1
|
Ajongbolo AO, Langhans SA. YAP/TAZ-associated cell signaling - at the crossroads of cancer and neurodevelopmental disorders. Front Cell Dev Biol 2025; 13:1522705. [PMID: 39936032 PMCID: PMC11810912 DOI: 10.3389/fcell.2025.1522705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
YAP/TAZ (Yes-associated protein/paralog transcriptional co-activator with PDZ-binding domain) are transcriptional cofactors that are the key and major downstream effectors of the Hippo signaling pathway. Both are known to play a crucial role in defining cellular outcomes, including cell differentiation, cell proliferation, and apoptosis. Aside from the canonical Hippo signaling cascade with the key components MST1/2 (mammalian STE20-like kinase 1/2), SAV1 (Salvador homologue 1), MOB1A/B (Mps one binder kinase activator 1A/B) and LATS1/2 (large tumor suppressor kinase 1/2) upstream of YAP/TAZ, YAP/TAZ activation is also influenced by numerous other signaling pathways. Such non-canonical regulation of YAP/TAZ includes well-known growth factor signaling pathways such as the epidermal growth factor receptor (EGFR)/ErbB family, Notch, and Wnt signaling as well as cell-cell adhesion, cell-matrix interactions and mechanical cues from a cell's microenvironment. This puts YAP/TAZ at the center of a complex signaling network capable of regulating developmental processes and tissue regeneration. On the other hand, dysregulation of YAP/TAZ signaling has been implicated in numerous diseases including various cancers and neurodevelopmental disorders. Indeed, in recent years, parallels between cancer development and neurodevelopmental disorders have become apparent with YAP/TAZ signaling being one of these pathways. This review discusses the role of YAP/TAZ in brain development, cancer and neurodevelopmental disorders with a special focus on the interconnection in the role of YAP/TAZ in these different conditions.
Collapse
Affiliation(s)
- Aderonke O. Ajongbolo
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
- Biological Sciences Graduate Program, University of Delaware, Newark, DE, United States
| | - Sigrid A. Langhans
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
| |
Collapse
|
2
|
Ding CY, Ding YT, Ji H, Wang YY, Zhang X, Yin DM. Genetic labeling reveals spatial and cellular expression pattern of neuregulin 1 in mouse brain. Cell Biosci 2023; 13:79. [PMID: 37147705 PMCID: PMC10161477 DOI: 10.1186/s13578-023-01032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Where the gene is expressed determines the function of the gene. Neuregulin 1 (Nrg1) encodes a tropic factor and is genetically linked with several neuropsychiatry diseases such as schizophrenia, bipolar disorder and depression. Nrg1 has broad functions ranging from regulating neurodevelopment to neurotransmission in the nervous system. However, the expression pattern of Nrg1 at the cellular and circuit levels in rodent brain is not full addressed. METHODS Here we used CRISPR/Cas9 techniques to generate a knockin mouse line (Nrg1Cre/+) that expresses a P2A-Cre cassette right before the stop codon of Nrg1 gene. Since Cre recombinase and Nrg1 are expressed in the same types of cells in Nrg1Cre/+ mice, the Nrg1 expression pattern can be revealed through the Cre-reporting mice or adeno-associated virus (AAV) that express fluorescent proteins in a Cre-dependent way. Using unbiased stereology and fluorescence imaging, the cellular expression pattern of Nrg1 and axon projections of Nrg1-positive neurons were investigated. RESULTS In the olfactory bulb (OB), Nrg1 is expressed in GABAergic interneurons including periglomerular (PG) and granule cells. In the cerebral cortex, Nrg1 is mainly expressed in the pyramidal neurons of superficial layers that mediate intercortical communications. In the striatum, Nrg1 is highly expressed in the Drd1-positive medium spiny neurons (MSNs) in the shell of nucleus accumbens (NAc) that project to substantia nigra pars reticulata (SNr). In the hippocampus, Nrg1 is mainly expressed in granule neurons in the dentate gyrus and pyramidal neurons in the subiculum. The Nrg1-expressing neurons in the subiculum project to retrosplenial granular cortex (RSG) and mammillary nucleus (MM). Nrg1 is highly expressed in the median eminence (ME) of hypothalamus and Purkinje cells in the cerebellum. CONCLUSIONS Nrg1 is broadly expressed in mouse brain, mainly in neurons, but has unique expression patterns in different brain regions.
Collapse
Affiliation(s)
- Chen-Yun Ding
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
- Center of Implant Dentistry, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110002, China
| | - Yan-Ting Ding
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Haifeng Ji
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Affiliated to East China Normal University, Shanghai, 200335, China
| | - Yao-Yi Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110002, China.
- Laboratory Animal Centre, China Medical University, Shenyang, 110001, China.
| | - Dong-Min Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China.
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, 200062, China.
| |
Collapse
|
3
|
Yu J, She Y, Yang L, Zhuang M, Han P, Liu J, Lin X, Wang N, Chen M, Jiang C, Zhang Y, Yuan Y, Ji S. The m 6 A Readers YTHDF1 and YTHDF2 Synergistically Control Cerebellar Parallel Fiber Growth by Regulating Local Translation of the Key Wnt5a Signaling Components in Axons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101329. [PMID: 34643063 PMCID: PMC8596126 DOI: 10.1002/advs.202101329] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/26/2021] [Indexed: 05/23/2023]
Abstract
Messenger RNA m6 A modification is shown to regulate local translation in axons. However, how the m6 A codes in axonal mRNAs are read and decoded by the m6 A reader proteins is still unknown. Here, it is found that the m6 A readers YTHDF1 and YTHDF2 are both expressed in cerebellar granule cells (GCs) and their axons. Knockdown (KD) of YTHDF1 or YTHDF2 significantly increases GC axon growth rates in vitro. By integrating anti-YTHDF1&2 RIP-Seq with the quantitative proteomic analysis or RNA-seq after KD of YTHDF1 or YTHDF2, a group of transcripts which may mediate the regulation of GC axon growth by YTHDFs is identified. Among them, Dvl1 and Wnt5a, encoding the key components of Wnt pathway, are further found to be locally translated in axons, which are controlled by YTHDF1 and YTHDF2, respectively. Specific ablation of Ythdf1 or Ythdf2 in GCs increases parallel fiber growth, promotes synapse formation in cerebellum in vivo, and improves motor coordination ability. Together, this study identifies a mechanism by which the m6 A readers YTHDF1 and YTHDF2 work synergistically on the Wnt5a pathway through regulating local translation in GC axons to control cerebellar parallel fiber development.
Collapse
Affiliation(s)
- Jun Yu
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
- SUSTech‐HKU Joint PhD ProgramSchool of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yuanchu She
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Lixin Yang
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Mengru Zhuang
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Peng Han
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Jianhui Liu
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Xiaoyan Lin
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Nijia Wang
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Mengxian Chen
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Chunxuan Jiang
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Yujia Zhang
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Yujing Yuan
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Sheng‐Jian Ji
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
4
|
Glial Factors Regulating White Matter Development and Pathologies of the Cerebellum. Neurochem Res 2020; 45:643-655. [PMID: 31974933 PMCID: PMC7058568 DOI: 10.1007/s11064-020-02961-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/31/2022]
Abstract
The cerebellum is a brain region that undergoes extremely dynamic growth during perinatal and postnatal development which is regulated by the proper interaction between glial cells and neurons with a complex concert of growth factors, chemokines, cytokines, neurotransmitters and transcriptions factors. The relevance of cerebellar functions for not only motor performance but also for cognition, emotion, memory and attention is increasingly being recognized and acknowledged. Since perturbed circuitry of cerebro-cerebellar trajectories can play a role in many central nervous system pathologies and thereby contribute to neurological symptoms in distinct neurodevelopmental and neurodegenerative diseases, is it the aim with this mini-review to highlight the pathways of glia–glia interplay being involved. The designs of future treatment strategies may hence be targeted to molecular pathways also playing a role in development and disease of the cerebellum.
Collapse
|
5
|
Joshi M, Krishnakumar A. Hypoglycemia causes dysregulation of Neuregulin 1, ErbB receptors, Ki67 in cerebellum and brainstem during diabetes: Implications in motor function. Behav Brain Res 2019; 372:112029. [PMID: 31195035 DOI: 10.1016/j.bbr.2019.112029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 06/08/2019] [Indexed: 12/09/2022]
Abstract
Hypoglycemia induced brain injury poses a major setback to optimal blood glucose regulation during diabetes. It causes irreversible injury in several brain regions culminating in improper function. Neuregulin 1 and ErbB receptors are involved in regeneration during adulthood as well as in glucose homeostasis. We intended to understand the influence of extreme discrepancies in glycemic levels on Neuregulin 1, ErbB receptor subtypes and Ki67 expression in relation to motor deficits as a consequence of cellular dysfunction/degeneration in the cerebellum and brainstem during diabetes. Elevated oxidative stress and compromised antioxidant system havocs cerebellum and brainstem related function. Cellular alteration of Purkinje neurons in the cerebellum and presence of axonal spheroids in the brainstem are suggestive of impairment to neural circuits involved in motor function. Down regulation of Neuregulin 1, ErbB 2, ErbB 3, ErbB 4 and Ki67 expression observed during diabetes and hypoglycemia may critically cause regenerative deficiency in cerebellum. The coincident up regulation of Neuregulin 1, ErbB 2, ErbB 3 and ErbB 4 in brainstem during diabetes is an attempt to maintain regenerative homeostasis to ensure its function. However, hypoglycemic insults results in down regulation of Neuregulin 1, ErbB 4 expression that severely compromises their role in brainstem. Grid walking test confirmed motor impairment during diabetes that showed further deterioration due to hypoglycemic stress. Thus altered expression of Neuregulin 1, ErbB receptor subtypes and Ki67 during diabetes and hypoglycemia contributes to reduced cellular proliferation and deficits in motor function.
Collapse
Affiliation(s)
- Madhavi Joshi
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway Ahmedabad 382481, Gujarat, India.
| | - Amee Krishnakumar
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
6
|
Opposite regulation of Wnt/β-catenin and Shh signaling pathways by Rack1 controls mammalian cerebellar development. Proc Natl Acad Sci U S A 2019; 116:4661-4670. [PMID: 30765517 DOI: 10.1073/pnas.1813244116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The development of the cerebellum depends on intricate processes of neurogenesis, migration, and differentiation of neural stem cells (NSCs) and progenitor cells. Defective cerebellar development often results in motor dysfunctions and psychiatric disorders. Understanding the molecular mechanisms that underlie the complex development of the cerebellum will facilitate the development of novel treatment options. Here, we report that the receptor for activated C kinase (Rack1), a multifaceted signaling adaptor protein, regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Rack1 in mouse NSCs or granule neuron progenitors (GNPs), but not Bergmann glial cells (BGs), causes severe defects in cerebellar morphogenesis, including impaired folia and fissure formation. NSCs and GNPs lacking Rack1 exhibit enhanced Wnt/β-catenin signaling but reduced Sonic hedgehog (Shh) signaling. Simultaneous deletion of β-catenin in NSCs, but not GNPs, significantly rescues the Rack1 mutant phenotype. Interestingly, Rack1 controls the activation of Shh signaling by regulating the ubiquitylation and stability of histone deacetylase 1 (HDAC1)/HDAC2. Suppression of HDAC1/HDAC2 activity in the developing cerebellum phenocopies the Rack1 mutant. Together, these results reveal a previously unknown role of Rack1 in controlling mammalian cerebellar development by opposite regulation of Wnt/β-catenin and Shh signaling pathways.
Collapse
|
7
|
Rush JS, Peterson JL, Ceresa BP. Betacellulin (BTC) Biases the EGFR To Dimerize with ErbB3. Mol Pharmacol 2018; 94:1382-1390. [PMID: 30249613 PMCID: PMC6207915 DOI: 10.1124/mol.118.113399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
There are 13 known endogenous ligands for the epidermal growth factor receptor (EGFR) and its closely related ErbB receptor family members. We previously reported that betacellulin (BTC) is more efficacious than epidermal growth factor (EGF) in mediating corneal wound healing, although the molecular basis for this difference was unknown. For the most part, differences between ligands can be attributed to variability in binding properties, such as the unique rate of association and dissociation, pH sensitivity, and selective binding to individual ErbB family members of each ligand. However, this was not the case for BTC. Despite being better at promoting wound healing via enhanced cell migration, BTC has reduced receptor affinity and weaker induction of EGFR phosphorylation. These data indicate that the response of BTC is not due to enhanced affinity or kinase activity. Receptor phosphorylation and proximity ligation assays indicate that BTC treatment significantly increases ErbB3 phosphorylation and EGFR-ErbB3 heterodimers when compared with EGF treatment. We observed that EGFR-ErbB3 heterodimers contribute to cell migration, because the addition of an ErbB3 antagonist (MM-121) or RNA interference-mediated knockdown of ErbB3 attenuates BTC-stimulated cell migration compared with EGF. Thus, we demonstrate that, despite both ligands binding to the EGFR, BTC biases the EGFR to dimerize with ErbB3 to regulate the biologic response.
Collapse
Affiliation(s)
- Jamie S Rush
- Departments of Pharmacology and Toxicology (J.S.R., J.L.P., B.P.C.) and Visual Science (B.P.C.), University of Louisville, Louisville, Kentucky
| | - Joanne L Peterson
- Departments of Pharmacology and Toxicology (J.S.R., J.L.P., B.P.C.) and Visual Science (B.P.C.), University of Louisville, Louisville, Kentucky
| | - Brian P Ceresa
- Departments of Pharmacology and Toxicology (J.S.R., J.L.P., B.P.C.) and Visual Science (B.P.C.), University of Louisville, Louisville, Kentucky
| |
Collapse
|
8
|
Mizoguchi T, Shimazawa M, Ohuchi K, Kuse Y, Nakamura S, Hara H. Impaired Cerebellar Development in Mice Overexpressing VGF. Neurochem Res 2018; 44:374-387. [PMID: 30460640 DOI: 10.1007/s11064-018-2684-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
VGF nerve growth factor inducible (VGF) is a neuropeptide precursor induced by brain-derived neurotrophic factor and nerve growth factor. VGF is increased in the prefrontal cortex and cerebrospinal fluid in schizophrenia patients. In our previous study, VGF-overexpressing mice exhibited schizophrenia-like behaviors and smaller brain weights. Brain developmental abnormality is one cause of mental illness. Research on brain development is important for discovery of pathogenesis of mental disorders. In the present study, we investigated the role of VGF on cerebellar development. We performed a histological analysis with cerebellar sections of adult and postnatal day 3 mice by Nissl staining. To investigate cerebellar development, we performed immunostaining with antibodies of immature and mature granule cell markers. To understand the mechanism underlying these histological changes, we examined MAPK, Wnt, and sonic hedgehog signaling by Western blot. Finally, we performed rotarod and footprint tests using adult mice to investigate motor function. VGF-overexpressing adult mice exhibited smaller cerebellar sagittal section area. In postnatal day 3 mice, a cerebellar sagittal section area reduction of the whole cerebellum and external granule layer and a decrease in the number of mature granule cells were found in VGF-overexpressing mice. Additionally, the number of proliferative granule cell precursors was lower in VGF-overexpressing mice. Phosphorylation of Trk and Erk1 were increased in the cerebellum of postnatal day 3 VGF-overexpressing mice. Adult VGF-overexpressing mice exhibited motor disability. All together, these findings implicate VGF in the development of cerebellar granule cells via promoting MAPK signaling and motor function in the adult stage.
Collapse
Affiliation(s)
- Takahiro Mizoguchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Kazuki Ohuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Yoshiki Kuse
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
9
|
Leung AW, Li JYH. The Molecular Pathway Regulating Bergmann Glia and Folia Generation in the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2018; 17:42-48. [PMID: 29218544 PMCID: PMC5809181 DOI: 10.1007/s12311-017-0904-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evolution of complex behaviors in higher vertebrates and primates require the development of sophisticated neuronal circuitry and the expansion of brain surface area to accommodate the vast number of neuronal and glial populations. To achieve these goals, the neocortex in primates and the cerebellum in amniotes have developed specialized types of basal progenitors to aid the folding of their cortices. In the cerebellum, Bergmann glia constitute such a basal progenitor population, having a distinctive morphology and playing a critical role in cerebellar corticogenesis. Here, we review recent studies on the induction of Bergmann glia and their crucial role in mediating folding of the cerebellar cortex. These studies uncover a key function of FGF-ERK-ETV signaling cascade in the transformation of Bergmann glia from radial glia in the ventricular zone. Remarkably, in the neocortex, the same signaling axis operates to facilitate the transformation of ventricular radial glia into basal radial glia, a Bergmann glia-like basal progenitor population, which have been implicated in the establishment of neocortical gyri. These new findings draw a striking similarity in the function and ontogeny of the two basal progenitor populations born in distinct brain compartments.
Collapse
Affiliation(s)
- Alan W Leung
- Department of Genetics and Yale Stem Cell Center, Yale University, 10 Amistad Street, New Haven, CT, 06520-8073, USA
| | - James Y H Li
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030-6403, USA.
- Institute for Systems Genomics, University of Connecticut, 400 Farmington Avenue, Farmington, CT, 06030-6403, USA.
| |
Collapse
|
10
|
Transcriptional Regulator ZEB2 Is Essential for Bergmann Glia Development. J Neurosci 2018; 38:1575-1587. [PMID: 29326173 DOI: 10.1523/jneurosci.2674-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/25/2017] [Accepted: 01/05/2018] [Indexed: 11/21/2022] Open
Abstract
Bergmann glia facilitate granule neuron migration during development and maintain the cerebellar organization and functional integrity. At present, molecular control of Bergmann glia specification from cerebellar radial glia is not fully understood. In this report, we show that ZEB2 (aka, SIP1 or ZFHX1B), a Mowat-Wilson syndrome-associated transcriptional regulator, is highly expressed in Bergmann glia, but hardly detectable in astrocytes in the cerebellum. The mice lacking Zeb2 in cerebellar radial glia exhibit severe deficits in Bergmann glia specification, and develop cerebellar cortical lamination dysgenesis and locomotion defects. In developing Zeb2-mutant cerebella, inward migration of granule neuron progenitors is compromised, the proliferation of glial precursors is reduced, and radial glia fail to differentiate into Bergmann glia in the Purkinje cell layer. In contrast, Zeb2 ablation in granule neuron precursors or oligodendrocyte progenitors does not affect Bergmann glia formation, despite myelination deficits caused by Zeb2 mutation in the oligodendrocyte lineage. Transcriptome profiling identified that ZEB2 regulates a set of Bergmann glia-related genes and FGF, NOTCH, and TGFβ/BMP signaling pathway components. Our data reveal that ZEB2 acts as an integral regulator of Bergmann glia formation ensuring maintenance of cerebellar integrity, suggesting that ZEB2 dysfunction in Bergmann gliogenesis might contribute to motor deficits in Mowat-Wilson syndrome.SIGNIFICANCE STATEMENT Bergmann glia are essential for proper cerebellar organization and functional circuitry, however, the molecular mechanisms that control the specification of Bergmann glia remain elusive. Here, we show that transcriptional factor ZEB2 is highly expressed in mature Bergmann glia, but not in cerebellar astrocytes. The mice lacking Zeb2 in cerebellar radial glia, but not oligodendrocyte progenitors or granular neuron progenitors, exhibit severe defects in Bergmann glia formation. The orderly radial scaffolding formed by Bergmann glial fibers critical for cerebellar lamination was not established in Zeb2 mutants, displaying motor behavior deficits. This finding demonstrates a previously unrecognized critical role for ZEB2 in Bergmann glia specification, and points to an important contribution of ZEB2 dysfunction to cerebellar motor disorders in Mowat-Wilson syndrome.
Collapse
|
11
|
Sakamoto I, Ueyama T, Hayashibe M, Nakamura T, Mohri H, Kiyonari H, Shigyo M, Tohda C, Saito N. Roles of Cdc42 and Rac in Bergmann glia during cerebellar corticogenesis. Exp Neurol 2017; 302:57-67. [PMID: 29253508 DOI: 10.1016/j.expneurol.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/18/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
Bergmann glia (BG) are important in the inward type of radial migration of cerebellar granule neurons (CGNs). However, details regarding the functions of Cdc42 and Rac in BG for radial migration of CGN are unknown. To examine the roles of Cdc42 and Rac in BG during cerebellar corticogenesis, mice with a single deletion of Cdc42 or Rac1 and those with double deletions of Cdc42 and Rac1 under control of the glial fibrillary acidic protein (GFAP) promoter: GFAP-Cre;Cdc42flox/flox (Cdc42-KO), GFAP-Cre;Rac1flox/flox (Rac1-KO), and GFAP-Cre; Cdc42flox/flox;Rac1flox/flox (Cdc42/Rac1-DKO) mice, were generated. Both Cdc42-KO and Rac1-KO mice, but more obviously Cdc42-KO mice, had disturbed alignment of BG in the Purkinje cell layer (PCL). We found that Cdc42-KO, but not Rac1-KO, induced impaired radial migration of CGNs in the late phase of radial migration, leading to retention of CGNs in the lower half of the molecular layer (ML). Cdc42-KO, but not Rac1-KO, mice also showed aberrantly aligned Purkinje cells (PCs). These phenotypes were exacerbated in Cdc42/Rac1-DKO mice. Alignment of BG radial fibers in the ML and BG endfeet at the pial surface of the cerebellum evaluated by GFAP staining was disturbed and weak in Cdc42/Rac1-DKO mice, respectively. Our data indicate that Cdc42 and Rac, but predominantly Cdc42, in BG play important roles during the late phase of radial migration of CGNs. We also report here that Cdc42 is involved in gliophilic migration of CGNs, in contrast to Rac, which is more closely connected to regulating neurophilic migration.
Collapse
Affiliation(s)
- Isao Sakamoto
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| | - Masakazu Hayashibe
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Takashi Nakamura
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hiroaki Mohri
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Michiko Shigyo
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Chihiro Tohda
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
12
|
Schwann Cells in Neuromuscular Junction Formation and Maintenance. J Neurosci 2017; 36:9770-81. [PMID: 27656017 DOI: 10.1523/jneurosci.0174-16.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/14/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED The neuromuscular junction (NMJ) is a tripartite synapse that is formed by motor nerve terminals, postjunctional muscle membranes, and terminal Schwann cells (TSCs) that cover the nerve-muscle contact. NMJ formation requires intimate communications among the three different components. Unlike nerve-muscle interaction, which has been well characterized, less is known about the role of SCs in NMJ formation and maintenance. We show that SCs in mice lead nerve terminals to prepatterned AChRs. Ablating SCs at E8.5 (i.e., prior nerve arrival at the clusters) had little effect on aneural AChR clusters at E13.5, suggesting that SCs may not be necessary for aneural clusters. SC ablation at E12.5, a time when phrenic nerves approach muscle fibers, resulted in smaller and fewer nerve-induced AChR clusters; however, SC ablation at E15.5 reduced AChR cluster size but had no effect on cluster density, suggesting that SCs are involved in AChR cluster maturation. Miniature endplate potential amplitude, but not frequency, was reduced when SCs were ablated at E15.5, suggesting that postsynaptic alterations may occur ahead of presynaptic deficits. Finally, ablation of SCs at P30, after NMJ maturation, led to NMJ fragmentation and neuromuscular transmission deficits. Miniature endplate potential amplitude was reduced 3 d after SC ablation, but both amplitude and frequency were reduced 6 d after. Together, these results indicate that SCs are not only required for NMJ formation, but also necessary for its maintenance; and postsynaptic function and structure appeared to be more sensitive to SC ablation. SIGNIFICANCE STATEMENT Neuromuscular junctions (NMJs) are critical for survival and daily functioning. Defects in NMJ formation during development or maintenance in adulthood result in debilitating neuromuscular disorders. The role of Schwann cells (SCs) in NMJ formation and maintenance was not well understood. We genetically ablated SCs during development and after NMJ formation to investigate the consequences of the ablation. This study reveals a critical role of SCs in NMJ formation as well as maintenance.
Collapse
|
13
|
Disrupted hippocampal neuregulin-1/ErbB3 signaling and dentate gyrus granule cell alterations in suicide. Transl Psychiatry 2017; 7:e1161. [PMID: 28675388 PMCID: PMC5538115 DOI: 10.1038/tp.2017.132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
Neuregulin-1 (NRG1) and ErbB receptors have been associated with psychopathology, and NRG1-ErbB3 signaling has been shown to increase hippocampal neurogenesis and induce antidepressant-like effects. In this study, we aimed to determine whether deficits in NRG1 or ErbBs might be present in the hippocampus of suicide completers. In well-characterized postmortem hippocampal samples from suicides and matched sudden-death controls, we assessed gene expression and methylation using qRT-PCR and EpiTYPER, respectively. Moreover, in hippocampal tissues stained with cresyl violet, stereology was used to quantify numbers of granule cells and of glia. Granule cell body size was examined with a nucleator probe, and granule cell layer volume with a Cavalieri probe. Unmedicated suicides showed sharply decreased hippocampal ErbB3 expression and decreased numbers of ErbB3-expressing granule cell neurons in the anterior dentate gyrus; a phenomenon seemingly reversed by antidepressant treatment. Furthermore, we found ErbB3 expression to be significantly decreased in the dentate gyrus of adult mice exposed to chronic social defeat stress. Taken together, these results reveal novel suicidal endophenotypes in the hippocampus, as well as a putative etiological mechanism underlying suicidality, and suggest that antidepressant or NRG1 treatment may reverse a potential deficit in anterior dentate gyrus granule cell neurons in individuals at risk of dying by suicide.
Collapse
|
14
|
Leto K, Arancillo M, Becker EBE, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrick DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, Parmigiani E, Schilling K, Sekerková G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingate RJT, Hawkes R. Consensus Paper: Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2016; 15:789-828. [PMID: 26439486 PMCID: PMC4846577 DOI: 10.1007/s12311-015-0724-2] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.
Collapse
Affiliation(s)
- Ketty Leto
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy.
| | - Marife Arancillo
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Esther B E Becker
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN, 37232, USA
| | - Baojin Ding
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - William B Dobyns
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
- Department of Pediatrics, Genetics Division, University of Washington, Seattle, WA, USA
| | - Isabelle Dusart
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Institut de Biologie Paris Seine, France, 75005, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR8246, INSERM U1130, Neuroscience Paris Seine, France, 75005, Paris, France
| | - Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, 10065, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daniel L Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Salvador Martinez
- Department Human Anatomy, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Karl Schilling
- Anatomie und Zellbiologie, Anatomisches Institut, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Gabriella Sekerková
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy V Sillitoe
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Constantino Sotelo
- Institut de la Vision, UPMC Université de Paris 06, Paris, 75012, France
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Annika Wefers
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Richard J T Wingate
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4NI, AB, Canada
| |
Collapse
|
15
|
Effects of neuregulin-1 administration on neurogenesis in the adult mouse hippocampus, and characterization of immature neurons along the septotemporal axis. Sci Rep 2016; 6:30467. [PMID: 27469430 PMCID: PMC4965755 DOI: 10.1038/srep30467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022] Open
Abstract
Adult hippocampal neurogenesis is associated with learning and affective behavioural regulation. Its diverse functionality is segregated along the septotemporal axis from the dorsal to ventral hippocampus. However, features distinguishing immature neurons in these regions have yet to be characterized. Additionally, although we have shown that administration of the neurotrophic factor neuregulin-1 (NRG1) selectively increases proliferation and overall neurogenesis in the mouse ventral dentate gyrus (DG), likely through ErbB3, NRG1's effects on intermediate neurogenic stages in immature neurons are unknown. We examined whether NRG1 administration increases DG ErbB3 phosphorylation. We labeled adultborn cells using BrdU, then administered NRG1 to examine in vivo neurogenic effects on immature neurons with respect to cell survival, morphology, and synaptogenesis. We also characterized features of immature neurons along the septotemporal axis. We found that neurogenic effects of NRG1 are temporally and subregionally specific to proliferation in the ventral DG. Particular morphological features differentiate immature neurons in the dorsal and ventral DG, and cytogenesis differed between these regions. Finally, we identified synaptic heterogeneity surrounding the granule cell layer. These results indicate neurogenic involvement of NRG1-induced antidepressant-like behaviour is particularly associated with increased ventral DG cell proliferation, and identify novel distinctions between dorsal and ventral hippocampal neurogenic development.
Collapse
|
16
|
Perez-Garcia CG. ErbB4 in Laminated Brain Structures: A Neurodevelopmental Approach to Schizophrenia. Front Cell Neurosci 2015; 9:472. [PMID: 26733804 PMCID: PMC4683445 DOI: 10.3389/fncel.2015.00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/19/2015] [Indexed: 01/11/2023] Open
Abstract
The susceptibility genes for schizophrenia Neuregulin-1 (NRG1) and ErbB4 have critical functions during brain development and in the adult. Alterations in the ErbB4 signaling pathway cause a variety of neurodevelopmental defects including deficiencies in neuronal migration, synaptic plasticity, and myelination. I have used the ErbB4-/- HER4heart KO mice to study the neurodevelopmental insults associated to deficiencies in the NRG1-ErbB4 signaling pathway and their potential implication with brain disorders such as schizophrenia, a chronic psychiatric disease affecting 1% of the population worldwide. ErbB4 deletion results in an array of neurodevelopmental deficits that are consistent with a schizophrenic model. First, similar defects appear in multiple brain structures, from the cortex to the cerebellum. Second, these defects affect multiple aspects of brain development, from deficits in neuronal migration to impairments in excitatory/inhibitory systems, including reductions in brain volume, cortical and cerebellar heterotopias, alterations in number and distribution of specific subpopulations of interneurons, deficiencies in the astrocytic and oligodendrocytic lineages, and additional insults in major brain structures. This suggests that alterations in specific neurodevelopmental genes that play similar functions in multiple neuroanatomical structures might account for some of the symptomatology observed in schizophrenic patients, such as defects in cognition. ErbB4 mutation uncovers flaws in brain development that are compatible with a neurodevelopmental model of schizophrenia, and it establishes a comprehensive model to study the basis of the disorder before symptoms are detected in the adult.
Collapse
|
17
|
Loss of the neuron-specific F-box protein FBXO41 models an ataxia-like phenotype in mice with neuronal migration defects and degeneration in the cerebellum. J Neurosci 2015; 35:8701-17. [PMID: 26063905 DOI: 10.1523/jneurosci.2133-14.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cerebellum is crucial for sensorimotor coordination. The cerebellar architecture not only requires proper development but also long-term integrity to ensure accurate functioning. Developmental defects such as impaired neuronal migration or neurodegeneration are thus detrimental to the cerebellum and can result in movement disorders including ataxias. In this study, we identify FBXO41 as a novel CNS-specific F-box protein that localizes to the centrosome and the cytoplasm of neurons and demonstrate that cytoplasmic FBXO41 promotes neuronal migration. Interestingly, deletion of the FBXO41 gene results in a severely ataxic gait in mice, which show delayed neuronal migration of granule neurons in the developing cerebellum in addition to deformities and degeneration of the mature cerebellum. We show that FBXO41 is a critical factor, not only for neuronal migration in the cerebellum, but also for its long-term integrity.
Collapse
|