which encapsulate the germline to support its development. We find that CySCs are maintained independently of niche self-renewal signals if activity of the PI3K/Tor pathway is inhibited. Conversely, PI3K/Tor is not sufficient alone to drive differentiation, suggesting that it acts to license cells for differentiation. Indeed, we find that the germline is required for differentiation of CySCs in response to PI3K/Tor elevation, indicating that final commitment to differentiation involves several steps and intercellular communication. We propose that CySC daughter cells are plastic, that their fate depends on the availability of neighbouring germ cells, and that PI3K/Tor acts to induce a primed state for CySC daughters to enable coordinated differentiation with the germline. Stem cells are unique in their ability to regenerate adult tissues by dividing to provide new stem cells, a process called self-renewal, and cells that will differentiate and maintain tissue function. How and when the daughters that differentiate lose the ability to self-renew is still poorly understood. Self-renewal depends on signals that are provided by the supportive micro-environment, or niche, in which the stem cells reside. It was assumed that simply losing access to this environment and the signals it provides was sufficient to direct differentiation. Here we use the Drosophila testis as a model to show that this is not the case. Instead, differentiation must be actively induced by signalling, and stem cells deprived of all signals can be maintained. Studying the relative timings of the various inputs into differentiation leads us to propose that a series of events ensure appropriate differentiation. First, stem cells receive differentiation-inducing signals that promote a permissive, or primed, state which is reversible and does not preclude self-renewal. The final commitment comes from interacting with other cells in the tissue, ensuring that differentiation always occurs in a coordinated manner among the different cell types composing this tissue.
Collapse
Affiliation(s)
- Alice C. Yuen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Kenzo-Hugo Hillion
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Ruoxu Wang
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Gupta M, Singh S, Kaur G, Pandher S, Kaur N, Goel N, Kaur R, Rathore P. Transcriptome analysis unravels RNAi pathways genes and putative expansion of CYP450 gene family in cotton leafhopper Amrasca biguttula (Ishida). Mol Biol Rep 2021; 48:4383-4396. [PMID: 34091816 DOI: 10.1007/s11033-021-06453-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
Cotton Leafhopper, Amrasca biguttula is an important pest of cotton and okra in the Indian subcontinent. Presently limited genomic/transcriptomic information is available for this insect in any of open source databases. The present study reports the first assembled and annotated de novo transcriptome of cotton leafhopper. Out of 75,551 transcripts, 39,613 CDS (Coding Sequence) were predicted with 35,282 showing positive blast hits with NCBI nr database. The Gene ontology (GO) analysis annotated 7431 CDS with KEGG pathway categorizing these CDS into 22 different functional groups. The majority of CDS were annotated in signal transduction and transport catabolism pathways. The sequence data was screened for RNAi pathway genes and presence of 37 transcripts associated with this process confirmed the existence of robust RNAi machinery. The role of core RNAi machinery genes (Dicer-2, Ago-2, Piwi and Staufen) has been validated through dsRNA feeding studies. The data resource has also been used to identify potential RNAi targets and genes associated with insecticide detoxification specifically CYP 450 family. The current study provides a useful sequence resource which can be used to initiate molecular studies in this insect with emphasis on insecticide resistance, RNAi and functional genomics.
Collapse
Affiliation(s)
- Mridula Gupta
- Punjab Agricultural University, Regional Station, Circular Road, Faridko, 151203, Punjab, India.,Department of Poultry Sciences, Texas A & M University, College Station, TX, USA
| | - Satnam Singh
- Punjab Agricultural University, Regional Station, Circular Road, Faridko, 151203, Punjab, India.
| | - Gurmeet Kaur
- Punjab Agricultural University, Regional Station, Circular Road, Faridko, 151203, Punjab, India
| | - Suneet Pandher
- Punjab Agricultural University, Regional Station, Circular Road, Faridko, 151203, Punjab, India
| | | | - Neha Goel
- Forest Research Institute, Dehradun, 248195, Uttarakhand, India
| | - Ramandeep Kaur
- Punjab Agricultural University, Regional Station, Circular Road, Faridko, 151203, Punjab, India
| | - Pankaj Rathore
- Punjab Agricultural University, Regional Station, Circular Road, Faridko, 151203, Punjab, India
| |
Collapse
|
12
|
Grmai L, Harsh S, Lu S, Korman A, Deb IB, Bach EA. Transcriptomic analysis of feminizing somatic stem cells in the Drosophila testis reveals putative downstream effectors of the transcription factor Chinmo. G3 (BETHESDA, MD.) 2021; 11:jkab067. [PMID: 33751104 PMCID: PMC8759813 DOI: 10.1093/g3journal/jkab067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 11/12/2022]
Abstract
One of the best examples of sexual dimorphism is the development and function of the gonads, ovaries and testes, which produce sex-specific gametes, oocytes, and spermatids, respectively. The development of these specialized germ cells requires sex-matched somatic support cells. The sexual identity of somatic gonadal cells is specified during development and must be actively maintained during adulthood. We previously showed that the transcription factor Chinmo is required to ensure the male sexual identity of somatic support cells in the Drosophila melanogaster testis. Loss of chinmo from male somatic gonadal cells results in feminization: they transform from squamous to epithelial-like cells that resemble somatic cells in the female gonad but fail to properly ensheath the male germline, causing infertility. To identify potential target genes of Chinmo, we purified somatic cells deficient for chinmo from the adult Drosophila testis and performed next-generation sequencing to compare their transcriptome to that of control somatic cells. Bioinformatics revealed 304 and 1549 differentially upregulated and downregulated genes, respectively, upon loss of chinmo in early somatic cells. Using a combination of methods, we validated several differentially expressed genes. These data sets will be useful resources to the community.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Sneh Harsh
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Sean Lu
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Aryeh Korman
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Ishan B Deb
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Erika A Bach
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
13
|
Bazylev SS, Adashev VE, Shatskikh AS, Olenina LV, Kotov AA. Somatic Cyst Cells as a Microenvironment for the Maintenance and Differentiation of Germline Cells in Drosophila Spermatogenesis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Xue R, Lin W, Sun J, Watanabe M, Xu A, Araki M, Nasu Y, Tang Z, Huang P. The role of Wnt signaling in male reproductive physiology and pathology. Mol Hum Reprod 2021; 27:gaaa085. [PMID: 33543289 DOI: 10.1093/molehr/gaaa085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence has shown that Wnt signaling is deeply involved in male reproductive physiology, and malfunction of the signal path can cause pathological changes in genital organs and sperm cells. These abnormalities are diverse in manifestation and have been constantly found in the knockout models of Wnt studies. Nevertheless, most of the research solely focused on a certain factor in the Wnt pathway, and there are few reports on the overall relation between Wnt signals and male reproductive physiology. In our review, Wnt findings relating to the reproductive system were sought and summarized in terms of Wnt ligands, Wnt receptors, Wnt intracellular signals and Wnt regulators. By sorting out and integrating relevant functions, as well as underlining the controversies among different reports, our review aims to offer an overview of Wnt signaling in male reproductive physiology and pathology for further mechanistic studies.
Collapse
Affiliation(s)
- Ruizhi Xue
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Lin
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jingkai Sun
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Okayama Medical Innovation Center, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
15
|
Rockwell AL, Hongay CF. Dm Ime4 depletion affects permeability barrier and Chic function in Drosophila spermatogenesis. Mech Dev 2020; 164:103650. [PMID: 33038528 DOI: 10.1016/j.mod.2020.103650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/01/2022]
Abstract
Adenosine methylation of messenger RNA at the N6 position (m6A) is a non-editing modification that can affect several aspects of mRNA metabolism. Dm Ime4, also known as METTL3, MTA, and MTA-70 in other organisms, is the catalytic subunit of the methyltransferase complex that adds this modification. Dm ime4 is evolutionarily conserved and essential for development in metazoans and plants. Because of its pleiotropic effects, it has been difficult to establish the main reason why embryonic arrest occurs in plants, mice, and zebrafish. Using a strategy that depletes Dm Ime4 specifically in the somatic cyst cells of Drosophila testes without affecting essential functions in development, our lab has found that Dm Ime4 may potentially regulate splicing of profilin (chic) mRNA, the message for an essential and evolutionarily conserved protein mainly known for its function in actin polymerization. One of the lesser known roles for Chic is its requirement for establishment and maintenance of the somatic cyst-cell permeability barrier in Drosophila spermatogenesis. Chic and Dm Ime4 colocalize and are abundant in somatic cyst cells throughout spermatogenesis. Upon selective depletion of Dm Ime4, we observe significant reduction of Chic protein levels and malfunction of the permeability barrier. We have found that chic mRNA contains intronic Dm Ime4 binding sites that can form the hairpin structures required for recognition by the methyltransferase complex. Our data show that the reduced levels of Chic protein observed in Dm ime4 somatic cyst-cell knockdowns could be the result of aberrant splicing of its mRNA. In turn, low levels of Chic are known to affect the function of the somatic permeability barrier, leading to germline death and the reduced fertility observed in Dm ime4 knockdown males. We propose that Dm Ime4 may regulate chic in other developmental contexts and in other organisms, including mice and humans. Chic is an essential protein that is evolutionarily conserved, and establishment and maintenance of cell barriers and domains are important strategies used in metazoan development. Taken together, our findings define a framework to investigate specific functions of Dm Ime4 and its homologs in multicellular organisms by bypassing its pleiotropic requirement in early developmental stages.
Collapse
Affiliation(s)
- Antonio L Rockwell
- Susquehanna University, Department of Biology, 514 University Avenue, Selinsgrove, PA 17870, USA.
| | - Cintia F Hongay
- Susquehanna University, Department of Biology, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
16
|
Pimm ML, Hotaling J, Henty-Ridilla JL. Profilin choreographs actin and microtubules in cells and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:155-204. [PMID: 32859370 PMCID: PMC7461721 DOI: 10.1016/bs.ircmb.2020.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and microtubules play essential roles in aberrant cell processes that define and converge in cancer including: signaling, morphology, motility, and division. Actin and microtubules do not directly interact, however shared regulators coordinate these polymers. While many of the individual proteins important for regulating and choreographing actin and microtubule behaviors have been identified, the way these molecules collaborate or fail in normal or disease contexts is not fully understood. Decades of research focus on Profilin as a signaling molecule, lipid-binding protein, and canonical regulator of actin assembly. Recent reports demonstrate that Profilin also regulates microtubule dynamics and polymerization. Thus, Profilin can coordinate both actin and microtubule polymer systems. Here we reconsider the biochemical and cellular roles for Profilin with a focus on the essential cytoskeletal-based cell processes that go awry in cancer. We also explore how the use of model organisms has helped to elucidate mechanisms that underlie the regulatory essence of Profilin in vivo and in the context of disease.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica Hotaling
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
17
|
Jo KH, Jaiswal A, Khanal S, Fishman EL, Curry AN, Avidor-Reiss T. Poc1B and Sas-6 Function Together during the Atypical Centriole Formation in Drosophila melanogaster. Cells 2019; 8:cells8080841. [PMID: 31387336 PMCID: PMC6721650 DOI: 10.3390/cells8080841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Insects and mammals have atypical centrioles in their sperm. However, it is unclear how these atypical centrioles form. Drosophila melanogaster sperm has one typical centriole called the giant centriole (GC) and one atypical centriole called the proximal centriole-like structure (PCL). During early sperm development, centriole duplication factors such as Ana2 and Sas-6 are recruited to the GC base to initiate PCL formation. The centriolar protein, Poc1B, is also recruited at this initiation stage, but its precise role during PCL formation is unclear. Here, we show that Poc1B recruitment was dependent on Sas-6, that Poc1B had effects on cellular and PCL Sas-6, and that Poc1B and Sas-6 were colocalized in the PCL/centriole core. These findings suggest that Sas-6 and Poc1B interact during PCL formation. Co-overexpression of Ana2 and Sas-6 induced the formation of ectopic particles that contained endogenous Poc1 proteins and were composed of PCL-like structures. These structures were disrupted in Poc1 mutant flies, suggesting that Poc1 proteins stabilize the PCL-like structures. Lastly, Poc1B and Sas-6 co-overexpression also induced the formation of PCL-like structures, suggesting that they can function together during the formation of the PCL. Overall, our findings suggest that Poc1B and Sas-6 function together during PCL formation.
Collapse
Affiliation(s)
- Kyoung H Jo
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Sushil Khanal
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Emily L Fishman
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Alaina N Curry
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA.
| |
Collapse
|
18
|
Herrera SC, Bach EA. JAK/STAT signaling in stem cells and regeneration: from Drosophila to vertebrates. Development 2019; 146:dev167643. [PMID: 30696713 PMCID: PMC6361132 DOI: 10.1242/dev.167643] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The JAK/STAT pathway is a conserved metazoan signaling system that transduces cues from extracellular cytokines into transcriptional changes in the nucleus. JAK/STAT signaling is best known for its roles in immunity. However, recent work has demonstrated that it also regulates critical homeostatic processes in germline and somatic stem cells, as well as regenerative processes in several tissues, including the gonad, intestine and appendages. Here, we provide an overview of JAK/STAT signaling in stem cells and regeneration, focusing on Drosophila and highlighting JAK/STAT pathway functions in proliferation, survival and cell competition that are conserved between Drosophila and vertebrates.
Collapse
Affiliation(s)
- Salvador C Herrera
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
19
|
|
20
|
Segal D, Zaritsky A, Schejter ED, Shilo BZ. Feedback inhibition of actin on Rho mediates content release from large secretory vesicles. J Cell Biol 2018; 217:1815-1826. [PMID: 29496739 PMCID: PMC5940311 DOI: 10.1083/jcb.201711006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/24/2017] [Accepted: 01/30/2018] [Indexed: 12/02/2022] Open
Abstract
Secretion of adhesive glycoproteins to the lumen of Drosophila melanogaster larval salivary glands is performed by contraction of an actomyosin network assembled around large secretory vesicles, after their fusion to the apical membranes. We have identified a cycle of actin coat nucleation and disassembly that is independent of myosin. Recruitment of active Rho1 to the fused vesicle triggers activation of the formin Diaphanous and actin nucleation. This leads to actin-dependent localization of a RhoGAP protein that locally shuts off Rho1, promoting disassembly of the actin coat. When contraction of vesicles is blocked, the strict temporal order of the recruited elements generates repeated oscillations of actin coat formation and disassembly. Interestingly, different blocks to actin coat disassembly arrested vesicle contraction, indicating that actin turnover is an integral part of the actomyosin contraction cycle. The capacity of F-actin to trigger a negative feedback on its own production may be widely used to coordinate a succession of morphogenetic events or maintain homeostasis.
Collapse
Affiliation(s)
- Dagan Segal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Zaritsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Cell surface Thomsen-Friedenreich proteome profiling of metastatic prostate cancer cells reveals potential link with cancer stem cell-like phenotype. Oncotarget 2017; 8:98598-98608. [PMID: 29228713 PMCID: PMC5716753 DOI: 10.18632/oncotarget.21985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/29/2017] [Indexed: 02/04/2023] Open
Abstract
The tumor-associated Thomsen-Friedenreich glycoantigen (TF-Ag) plays an important role in hematogenous metastasis of multiple cancers. The LTQ Orbitrap LC-MS/MS mass spectrometry analysis of cell surface TF-Ag proteome of metastatic prostate cancer cells reveals that several cell surface glycoproteins expressing this carbohydrate antigen in prostate cancer (CD44, α2 integrin, β1 integrin, CD49f, CD133, CD59, EphA2, CD138, transferrin receptor, profilin) are either known as stem cell markers or control important cancer stem-like cell functions. This outcome points to a potential link between TF-Ag expression and prostate cancer stem-like phenotype. Indeed, selecting prostate cancer cells for TF-Ag expression resulted in the enrichment of cells with stem-like properties such as enhanced clonogenic survival and growth, prostasphere formation under non-differentiating and differentiating conditions, and elevated expression of stem cell markers such as CD44 and CD133. Further, the analysis of the recent literature demonstrates that TF-Ag is a common denominator for multiple prostate cancer stem-like cell populations identified to date and otherwise characterized by distinct molecular signatures. The current paradigm suggests that dissemination of tumor cells with stem-like properties to bone marrow that occurred before surgery and/or radiation therapy is largely responsible for disease recurrence years after radical treatment causing a massive clinical problem in prostate cancer. Thus, developing means for destroying disseminated prostate cancer stem-like cells is an important goal of modern cancer research. The results presented in this study suggest that multiple subpopulation of putative prostate cancer stem-like cells characterized by distinct molecular signatures can be attacked using a single target commonly expressed on these cells, the TF-Ag.
Collapse
|
22
|
Yamamoto K, Ozakiya Y, Uno T. Localization of an Aldo-Keto Reductase (AKR2E4) in the Silkworm Bombyx mori (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:4107059. [PMID: 28922901 PMCID: PMC5597883 DOI: 10.1093/jisesa/iex071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 06/07/2023]
Abstract
The aldo-keto reductase AKR2E4 reduces 3-dehydroecdysone to ecdysone in the silkworm Bombyx mori L. In this study, a quantitative polymerase chain reaction analysis revealed that the level of AKR2E4 mRNA was higher in the testes than in other tissues, and a western immunoblot analysis revealed that the AKR2E4 content in the testes was stage-specific from the fifth larval instar to the pupal stage. Immunohistochemical analysis showed that the AKR2E4 protein was present in cyst cells associated with sperm cells and spermatocytes. These results indicate that AKR2E4 plays an important role in 3-dehydroecdysone conversion to ecdysone and spermatogenesis in silkworm testes.
Collapse
Affiliation(s)
- K Yamamoto
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Y Ozakiya
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - T Uno
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
23
|
Liu J, Shang D, Xiao Y, Zhong P, Cheng H, Zhou R. Isolation and characterization of string-forming female germline stem cells from ovaries of neonatal mice. J Biol Chem 2017; 292:16003-16013. [PMID: 28827310 DOI: 10.1074/jbc.m117.799403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/19/2017] [Indexed: 12/30/2022] Open
Abstract
Germline stem cells are essential in the generation of both male and female gametes. In mammals, the male testis produces sperm throughout the entire lifetime, facilitated by testicular germline stem cells. Oocyte renewal ceases in postnatal or adult life in mammalian females, suggesting that germline stem cells are absent from the mammalian ovary. However, studies in mice, rats, and humans have recently provided evidence for ovarian female germline stem cells (FGSCs). A better understanding of the role of FGSCs in ovaries could help improve fertility treatments. Here, we developed a rapid and efficient method for isolating FGSCs from ovaries of neonatal mice. Notably, our FGSC isolation method could efficiently isolate on average 15 cell "strings" per ovary from mice at 1-3 days postpartum. FGSCs isolated from neonatal mice displayed the string-forming cell configuration at mitosis (i.e. a "stringing" FGSC (sFGSC) phenotype) and a disperse phenotype in postnatal mice. We also found that sFGSCs undergo vigorous mitosis especially at 1-3 days postpartum. After cell division, the sFGSC membranes tended to be connected to form sFGSCs. Moreover, F-actin filaments exhibited a cell-cortex distribution in sFGSCs, and E-cadherin converged in cell-cell connection regions, resulting in the string-forming morphology. Our new method provides a platform for isolating FGSCs from the neonatal ovary, and our findings indicate that FGCSs exhibit string-forming features in neonatal mice. The sFGSCs represent a valuable resource for analysis of ovary function and an in vitro model for future clinical use to address ovarian dysfunction.
Collapse
Affiliation(s)
- Jing Liu
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dantong Shang
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yao Xiao
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pei Zhong
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hanhua Cheng
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rongjia Zhou
- From the Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
Joy M, Gau D, Castellucci N, Prywes R, Roy P. The myocardin-related transcription factor MKL co-regulates the cellular levels of two profilin isoforms. J Biol Chem 2017; 292:11777-11791. [PMID: 28546428 DOI: 10.1074/jbc.m117.781104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/24/2017] [Indexed: 12/26/2022] Open
Abstract
Megakaryoblastic leukemia (MKL)/serum-response factor (SRF)-mediated gene transcription is a highly conserved mechanism that connects dynamic reorganization of the actin cytoskeleton to regulation of expression of a wide range of genes, including SRF itself and many important structural and regulatory components of the actin cytoskeleton. In this study, we examined the possible role of MKL/SRF in the context of regulation of profilin (Pfn), a major controller of actin dynamics and actin cytoskeletal remodeling in cells. We demonstrated that despite being located on different genomic loci, two major isoforms of Pfn (Pfn1 and Pfn2) are co-regulated by a common mechanism involving the action of MKL that is independent of its SRF-related activity. We found that MKL co-regulates the expression of Pfn isoforms indirectly by modulating signal transducer and activator of transcription 1 (STAT1) and utilizing its SAP-domain function. Unexpectedly, our studies revealed that cellular externalization, rather than transcription of Pfn1, is affected by the perturbations of MKL. We further demonstrated that MKL can influence cell migration by modulating Pfn1 expression, indicating a functional connection between MKL and Pfn1 in actin-dependent cellular processes. Finally, we provide initial evidence supporting the ability of Pfn to influence MKL and SRF expression. Collectively, these findings suggest that Pfn may play a role in a possible feedback loop of the actin/MKL/SRF signaling circuit.
Collapse
Affiliation(s)
- Marion Joy
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - David Gau
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Nevin Castellucci
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Ron Prywes
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Partha Roy
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219; Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219; Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219.
| |
Collapse
|
25
|
Feng L, Shi Z, Chen X. Enhancer of polycomb coordinates multiple signaling pathways to promote both cyst and germline stem cell differentiation in the Drosophila adult testis. PLoS Genet 2017; 13:e1006571. [PMID: 28196077 PMCID: PMC5308785 DOI: 10.1371/journal.pgen.1006571] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Stem cells reside in a particular microenvironment known as a niche. The interaction between extrinsic cues originating from the niche and intrinsic factors in stem cells determines their identity and activity. Maintenance of stem cell identity and stem cell self-renewal are known to be controlled by chromatin factors. Herein, we use the Drosophila adult testis which has two adult stem cell lineages, the germline stem cell (GSC) lineage and the cyst stem cell (CySC) lineage, to study how chromatin factors regulate stem cell differentiation. We find that the chromatin factor Enhancer of Polycomb [E(Pc)] acts in the CySC lineage to negatively control transcription of genes associated with multiple signaling pathways, including JAK-STAT and EGF, to promote cellular differentiation in the CySC lineage. E(Pc) also has a non-cell-autonomous role in regulating GSC lineage differentiation. When E(Pc) is specifically inactivated in the CySC lineage, defects occur in both germ cell differentiation and maintenance of germline identity. Furthermore, compromising Tip60 histone acetyltransferase activity in the CySC lineage recapitulates loss-of-function phenotypes of E(Pc), suggesting that Tip60 and E(Pc) act together, consistent with published biochemical data. In summary, our results demonstrate that E(Pc) plays a central role in coordinating differentiation between the two adult stem cell lineages in Drosophila testes.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Biology, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Zhen Shi
- Department of Biology, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
26
|
Amoyel M, Hillion KH, Margolis SR, Bach EA. Somatic stem cell differentiation is regulated by PI3K/Tor signaling in response to local cues. Development 2016; 143:3914-3925. [PMID: 27633989 DOI: 10.1242/dev.139782] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022]
Abstract
Stem cells reside in niches that provide signals to maintain self-renewal, and differentiation is viewed as a passive process that depends on loss of access to these signals. Here, we demonstrate that the differentiation of somatic cyst stem cells (CySCs) in the Drosophila testis is actively promoted by PI3K/Tor signaling, as CySCs lacking PI3K/Tor activity cannot differentiate properly. We find that an insulin peptide produced by somatic cells immediately outside of the stem cell niche acts locally to promote somatic differentiation through Insulin-like receptor (InR) activation. These results indicate that there is a local 'differentiation' niche that upregulates PI3K/Tor signaling in the early daughters of CySCs. Finally, we demonstrate that CySCs secrete the Dilp-binding protein ImpL2, the Drosophila homolog of IGFBP7, into the stem cell niche, which blocks InR activation in CySCs. Thus, we show that somatic cell differentiation is controlled by PI3K/Tor signaling downstream of InR and that the local production of positive and negative InR signals regulates the differentiation niche. These results support a model in which leaving the stem cell niche and initiating differentiation are actively induced by signaling.
Collapse
Affiliation(s)
- Marc Amoyel
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 550 1st Avenue, New York, NY 10016, USA .,Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Kenzo-Hugo Hillion
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Shally R Margolis
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 550 1st Avenue, New York, NY 10016, USA .,Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| |
Collapse
|
27
|
Fuller MT. Differentiation in Stem Cell Lineages and in Life: Explorations in the Male Germ Line Stem Cell Lineage. Curr Top Dev Biol 2016; 116:375-90. [PMID: 26970629 DOI: 10.1016/bs.ctdb.2015.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
I have been privileged to work on cellular differentiation during a great surge of discovery that has revealed the molecular mechanisms and genetic regulatory circuitry that control embryonic development and adult tissue maintenance and repair. Studying the regulation of proliferation and differentiation in the male germ line stem cell lineage has allowed us investigate how the developmental program imposes layers of additional controls on fundamental cellular processes like cell cycle progression and gene expression to give rise to the huge variety of specialized cell types in our bodies. We are beginning to understand how local signals from somatic support cells specify self-renewal versus differentiation in the stem cell niche at the apical tip of the testis. We are discovering the molecular events that block cell proliferation and initiate terminal differentiation at the switch from mitosis to meiosis-a signature event of the germ cell program. Our work is beginning to reveal how the developmental program that sets up the dramatic new cell type-specific transcription program that prepares germ cells for meiotic division and spermatid differentiation is turned on when cells become spermatocytes. I have had the privilege of working with incredible students, postdocs, and colleagues who have discovered, brainstormed, challenged, and refined our science and our ideas of how developmental pathways and cellular mechanisms work together to drive differentiation.
Collapse
Affiliation(s)
- Margaret T Fuller
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
28
|
The novel tumour suppressor Madm regulates stem cell competition in the Drosophila testis. Nat Commun 2016; 7:10473. [PMID: 26792023 PMCID: PMC4736159 DOI: 10.1038/ncomms10473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022] Open
Abstract
Stem cell competition has emerged as a mechanism for selecting fit stem cells/progenitors and controlling tumourigenesis. However, little is known about the underlying molecular mechanism. Here we identify Mlf1-adaptor molecule (Madm), a novel tumour suppressor that regulates the competition between germline stem cells (GSCs) and somatic cyst stem cells (CySCs) for niche occupancy. Madm knockdown results in overexpression of the EGF receptor ligand vein (vn), which further activates EGF receptor signalling and integrin expression non-cell autonomously in CySCs to promote their overproliferation and ability to outcompete GSCs for niche occupancy. Conversely, expressing a constitutively activated form of the Drosophila JAK kinase (hopTum−l) promotes Madm nuclear translocation, and suppresses vn and integrin expression in CySCs that allows GSCs to outcompete CySCs for niche occupancy and promotes GSC tumour formation. Tumour suppressor-mediated stem cell competition presented here could be a mechanism of tumour initiation in mammals. Stem cell competition mediates the balance between tissue homeostasis and tumour formation, but how this occurs is unclear. Here, Singh et al. show that the tumour suppressor Mlfl-adaptor molecule regulates the balance between germline stem cell and somatic cyst stem cell growth in the Drosophila testis niche.
Collapse
|
29
|
De Loof A, Schoofs L, Huybrechts R. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system? Gen Comp Endocrinol 2016; 226:56-71. [PMID: 26707056 DOI: 10.1016/j.ygcen.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022]
Abstract
Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| | - Roger Huybrechts
- Insect Physiology and Molecular Ethology Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| |
Collapse
|
30
|
Yu J, Lan X, Chen X, Yu C, Xu Y, Liu Y, Xu L, Fan HY, Tong C. Protein synthesis and degradation are critical to regulate germline stem cell homeostasis in Drosophila testes. Development 2016; 143:2930-45. [DOI: 10.1242/dev.134247] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/11/2016] [Indexed: 12/14/2022]
Abstract
The homeostasis of self-renewal and differentiation in stem cells is strictly controlled by intrinsic signals and their niche. We conducted a large-scale RNA interference (RNAi) screen in Drosophila testes and identified 221 genes required for germline stem cell (GSC) maintenance or differentiation. Knockdown of these genes in transit-amplifying spermatogonia and cyst cells further revealed various phenotypes. Complex analysis uncovered that many of the identified genes are involved in key steps of protein synthesis and degradation. A group of genes that are required for mRNA splicing and protein translation contributes to both GSC self-renewal and early germ cell differentiation. Loss of genes in protein degradation pathway in cyst cells leads to testis tumor with overproliferated germ cells. Importantly, in the Cullin 4-Ring E3 ubiquitin ligase (CRL4) complex, we identified multiple proteins that are critical to GSC self-renewal. pic/DDB1, the linker protein of CRL4, is not only required for GSC self-renewal in flies but also for maintenance of spermatogonial stem cells (SSCs) in mice.
Collapse
Affiliation(s)
- Jun Yu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xiang Lan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xia Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Chao Yu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Yiwen Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Yujuan Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Lingna Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Chao Tong
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Dorn DC, Dorn A. Stem cell autotomy and niche interaction in different systems. World J Stem Cells 2015; 7:922-944. [PMID: 26240680 PMCID: PMC4515436 DOI: 10.4252/wjsc.v7.i6.922] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
The best known cases of cell autotomy are the formation of erythrocytes and thrombocytes (platelets) from progenitor cells that reside in special niches. Recently, autotomy of stem cells and its enigmatic interaction with the niche has been reported from male germline stem cells (GSCs) in several insect species. First described in lepidopterans, the silkmoth, followed by the gipsy moth and consecutively in hemipterans, foremost the milkweed bug. In both, moths and the milkweed bug, GSCs form finger-like projections toward the niche, the apical cells (homologs of the hub cells in Drosophila). Whereas in the milkweed bug the projection terminals remain at the surface of the niche cells, in the gipsy moth they protrude deeply into the singular niche cell. In both cases, the projections undergo serial retrograde fragmentation with progressing signs of autophagy. In the gipsy moth, the autotomized vesicles are phagocytized and digested by the niche cell. In the milkweed bug the autotomized vesicles accumulate at the niche surface and disintegrate. Autotomy and sprouting of new projections appears to occur continuously. The significance of the GSC-niche interactions, however, remains enigmatic. Our concept on the signaling relationship between stem cell-niche in general and GSC and niche (hub cells and cyst stem cells) in particular has been greatly shaped by Drosophila melanogaster. In comparing the interactions of GSCs with their niche in Drosophila with those in species exhibiting GSC autotomy it is obvious that additional or alternative modes of stem cell-niche communication exist. Thus, essential signaling pathways, including niche-stem cell adhesion (E-cadherin) and the direction of asymmetrical GSC division - as they were found in Drosophila - can hardly be translated into the systems where GSC autotomy was reported. It is shown here that the serial autotomy of GSC projections shows remarkable similarities with Wallerian axonal destruction, developmental axon pruning and dying-back degeneration in neurodegenerative diseases. Especially the hypothesis of an existing evolutionary conserved “autodestruction program” in axons that might also be active in GSC projections appears attractive. Investigations on the underlying signaling pathways have to be carried out. There are two other well known cases of programmed cell autotomy: the enucleation of erythroblasts in the process of erythrocyte maturation and the segregation of thousands of thrombocytes (platelets) from one megakaryocyte. Both progenitor cell types - erythroblasts and megakaryocytes - are associated with a niche in the bone marrow, erythroblasts with a macrophage, which they surround, and the megakaryocytes with the endothelial cells of sinusoids and their extracellular matrix. Although the regulatory mechanisms may be specific in each case, there is one aspect that connects all described processes of programmed cell autotomy and neuronal autodestruction: apoptotic pathways play always a prominent role. Studies on the role of male GSC autotomy in stem cell-niche interaction have just started but are expected to reveal hitherto unknown ways of signal exchange. Spermatogenesis in mammals advance our understanding of insect spermatogenesis. Mammal and insect spermatogenesis share some broad principles, but a comparison of the signaling pathways is difficult. We have intimate knowledge from Drosophila, but of almost no other insect, and we have only limited knowledge from mammals. The discovery of stem cell autotomy as part of the interaction with the niche promises new general insights into the complicated stem cell-niche interdependence.
Collapse
|
32
|
Xu J, Wan P, Wang M, Zhang J, Gao X, Hu B, Han J, Chen L, Sun K, Wu J, Wu X, Huang X, Chen J. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis 2015; 6:e1818. [PMID: 26181199 PMCID: PMC4650729 DOI: 10.1038/cddis.2015.182] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022]
Abstract
In mammals, spermatogonial stem cells (SSCs) arise from early germ cells called gonocytes, which are derived from primordial germ cells during embryogenesis and remain quiescent until birth. After birth, these germ cells migrate from the center of testicular cord, through Sertoli cells, and toward the basement membrane to form the SSC pool and establish the SSC niche architecture. However, molecular mechanisms underlying germ cell migration and niche establishment are largely unknown. Here, we show that the actin disassembly factor actin interacting protein 1 (AIP1) is required in both germ cells and Sertoli cells to regulate this process. Germ cell-specific or Sertoli cell-specific deletion of Aip1 gene each led to significant defects in germ cell migration after postnatal day 4 or 5, accompanied by elevated levels of actin filaments (F-actin) in the affected cells. Furthermore, our data demonstrated that interaction between germ cells and Sertoli cells, likely through E-cadherin-mediated cell adhesion, is critical for germ cells' migration toward the basement membrane. At last, Aip1 deletion in Sertoli cells decreased SSC self-renewal, increased spermatogonial differentiation, but did not affect the expression and secretion levels of growth factors, suggesting that the disruption of SSC function results from architectural changes in the postnatal niche.
Collapse
Affiliation(s)
- J Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - P Wan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - M Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - J Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - X Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - B Hu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - J Han
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - L Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - K Sun
- Bio-X Institute, Shanghai Jiaotong University, Shanghai, China
| | - J Wu
- Bio-X Institute, Shanghai Jiaotong University, Shanghai, China
| | - X Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - X Huang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - J Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Lenhart KF, DiNardo S. Somatic cell encystment promotes abscission in germline stem cells following a regulated block in cytokinesis. Dev Cell 2015; 34:192-205. [PMID: 26143993 DOI: 10.1016/j.devcel.2015.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 03/17/2015] [Accepted: 05/07/2015] [Indexed: 02/05/2023]
Abstract
In many tissues, the stem cell niche must coordinate behavior across multiple stem cell lineages. How this is achieved is largely unknown. We have identified delayed completion of cytokinesis in germline stem cells (GSCs) as a mechanism that regulates the production of stem cell daughters in the Drosophila testis. Through live imaging, we show that a secondary F-actin ring is formed through regulation of Cofilin activity to block cytokinesis progress after contractile ring disassembly. The duration of this block is controlled by Aurora B kinase. Additionally, we have identified a requirement for somatic cell encystment of the germline in promoting GSC abscission. We suggest that this non-autonomous role promotes coordination between stem cell lineages. These findings reveal the mechanisms by which cytokinesis is inhibited and reinitiated in GSCs and why such complex regulation exists within the stem cell niche.
Collapse
Affiliation(s)
- Kari F Lenhart
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
34
|
Newton ILG, Savytskyy O, Sheehan KB. Wolbachia utilize host actin for efficient maternal transmission in Drosophila melanogaster. PLoS Pathog 2015; 11:e1004798. [PMID: 25906062 PMCID: PMC4408098 DOI: 10.1371/journal.ppat.1004798] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
Wolbachia pipientis is a ubiquitous, maternally transmitted bacterium that infects the germline of insect hosts. Estimates are that Wolbachia infect nearly 40% of insect species on the planet, making it the most prevalent infection on Earth. The bacterium, infamous for the reproductive phenotypes it induces in arthropod hosts, has risen to recent prominence due to its use in vector control. Wolbachia infection prevents the colonization of vectors by RNA viruses, including Drosophila C virus and important human pathogens such as Dengue and Chikungunya. Here we present data indicating that Wolbachia utilize the host actin cytoskeleton during oogenesis for persistence within and transmission between Drosophila melanogaster generations. We show that phenotypically wild type flies heterozygous for cytoskeletal mutations in Drosophila profilin (chic(221/+) and chic(1320/+)) or villin (qua(6-396/+)) either clear a Wolbachia infection, or result in significantly reduced infection levels. This reduction of Wolbachia is supported by PCR evidence, Western blot results and cytological examination. This phenotype is unlikely to be the result of maternal loading defects, defects in oocyte polarization, or germline stem cell proliferation, as the flies are phenotypically wild type in egg size, shape, and number. Importantly, however, heterozygous mutant flies exhibit decreased total G-actin in the ovary, compared to control flies and chic(221) heterozygous mutants exhibit decreased expression of profilin. Additionally, RNAi knockdown of profilin during development decreases Wolbachia titers. We analyze evidence in support of alternative theories to explain this Wolbachia phenotype and conclude that our results support the hypothesis that Wolbachia utilize the actin skeleton for efficient transmission and maintenance within Drosophila.
Collapse
Affiliation(s)
- Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Oleksandr Savytskyy
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Kathy B. Sheehan
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
35
|
RhoA/mDia-1/profilin-1 signaling targets microvascular endothelial dysfunction in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2015; 253:669-80. [PMID: 25791356 DOI: 10.1007/s00417-015-2985-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/21/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major cause of blindness in the working-age populations of developed countries, and effective treatments and prevention measures have long been the foci of study. Patients with DR invariably demonstrate impairments of the retinal microvascular endothelium. Many observational and preclinical studies have shown that angiogenesis and apoptosis play crucial roles in the pathogenesis of DR. Increasing evidence suggests that in DR, the small guanosine-5'-triphosphate-binding protein RhoA activates its downstream targets mammalian Diaphanous homolog 1 (mDia-1) and profilin-1, thus affecting important cellular functions, including cell morphology, motility, secretion, proliferation, and gene expression. However, the specific underlying mechanism of disease remains unclear. CONCLUSION This review focuses on the RhoA/mDia-1/profilin-1 signaling pathway that specifically triggers endothelial dysfunction in diabetic patients. Recently, RhoA and profilin-1 signaling has attracted a great deal of attention in the context of diabetes-related research. However, the precise molecular mechanism by which the RhoA/mDia-1/profilin-1 pathway is involved in progression of microvascular endothelial dysfunction (MVED) during DR has not been determined. This review briefly describes each feature of the cascade before exploring the most recent findings on how the pathway may trigger endothelial dysfunction in DR. When the underlying mechanisms are understood, novel therapies seeking to restore the endothelial homeostasis comprised in DR will become possible.
Collapse
|
36
|
Fairchild MJ, Smendziuk CM, Tanentzapf G. A somatic permeability barrier around the germline is essential for Drosophila spermatogenesis. Development 2014; 142:268-81. [PMID: 25503408 DOI: 10.1242/dev.114967] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interactions between the soma and germline are essential for gametogenesis. In the Drosophila testis, differentiating germ cells are encapsulated by two somatic cells that surround the germline throughout spermatogenesis. chickadee (chic), the fly ortholog of Profilin, mediates soma-germline interactions. Knockdown of Chic in the soma results in sterility and severely disrupted spermatogenesis due to defective encapsulation. To study this defect further, we developed a permeability assay to analyze whether the germline is isolated from the surrounding environment by the soma. We find that germline encapsulation by the soma is, by itself, insufficient for the formation of a permeability barrier, but that such a barrier gradually develops during early spermatogenesis. Thus, germline stem cells, gonialblasts and early spermatogonia are not isolated from the outside environment. By late spermatocyte stages, however, a permeability barrier is formed by the soma. Furthermore, we find that, concomitant with formation of the permeability barrier, septate junction markers are expressed in the soma and localize to junctional sites connecting the two somatic cells that surround the germline. Importantly, knockdown of septate junction components also disrupts the permeability barrier. Finally, we show that germline differentiation is delayed when the permeability barrier is compromised. We propose that the permeability barrier around the germline serves an important regulatory function during spermatogenesis by shaping the signaling events that take place between the soma and the germline.
Collapse
Affiliation(s)
- Michael J Fairchild
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Christopher M Smendziuk
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
37
|
Stine RR, Greenspan LJ, Ramachandran KV, Matunis EL. Coordinate regulation of stem cell competition by Slit-Robo and JAK-STAT signaling in the Drosophila testis. PLoS Genet 2014; 10:e1004713. [PMID: 25375180 PMCID: PMC4222695 DOI: 10.1371/journal.pgen.1004713] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/26/2014] [Indexed: 02/01/2023] Open
Abstract
Stem cells in tissues reside in and receive signals from local microenvironments called niches. Understanding how multiple signals within niches integrate to control stem cell function is challenging. The Drosophila testis stem cell niche consists of somatic hub cells that maintain both germline stem cells and somatic cyst stem cells (CySCs). Here, we show a role for the axon guidance pathway Slit-Roundabout (Robo) in the testis niche. The ligand Slit is expressed specifically in hub cells while its receptor, Roundabout 2 (Robo2), is required in CySCs in order for them to compete for occupancy in the niche. CySCs also require the Slit-Robo effector Abelson tyrosine kinase (Abl) to prevent over-adhesion of CySCs to the niche, and CySCs mutant for Abl outcompete wild type CySCs for niche occupancy. Both Robo2 and Abl phenotypes can be rescued through modulation of adherens junction components, suggesting that the two work together to balance CySC adhesion levels. Interestingly, expression of Robo2 requires JAK-STAT signaling, an important maintenance pathway for both germline and cyst stem cells in the testis. Our work indicates that Slit-Robo signaling affects stem cell function downstream of the JAK-STAT pathway by controlling the ability of stem cells to compete for occupancy in their niche.
Collapse
Affiliation(s)
- Rachel R. Stine
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leah J. Greenspan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kapil V. Ramachandran
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Erika L. Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
38
|
Maimon I, Popliker M, Gilboa L. Without children is required for Stat-mediated zfh1 transcription and for germline stem cell differentiation. Development 2014; 141:2602-10. [PMID: 24903753 DOI: 10.1242/dev.109611] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tissue homeostasis is maintained by balancing stem cell self-renewal and differentiation. How surrounding cells support this process has not been entirely resolved. Here we show that the chromatin and telomere-binding factor Without children (Woc) is required for maintaining the association of escort cells (ECs) with germ cells in adult ovaries. This tight association is essential for germline stem cell (GSC) differentiation into cysts. Woc is also required in larval ovaries for the association of intermingled cells (ICs) with primordial germ cells. Reduction in the levels of two other proteins, Stat92E and its target Zfh1, produce phenotypes similar to woc in both larval and adult ovaries, suggesting a molecular connection between these three proteins. Antibody staining and RT-qPCR demonstrate that Zfh1 levels are increased in somatic cells that contact germ cells, and that Woc is required for a Stat92E-mediated upregulation of zfh1 transcription. Our results further demonstrate that overexpression of Zfh1 in ECs can rescue GSC differentiation in woc-deficient ovaries. Thus, Zfh1 is a major Woc target in ECs. Stat signalling in niche cells has been previously shown to maintain GSCs non-autonomously. We now show that Stat92E also promotes GSC differentiation. Our results highlight the Woc-Stat-Zfh1 module as promoting somatic encapsulation of germ cells throughout their development. Each somatic cell type can then provide the germline with the support it requires at that particular stage. Stat is thus a permissive factor, which explains its apparently opposite roles in GSC maintenance and differentiation.
Collapse
Affiliation(s)
- Iris Maimon
- Department of Biological regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Malka Popliker
- Department of Biological regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lilach Gilboa
- Department of Biological regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|