1
|
Li M, Böke E, Yang J. Centrosome-assisted assembly of the Balbiani body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637656. [PMID: 39990491 PMCID: PMC11844453 DOI: 10.1101/2025.02.11.637656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The Balbiani body (Bb), which was discovered about 170 years ago, is a membraneless organelle in the oocyte in most species. In organisms like Xenopus and Zebrafish, Bb accumulates mitochondria, endoplasmic reticulum (ER), and germline determinants and regulates the proper localization of germline determinants. The Bb forms around the centrosome in the oocyte during early oogenesis. The mechanism behind its assembly has gained attention only very recently. Here, we report that overexpression of the germ plasm matrix protein Xvelo leads to the formation of a 'Bb-like' structure in somatic cells. The 'Bb-like' structure assembles around the centrosome and selectively recruits mitochondria, ER, and germline determinants. Taking advantage of this system, we investigated the roles of centrosome components on the assembly of Xvelo. Our results reveal that multiple components of the centrosome, including Sas6, Cenexin, and DZIP1, interact with Xvelo and promote its assembly, with Sas6 exhibiting the most prominent activity. Importantly, knocking down Sas6, Cenexin, and DZIP1 individually or in combination resulted in reduced Xvelo aggregates. Taken together, our work suggests that the centrosome may function as a nucleation center to promote the initiation of Xvelo assembly, resulting in the formation of the Bb around the centrosome.
Collapse
|
2
|
Qin G, Fang S, Song X, Zhang L, Huang J, Huang Y, Han Y. Immunisation of the somatostatin gene alters hypothalamic-pituitary-liver gene expressions and enhances growth in Dazu black goats. Anim Biosci 2024; 37:1987-1999. [PMID: 38938026 PMCID: PMC11541029 DOI: 10.5713/ab.24.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/19/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE Somatostatin (SS) plays important regulatory roles in animal growth and reproduction by affecting the synthesis and secretion of growth hormone (GH). However, the mechanism by which SS regulates growth and development in goats is still unclear. METHODS In this study, we randomly selected eight 7-month-old Dazu black goats (DBGs) of similar body weight and equally assigned four bucks as the immunised and negative control groups. The immunised group received the Salmonella typhi attenuated vaccine X9241 (ptCS/2SS-asd) orally, whilst the negative control group received the empty vector vaccine X9241 (pVAX-asd) orally. RESULTS The SS concentration in the serum of goats in the immunised group was significantly lower than that in the negative control group, and the daily gain was significantly higher (p<0.05). SS-14 DNA vaccine immunisation resulted in significantly higher concentrations of growth-related hormones such as GH-releasing hormone and insulin growth factor 1 (IGF-1) in the serum of goats (p<0.05). RNA-seq analysis of hypothalamus of oral SS-14 DNA vaccine and negative control DBGs identified 31 differentially expressed genes (DEGs). Pituitary gland identified 164 DEGs. A total of 246 DEGs were detected in the liver by RNA-seq. Gene ontology of DEGs was enriched in mitochondrial envelope, extracellular region, receptor binding and cell proliferation. The biological metabolic pathways associated with DEGs were explored by Kyoto encyclopedia of genes and genomes analysis. DEGs were associated with metabolic pathways, oxidative phosphorylation, vitamin digestion and absorption and galactose metabolism. These candidate genes (e.g. DGKK, CYTB, DUSP1, and LRAT) may provide references for exploring the molecular mechanisms by which SS promotes growth and development. CONCLUSION Overall, these results demonstrated that the SS DNA vaccine enhanced the growth of DBGs by altering growth-related hormone concentrations and regulating the expression of growth-related genes in the hypothalamic-pituitary-liver axis.
Collapse
Affiliation(s)
- Ge Qin
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing 400715,
China
| | - Shiyong Fang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing 400715,
China
| | - Xianqing Song
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing 400715,
China
| | - Li Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing 400715,
China
| | - Jiazhuo Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing 400715,
China
| | - Yongfu Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing 400715,
China
| | - Yanguo Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing 400715,
China
| |
Collapse
|
3
|
Divyanshi, Yang J. Germ plasm dynamics during oogenesis and early embryonic development in Xenopus and zebrafish. Mol Reprod Dev 2024; 91:e23718. [PMID: 38126950 PMCID: PMC11190040 DOI: 10.1002/mrd.23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/23/2023]
Abstract
Specification of the germline and its segregation from the soma mark one of the most crucial events in the lifetime of an organism. In different organisms, this specification can occur through either inheritance or inductive mechanisms. In species such as Xenopus and zebrafish, the specification of primordial germ cells relies on the inheritance of maternal germline determinants that are synthesized and sequestered in the germ plasm during oogenesis. In this review, we discuss the formation of the germ plasm, how germline determinants are recruited into the germ plasm during oogenesis, and the dynamics of the germ plasm during oogenesis and early embryonic development.
Collapse
Affiliation(s)
- Divyanshi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Jing Yang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
4
|
Fu J, Li L, Dai C, Zhang Y, Hu Y, Hu C, Li H. Transcriptomic analysis of Mythimna separata ovaries and identification of genes involved in reproduction. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY PART D: GENOMICS AND PROTEOMICS 2023; 46:101075. [PMID: 37031498 DOI: 10.1016/j.cbd.2023.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The migratory insect Mythimna separata is a major pest of grain crops in Asia. Unfortunately, the molecular mechanisms that control and regulate reproduction in this species remain unclear. In this study, transcriptome sequencing was utilized to identify genes associated with ovary development and oogenesis. Clean sequences totaling 117.71 Gb were assembled into 178,534 unigenes with a mean length of 647.37 bp and N50 length of 837 bp. Transcriptome analysis showed that 7921 unigenes were significantly expressed in ovaries with 4403 and 3518 unigenes up- and down-regulated, respectively. Enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes database suggested that 729 differentially expressed genes were significantly enriched in the top 20 pathways (q-values <0.05). Twenty genes were associated with ovary development and oogenesis and included lipases, Nanos, small heat shock proteins (sHsps) and histones; these were further verified by qRT-PCR and may play essential roles in M. separata reproduction. Collectively, our findings reveal underlying mechanisms of M.separata reproduction and may lead to RNAi-based management strategies targeting reproductive physiology.
Collapse
|
5
|
Konduktorova VV, Luchinskaya NN, Belyavsky AV. Expression of the Germes Germ Plasm Gene in Follicular Cells of X. laevis Oocytes. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Hansen CL, Pelegri F. Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Front Cell Dev Biol 2021; 9:730332. [PMID: 34604230 PMCID: PMC8481613 DOI: 10.3389/fcell.2021.730332] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The differentiation of primordial germ cells (PGCs) occurs during early embryonic development and is critical for the survival and fitness of sexually reproducing species. Here, we review the two main mechanisms of PGC specification, induction, and preformation, in the context of four model vertebrate species: mouse, axolotl, Xenopus frogs, and zebrafish. We additionally discuss some notable molecular characteristics shared across PGC specification pathways, including the shared expression of products from three conserved germline gene families, DAZ (Deleted in Azoospermia) genes, nanos-related genes, and DEAD-box RNA helicases. Then, we summarize the current state of knowledge of the distribution of germ cell determination systems across kingdom Animalia, with particular attention to vertebrate species, but include several categories of invertebrates - ranging from the "proto-vertebrate" cephalochordates to arthropods, cnidarians, and ctenophores. We also briefly highlight ongoing investigations and potential lines of inquiry that aim to understand the evolutionary relationships between these modes of specification.
Collapse
Affiliation(s)
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
7
|
Na H, Park J, Jeon H, Jin S, Choe CP. Pharyngeal endoderm expression of nanos1 is dispensable for craniofacial development. Gene Expr Patterns 2021; 41:119202. [PMID: 34389512 DOI: 10.1016/j.gep.2021.119202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
Nanos proteins are essential for developing primordial germ cells (PGCs) in both invertebrates and vertebrates. In invertebrates, also contribute to the patterning of the anterior-posterior axis of the embryo and the neural development. In vertebrates, however, besides the role of Nanos proteins in PGC development, the biological functions of the proteins in normal development have not yet been identified. Here, we analyzed the expression and function of nanos1 during craniofacial development in zebrafish. nanos1 was expressed in the pharyngeal endoderm and endodermal pouches essential for the development of facial skeletons and endocrine glands in the vertebrate head. However, no craniofacial defects, such as abnormal pouches, hypoplasia of the thymus, malformed facial skeletons, have been found in nanos1 knockout animals. The normal craniofacial development of nanos1 knockout animals is unlikely a consequence of the genetic redundancy of Nanos1 with Nanos2 or Nanos3 or a result of the genetic compensation for the loss of Nanos1 by Nanos2 or Nanos3 because the expression of nanos2 and nanos3 was rarely seen in the pharyngeal endoderm and endodermal pouches in wild-type and nanos1 mutant animals during craniofacial development. Our findings suggest that nanos1 expression in the pharyngeal endoderm might be dispensable for craniofacial development in zebrafish.
Collapse
Affiliation(s)
- Hyejee Na
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jangwon Park
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Haewon Jeon
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Sil Jin
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Chong Pyo Choe
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
8
|
Fare CM, Villani A, Drake LE, Shorter J. Higher-order organization of biomolecular condensates. Open Biol 2021; 11:210137. [PMID: 34129784 PMCID: PMC8205532 DOI: 10.1098/rsob.210137] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A guiding principle of biology is that biochemical reactions must be organized in space and time. One way this spatio-temporal organization is achieved is through liquid–liquid phase separation (LLPS), which generates biomolecular condensates. These condensates are dynamic and reactive, and often contain a complex mixture of proteins and nucleic acids. In this review, we discuss how underlying physical and chemical processes generate internal condensate architectures. We then outline the diverse condensate architectures that are observed in biological systems. Finally, we discuss how specific condensate organization is critical for specific biological functions.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Biochemistry and Biophysics, and.,Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - James Shorter
- Department of Biochemistry and Biophysics, and.,Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Abstract
RNA localization is a key biological strategy for organizing the cytoplasm and generating both cellular and developmental polarity. During RNA localization, RNAs are targeted asymmetrically to specific subcellular destinations, resulting in spatially and temporally restricted gene expression through local protein synthesis. First discovered in oocytes and embryos, RNA localization is now recognized as a significant regulatory strategy for diverse RNAs, both coding and non-coding, in a wide range of cell types. Yet, the highly polarized cytoplasm of the oocyte remains a leading model to understand not only the principles and mechanisms underlying RNA localization, but also links to the formation of biomolecular condensates through phase separation. Here, we discuss both RNA localization and biomolecular condensates in oocytes with a particular focus on the oocyte of the frog, Xenopus laevis.
Collapse
Affiliation(s)
- Sarah E Cabral
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
10
|
Mayya VK, Duchaine TF. Ciphers and Executioners: How 3'-Untranslated Regions Determine the Fate of Messenger RNAs. Front Genet 2019; 10:6. [PMID: 30740123 PMCID: PMC6357968 DOI: 10.3389/fgene.2019.00006] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
The sequences and structures of 3'-untranslated regions (3'UTRs) of messenger RNAs govern their stability, localization, and expression. 3'UTR regulatory elements are recognized by a wide variety of trans-acting factors that include microRNAs (miRNAs), their associated machinery, and RNA-binding proteins (RBPs). In turn, these factors instigate common mechanistic strategies to execute the regulatory programs encoded by 3'UTRs. Here, we review classes of factors that recognize 3'UTR regulatory elements and the effector machineries they guide toward mRNAs to dictate their expression and fate. We outline illustrative examples of competitive, cooperative, and coordinated interplay such as mRNA localization and localized translation. We further review the recent advances in the study of mRNP granules and phase transition, and their possible significance for the functions of 3'UTRs. Finally, we highlight some of the most recent strategies aimed at deciphering the complexity of the regulatory codes of 3'UTRs, and identify some of the important remaining challenges.
Collapse
Affiliation(s)
| | - Thomas F. Duchaine
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Xu R, Li Q, Yu H, Kong L. Oocyte maturation and origin of the germline as revealed by the expression of Nanos-like in the Pacific oyster Crassostrea gigas. Gene 2018; 663:41-50. [PMID: 29660519 DOI: 10.1016/j.gene.2018.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/07/2018] [Accepted: 04/09/2018] [Indexed: 01/19/2023]
Abstract
Nanos gene plays an important role in germline development in animals. However, the molecular mechanisms involved in germline development in Mollusca, the second largest animal phylum, are still poorly understood. Here we identified the Nanos orthologue from the Pacific oyster Crassostrea gigas (Cg-Nanos-like), and investigated the expression patterns of Nanos during gametogenesis and embryogenesis in C. gigas. Tissue expression analysis showed that Cg-Nanos-like was specifically expressed in female gonads. During the reproductive cycle, the expression of Cg-Nanos-like mRNA increased matching the seasonal development of the ovarian tissues in diploids, while the expression levels were significantly lower in the ovaries of sterile triploids compared to diploids. High expression of Cg-Nanos-like transcripts were detected in early embryonic stages, while the expression significantly dropped at gastrulation and was barely detectable in veliger stages. In situ hybridization showed that Cg-Nanos-like was expressed at different stages of developing oocytes, whereas positive signals were detected only in spermatogonia during the spermatogenic cycle. These findings indicated that Cg-Nanos-like was involved in the development of germ cells, and maintenance of oocyte maturation. In early embryogenesis, the transcripts were broadly expressed; following gastrulation, the expression was restricted to two cell clumps, which might be the putative primordial germ cells (PGCs) or their precursors. Based on the results, the formation of the PGCs in C. gigas was consistent with the model of transition from epigenesis to preformation.
Collapse
Affiliation(s)
- Rui Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
12
|
De Keuckelaere E, Hulpiau P, Saeys Y, Berx G, van Roy F. Nanos genes and their role in development and beyond. Cell Mol Life Sci 2018; 75:1929-1946. [PMID: 29397397 PMCID: PMC11105394 DOI: 10.1007/s00018-018-2766-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
The hallmark of Nanos proteins is their typical (CCHC)2 zinc finger motif (zf-nanos). Animals have one to four nanos genes. For example, the fruit fly and demosponge have only one nanos gene, zebrafish and humans have three, and Fugu rubripes has four. Nanos genes are mainly known for their evolutionarily preserved role in germ cell survival and pluripotency. Nanos proteins have been reported to bind the C-terminal RNA-binding domain of Pumilio to form a post-transcriptional repressor complex. Several observations point to a link between the miRNA-mediated repression complex and the Nanos/Pumilio complex. Repression of the E2F3 oncogene product is, indeed, mediated by cooperation between the Nanos/Pumilio complex and miRNAs. Another important interaction partner of Nanos is the CCR4-NOT deadenylase complex. Besides the tissue-specific contribution of Nanos proteins to normal development, their ectopic expression has been observed in several cancer cell lines and various human cancers. An inverse correlation between the expression levels of human Nanos1 and Nanos3 and E-cadherin was observed in several cancer cell lines. Loss of E-cadherin, an important cell-cell adhesion protein, contributes to tumor invasion and metastasis. Overexpression of Nanos3 induces epithelial-mesenchymal transition in lung cancer cell lines partly by repressing E-cadherin. Other than some most interesting data from Nanos knockout mice, little is known about mammalian Nanos proteins, and further research is needed. In this review, we summarize the main roles of Nanos proteins and discuss the emerging concept of Nanos proteins as oncofetal antigens.
Collapse
Affiliation(s)
- Evi De Keuckelaere
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Paco Hulpiau
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, 9000, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frans van Roy
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
13
|
Kodama M, Yoshida M, Endo M, Kobayashi T, Oike A, Yasumasu S, Nakamura M. Nanos3 of the frog Rana rugosa: Molecular cloning and characterization. Dev Growth Differ 2018; 60:112-120. [PMID: 29405266 DOI: 10.1111/dgd.12421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/03/2017] [Accepted: 12/08/2017] [Indexed: 11/30/2022]
Abstract
Nanos is expressed in the primordial germ cells (PGCs) and also the germ cells of a variety of organisms as diverse as Drosophila, medaka fish, Xenopus and mouse. In Nanos3-deficient mice, PGCs fail to incorporate into the gonad and the size of the testis and ovary is thereby dramatically reduced. To elucidate the role of Nanos in an amphibian species, we cloned Nanos3 cDNA from the testis of the R. rugosa frog. RT-PCR analysis showed strong expression of Nanos3 mRNA in the testis of adult R. rugosa frogs, but expression was not sexually dimorphic during gonadal differentiation. In Nanos3-knockdown tadpoles produced by the CRISPR/Cas9 system, the number of germ cells decreased dramatically in the gonads of both male and female tadpoles before sex determination and thereafter. This was confirmed by three dimensional imaging of wild-type and Nanos3 knockdown gonads using serial sections immunostained for Vasa, a marker specific to germ cells. Taken together, these results suggest that Nanos3 protein function is conserved between R. rugosa and mouse.
Collapse
Affiliation(s)
- Maho Kodama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| | - Madoka Yoshida
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| | - Masami Endo
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| | - Tohru Kobayashi
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Akira Oike
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| | - Shigeki Yasumasu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Masahisa Nakamura
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| |
Collapse
|
14
|
Sugimori S, Kumata Y, Kobayashi S. Maternal Nanos-Dependent RNA Stabilization in the Primordial Germ Cells of Drosophila Embryos. Dev Growth Differ 2017; 60:63-75. [PMID: 29278271 DOI: 10.1111/dgd.12414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 11/29/2022]
Abstract
Nanos (Nos) is an evolutionary conserved protein expressed in the germline of various animal species. In Drosophila, maternal Nos protein is essential for germline development. In the germline progenitors, or the primordial germ cells (PGCs), Nos binds to the 3' UTR of target mRNAs to repress their translation. In contrast to this prevailing role of Nos, here we report that the 3' UTR of CG32425 mRNA mediates Nos-dependent RNA stabilization in PGCs. We found that the level of mRNA expressed from a reporter gene fused to the CG32425 3' UTR was significantly reduced in PGCs lacking maternal Nos (nos PGCs) as compared with normal PGCs. By deleting the CG32425 3' UTR, we identified the region required for mRNA stabilization, which includes Nos-binding sites. In normal embryos, CG32425 mRNA was maternally supplied into PGCs and remained in this cell type during embryogenesis. However, as expected from our reporter assay, the levels of CG32425 mRNA and its protein product expressed in nos PGCs were lower than in normal PGCs. Thus, we propose that Nos protein has dual functions in translational repression and stabilization of specific RNAs to ensure proper germline development.
Collapse
Affiliation(s)
- Seiko Sugimori
- Life Science Center of Tsukuba Advanced Research Alliance (TARA Center), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yuji Kumata
- Developmental Genetics, National Institute for Basic Biology, Higashiyama, Okazaki, 444-8787, Japan
| | - Satoru Kobayashi
- Life Science Center of Tsukuba Advanced Research Alliance (TARA Center), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
15
|
Aguero T, Jin Z, Chorghade S, Kalsotra A, King ML, Yang J. Maternal Dead-end 1 promotes translation of nanos1 by binding the eIF3 complex. Development 2017; 144:3755-3765. [PMID: 28870987 DOI: 10.1242/dev.152611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
In the developing embryo, primordial germ cells (PGCs) represent the exclusive progenitors of the gametes, and their loss results in adult infertility. During early development, PGCs are exposed to numerous signals that specify somatic cell fates. To prevent somatic differentiation, PGCs must transiently silence their genome, an early developmental process that requires Nanos activity. However, it is unclear how Nanos translation is regulated in developing embryos. We report here that translation of nanos1 after fertilization requires Dead-end 1 (Dnd1), a vertebrate-specific germline RNA-binding protein. We provide evidence that Dnd1 protein, expression of which is low in oocytes, but increases dramatically after fertilization, directly interacts with, and relieves the inhibitory function of eukaryotic initiation factor 3f, a repressive component in the 43S preinitiation complex. This work uncovers a novel translational regulatory mechanism that is fundamentally important for germline development.
Collapse
Affiliation(s)
- Tristan Aguero
- Department of Cell Biology, University of Miami, Miami, FL 33136, USA
| | - Zhigang Jin
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Sandip Chorghade
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami, Miami, FL 33136, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| |
Collapse
|
16
|
Sun ZH, Wang Y, Lu WJ, Li Z, Liu XC, Li SS, Zhou L, Gui JF. Divergent Expression Patterns and Function Implications of Four nanos Genes in a Hermaphroditic Fish, Epinephelus coioides. Int J Mol Sci 2017; 18:E685. [PMID: 28333083 PMCID: PMC5412271 DOI: 10.3390/ijms18040685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/12/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Multiple nanos genes have been characterized in several fishes, but the functional implications of their various expression patterns remain unclear. In this study, we identified and characterized four nanos genes from a hermaphroditic fish orange-spotted grouper, Epinephelus coioides. Ecnanos1a and Ecnanos1b show divergent expression patterns, and the dynamic expression change of Ecnanos1a in pituitaries during sex change is associated with testis differentiation and spermatogenesis. Ecnanos2 and Ecnanos3 might be germline stem cells (GSCs) and primordial germ cells (PGCs)-specific markers, respectively. Significantly, Ecnanos3 3'-untranslated region (UTR) is necessary for PGC specific expression, where a non-canonical "GCACGTTT" sequence is required for miR-430-mediated repression of Ecnanos3 RNA. Furthermore, grouper Dead end (Dnd) can relieve miR-430 repression in PGCs by associating with a 23 bp U-rich region (URR) in Ecnanos3 3'-UTR. The current study revealed the functional association of multiple nanos genes with PGC formation and germ cell development in orange-spotted grouper, and opened up new possibilities for developing biotechnologies through utilizing the associations between Ecnanos3 and PGCs or between Ecnanos2 and GSCs in the hermaphroditic fish.
Collapse
Affiliation(s)
- Zhi-Hui Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiao-Chun Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, The Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Shui-Sheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, The Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
17
|
Mechanisms of Vertebrate Germ Cell Determination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:383-440. [PMID: 27975276 DOI: 10.1007/978-3-319-46095-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two unique characteristics of the germ line are the ability to persist from generation to generation and to retain full developmental potential while differentiating into gametes. How the germ line is specified that allows it to retain these characteristics within the context of a developing embryo remains unknown and is one focus of current research. Germ cell specification proceeds through one of two basic mechanisms: cell autonomous or inductive. Here, we discuss how germ plasm driven germ cell specification (cell autonomous) occurs in both zebrafish and the frog Xenopus. We describe the segregation of germ cells during embryonic development of solitary and colonial ascidians to provide an evolutionary context to both mechanisms. We conclude with a discussion of the inductive mechanism as exemplified by both the mouse and axolotl model systems. Regardless of mechanism, several general themes can be recognized including the essential role of repression and posttranscriptional regulation of gene expression.
Collapse
|
18
|
King ML. Maternal messages to live by: a personal historical perspective. Genesis 2017; 55:10.1002/dvg.23007. [PMID: 28095642 PMCID: PMC5276792 DOI: 10.1002/dvg.23007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
In the 1980s, the study of localized maternal mRNAs was just emerging as a new research area. Classic embryological studies had linked the inheritance of cytoplasmic domains with specific cell lineages, but the underlying molecular nature of these putative determinants remained a mystery. The model system Xenopus would play a pivotal role in the progress of this new field. In fact, the first localized maternal mRNA to be identified and cloned from any organism was Xenopus vg1, a TGF-beta family member. This seminal finding opened the door to many subsequent studies focused on how RNAs are localized and what functions they had in development. As the field moves into the future, Xenopus remains the system of choice for studies identifying RNA/protein transport particles and maternal RNAs through RNA-sequencing.
Collapse
Affiliation(s)
- Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
19
|
Localization in Oogenesis of Maternal Regulators of Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:173-207. [DOI: 10.1007/978-3-319-46095-6_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Oulhen N, Wessel GM. Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin. Dev Biol 2016; 418:146-156. [PMID: 27424271 DOI: 10.1016/j.ydbio.2016.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 06/21/2016] [Accepted: 07/12/2016] [Indexed: 01/18/2023]
Abstract
Nanos is a translational regulator required for the survival and maintenance of primordial germ cells. In the sea urchin, Strongylocentrotus purpuratus (Sp), Nanos 2 mRNA is broadly transcribed but accumulates specifically in the small micromere (sMic) lineage, in part because of the 3'UTR element GNARLE leads to turnover in somatic cells but retention in the sMics. Here we found that the Nanos 2 protein is also selectively stabilized; it is initially translated throughout the embryo but turned over in the future somatic cells and retained only in the sMics, the future germ line in this animal. This differential stability of Nanos protein is dependent on the open reading frame (ORF), and is independent of the sumoylation and ubiquitylation pathways. Manipulation of the ORF indicates that 68 amino acids in the N terminus of the Nanos protein are essential for its stability in the sMics whereas a 45 amino acid element adjacent to the zinc fingers targets its degradation. Further, this regulation of Nanos protein is cell autonomous, following formation of the germ line. These results are paradigmatic for the unique presence of Nanos in the germ line by a combination of selective RNA retention, distinctive translational control mechanisms (Oulhen et al., 2013), and now also by defined Nanos protein stability.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA.
| |
Collapse
|
21
|
Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle. Sci Rep 2016; 6:24983. [PMID: 27117862 PMCID: PMC4846992 DOI: 10.1038/srep24983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/04/2016] [Indexed: 12/27/2022] Open
Abstract
Blastocyst complementation (BC) systems have enabled in vivo generation of organs from allogeneic pluripotent cells, compensating for an empty germ cell niche in gene knockout (KO) animals. Here, we succeeded in producing chimeric beef cattle (Wagyu) by transferring allogenic germ cells into ovaries using somatic cell nuclear transfer and BC technology. The KO of NANOS3 (NANOS3−/−) in Wagyu bovine ovaries produced a complete loss of germ cells. Holstein blastomeres (NANOS3+/+) were injected into NANOS3−/− Wagyu embryos. Subsequently, exogenous germ cells (NANOS3+/+) were identified in the NANOS3−/− ovary. These results clearly indicate that allogeneic germ cells can be generated in recipient germ cell-free gonads using cloning and BC technologies.
Collapse
|
22
|
Mohri KI, Nakamoto A, Shimizu T. The ontogeny of nanos homologue expression in the oligochaete annelid Tubifex tubifex. Gene Expr Patterns 2015; 20:32-41. [PMID: 26577746 DOI: 10.1016/j.gep.2015.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 11/17/2022]
Abstract
We have cloned and characterized the expression of a nanos homologue (designated Ttu-nos) from the oligochaete annelid Tubifex tubifex. Ttu-nos mRNA is distributed broadly throughout the early cleavage stages. Ttu-nos is expressed in most if not all of the early blastomeres, in which Ttu-nos RNA associates with pole plasms. Ttu-nos transcripts are concentrated to 2d and 4d cells. Shortly after 2d(111) (derived from 2d cell) divides into a bilateral pair of NOPQ proteloblasts, Ttu-nos RNA vanishes from the embryo, which is soon followed by the resumption of Ttu-nos expression in nascent primary blast cells produced by teloblasts. The resumption of Ttu-nos expression occurs only in a subset of teloblast lineages (viz., M, N and Q). After Ttu-nos expression is retained in the germ band for a while, it disappears in anterior-to-posterior progression. At the end of embryogenesis, there is no trace of Ttu-nos expression. Thereafter, growing juveniles do not show any sign of Ttu-nos expression, either. The first sign of Ttu-nos expression is detected in oocytes in the ovary of young adults (ca 40 days after hatching), and its expression continues in growing oocytes that undergo yolk deposition and maturation in the ovisac.
Collapse
Affiliation(s)
- Ki-Ichi Mohri
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ayaki Nakamoto
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Shimizu
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
23
|
Claußen M, Lingner T, Pommerenke C, Opitz L, Salinas G, Pieler T. Global analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus species. Mol Biol Cell 2015; 26:3777-87. [PMID: 26337391 PMCID: PMC4626063 DOI: 10.1091/mbc.e15-02-0115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
Subcellular localization of mRNAs contributes to the generation of cellular asymmetries and cell fate determination. A comparative global analysis is given of animally and vegetally enriched RNAs in oocytes from two closely related Xenopus species. RNAs that localize to the vegetal cortex during Xenopus laevis oogenesis have been reported to function in germ layer patterning, axis determination, and development of the primordial germ cells. Here we report on the genome-wide, comparative analysis of differentially localizing RNAs in Xenopus laevis and Xenopus tropicalis oocytes, revealing a surprisingly weak degree of conservation in respect to the identity of animally as well as vegetally enriched transcripts in these closely related species. Heterologous RNA injections and protein binding studies indicate that the different RNA localization patterns in these two species are due to gain/loss of cis-acting localization signals rather than to differences in the RNA-localizing machinery.
Collapse
Affiliation(s)
- Maike Claußen
- Institute of Developmental Biochemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Thomas Lingner
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Claudia Pommerenke
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Lennart Opitz
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Gabriela Salinas
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Tomas Pieler
- Institute of Developmental Biochemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Yang J, Aguero T, King ML. The Xenopus Maternal-to-Zygotic Transition from the Perspective of the Germline. Curr Top Dev Biol 2015; 113:271-303. [PMID: 26358876 DOI: 10.1016/bs.ctdb.2015.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Xenopus, the germline is specified by the inheritance of germ-plasm components synthesized at the beginning of oogenesis. Only the cells in the early embryo that receive germ plasm, the primordial germ cells (PGCs), are competent to give rise to the gametes. Thus, germ-plasm components continue the totipotent potential exhibited by the oocyte into the developing embryo at a time when most cells are preprogrammed for somatic differentiation as dictated by localized maternal determinants. When zygotic transcription begins at the mid-blastula transition, the maternally set program for somatic differentiation is realized. At this time, genetic control is ceded to the zygotic genome, and developmental potential gradually becomes more restricted within the primary germ layers. PGCs are a notable exception to this paradigm and remain transcriptionally silent until the late gastrula. How the germ-cell lineage retains full potential while somatic cells become fate restricted is a tale of translational repression, selective degradation of somatic maternal determinants, and delayed activation of zygotic transcription.
Collapse
Affiliation(s)
- Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tristan Aguero
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
25
|
Positive mRNA Translational Control in Germ Cells by Initiation Factor Selectivity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:327963. [PMID: 26357652 PMCID: PMC4556832 DOI: 10.1155/2015/327963] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/22/2015] [Indexed: 01/04/2023]
Abstract
Ultimately, the production of new proteins in undetermined cells pushes them to new fates. Other proteins hold a stem cell in a mode of self-renewal. In germ cells, these decision-making proteins are produced largely from translational control of preexisting mRNAs. To date, all of the regulation has been attributed to RNA binding proteins (RBPs) that repress mRNAs in many models of germ cell development (Drosophila, mouse, C. elegans, and Xenopus). In this review, we focus on the selective, positive function of translation initiation factors eIF4E and eIF4G, which recruit mRNAs to ribosomes upon derepression. Evidence now shows that the two events are not separate but rather are coordinated through composite complexes of repressors and germ cell isoforms of eIF4 factors. Strikingly, the initiation factor isoforms are themselves mRNA selective. The mRNP complexes of translation factors and RBPs are built on specific populations of mRNAs to prime them for subsequent translation initiation. Simple rearrangement of the partners causes a dormant mRNP to become synthetically active in germ cells when and where they are required to support gametogenesis.
Collapse
|
26
|
Suppression and restoration of primordial germ cell marker gene expression in channel catfish, Ictalurus punctatus, using knockdown constructs regulated by copper transport protein gene promoters: Potential for reversible transgenic sterilization. Theriogenology 2015; 84:1499-512. [PMID: 26341409 DOI: 10.1016/j.theriogenology.2015.07.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 12/12/2022]
Abstract
Complementary DNA overexpression and short hairpin RNA interference approaches were evaluated for decreasing expression of primordial germ cell (PGC) marker genes and thereby sterilizing channel catfish, Ictalurus punctatus, by delivering knockdown constructs driven by a constitutive promoter from yeast and a copper transport protein gene into fish embryos by electroporation. Two PGC marker genes, nanos and dead end, were the target knockdown genes, and their expressions, along with that of an off-target gene, vasa, were evaluated temporally using real-time polymerase chain reaction. Copper sulfate was evaluated as a repressor compound. Some of the constructs knocked down PGC marker gene expression, and some of the constructs were partially repressed by application of 0.1-ppm copper sulfate. When the rate of sexual maturity was compared for three-year-old broodfish that had been exposed to the sterilizing constructs during embryologic development and controls that had not been exposed, several treatments had reduced sexual maturity for the exposed fish. Of two promoter systems evaluated, the one which had been designed to be less sensitive to copper generally was more effective at achieving sterilization and more responsive to repression. Knockdown constructs based on 3' nanos short hairpin RNA interference appeared to result in the best repression and restoration of normal sexual maturity. We conclude that these copper-based systems exhibited good potential for repressible transgenic sterilization. Optimization of this system could allow environmentally safe application of transgenic technology and might be applicable to other applications for aquatic organisms.
Collapse
|
27
|
Kumano G. Evolution of germline segregation processes in animal development. Dev Growth Differ 2015; 57:324-32. [DOI: 10.1111/dgd.12211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Gaku Kumano
- Asamushi Research Center for Marine Biology; Graduate School of Life Science; Tohoku University; 9 Sakamoto Asamushi Aomori 039-3501 Japan
| |
Collapse
|
28
|
Chemokine-Dependent pH Elevation at the Cell Front Sustains Polarity in Directionally Migrating Zebrafish Germ Cells. Curr Biol 2015; 25:1096-103. [PMID: 25843033 DOI: 10.1016/j.cub.2015.02.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 01/06/2015] [Accepted: 02/25/2015] [Indexed: 11/21/2022]
Abstract
Directional cell migration requires cell polarization with respect to the distribution of the guidance cue. Cell polarization often includes asymmetric distribution of response components as well as elements of the motility machinery. Importantly, the function and regulation of most of these molecules are known to be pH dependent. Intracellular pH gradients were shown to occur in certain cells migrating in vitro, but the functional relevance of such gradients for cell migration and for the response to directional cues, particularly in the intact organism, is currently unknown. In this study, we find that primordial germ cells migrating in the context of the developing embryo respond to the graded distribution of the chemokine Cxcl12 by establishing elevated intracellular pH at the cell front. We provide insight into the mechanisms by which a polar pH distribution contributes to efficient cell migration. Specifically, we show that Carbonic Anhydrase 15b, an enzyme controlling the pH in many cell types, including metastatic cancer cells, is expressed in migrating germ cells and is crucial for establishing and maintaining an asymmetric pH distribution within them. Reducing the level of the protein and thereby erasing the pH elevation at the cell front resulted in abnormal cell migration and impaired arrival at the target. The basis for the disrupted migration is found in the stringent requirement for pH conditions in the cell for regulating contractility, for the polarization of Rac1 activity, and hence for the formation of actin-rich structures at the leading edge of the migrating cells.
Collapse
|
29
|
Nakajima K, Yaoita Y. Development of a new approach for targeted gene editing in primordial germ cells using TALENs in Xenopus. Biol Open 2015; 4:259-66. [PMID: 25661867 PMCID: PMC4359732 DOI: 10.1242/bio.201410926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022] Open
Abstract
A gene of interest can be efficiently modified using transcription activator-like effector nucleases (TALENs) (Christian et al., 2010;Li et al., 2011). However, if a target gene is essential for development, growth and fertility, use of TALENs with high mutagenic activity in F0 frogs could result in developmental disorders or sterility, which would reduce the number of F1 progeny and make F1 phenotypical analysis difficult. We used the 3' untranslated region of DEADSouth gene (DS-3') of Xenopus tropicalis to solve this problem, because the addition of the DS-3' to mRNA is known to induce primordial germ cell (PGC)-specific expression and reduce the stability in somatic cells of mRNA in Xenopus laevis. At first, we inserted the X. tropicalis DS-3' downstream of the EGFP termination codon and confirmed that the EGFP expression was specifically detected in PGCs for three weeks. Therefore, we inserted the DS-3' downstream of the termination codon of the TALEN coding sequence. The tyrosinase gene was selected as the target gene for TALEN because the bi-allelic mutation of this gene is easily discernible by the albino phenotype. When fertilized eggs were microinjected with TALEN mRNAs fused to the DS-3', their sperm and oocytes had a high rate (84-100%) of target-gene modification in contrast to the lower rate (0-45%) of nucleotide alteration observed in somatic cells.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Yoshio Yaoita
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| |
Collapse
|
30
|
Dosch R. Next generation mothers: Maternal control of germline development in zebrafish. Crit Rev Biochem Mol Biol 2014; 50:54-68. [DOI: 10.3109/10409238.2014.985816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Homozygous inactivating mutation in NANOS3 in two sisters with primary ovarian insufficiency. BIOMED RESEARCH INTERNATIONAL 2014; 2014:787465. [PMID: 25054146 PMCID: PMC4098983 DOI: 10.1155/2014/787465] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 12/27/2022]
Abstract
Despite the increasing understanding of female reproduction, the molecular diagnosis of primary ovarian insufficiency (POI) is seldom obtained. The RNA-binding protein NANOS3 poses as an interesting candidate gene for POI since members of the Nanos family have an evolutionarily conserved function in germ cell development and maintenance by repressing apoptosis. We performed mutational analysis of NANOS3 in a cohort of 85 Brazilian women with familial or isolated POI, presenting with primary or secondary amenorrhea, and in ethnically-matched control women. A homozygous p.Glu120Lys mutation in NANOS3 was identified in two sisters with primary amenorrhea. The substituted amino acid is located within the second C2HC motif in the conserved zinc finger domain of NANOS3 and in silico molecular modelling suggests destabilization of protein-RNA interaction. In vitro analyses of apoptosis through flow cytometry and confocal microscopy show that NANOS3 capacity to prevent apoptosis was impaired by this mutation. The identification of an inactivating missense mutation in NANOS3 suggests a mechanism for POI involving increased primordial germ cells (PGCs) apoptosis during embryonic cell migration and highlights the importance of NANOS proteins in human ovarian biology.
Collapse
|
32
|
Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus. Differentiation 2014; 88:17-26. [PMID: 24798204 DOI: 10.1016/j.diff.2014.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 11/23/2022]
Abstract
In amphibians and teleosts, early embryonic axial development is driven by maternally deposited mRNAs and proteins, called dorsal determinants, which migrate to the presumptive dorsal side of the embryo in a microtubule-dependent manner after fertilization. Syntabulin is an adapter protein that binds to kinesin KIF5B and to the transmembrane protein Syntaxin1. In zebrafish, a mutation in Syntabulin causes complete embryo ventralization. It is unknown whether Syntabulin plays an analogous role during early development of other species, a question addressed here in Xenopus laevis. in situ hybridization of syntabulin mRNA was carried out at different stages of Xenopus development. In oocytes, syntabulin transcripts were localized to the vegetal cortex of large oocytes and the mitochondrial cloud of very young oocytes. We extended the zebrafish data by finding that during cleavage Xenopus syntabulin mRNA localized to the germ plasm and was later expressed in primordial germ cells (PGCs). This new finding suggested a role for Syntabulin during germ cell differentiation. The functional role of maternal syntabulin mRNA was investigated by knock-down with phosphorothioate DNA antisense oligos followed by oocyte transfer. The results showed that syntabulin mRNA depletion caused the complete loss of dorso-anterior axis formation in frog embryos. Consistent with the ventralized phenotype, syntabulin-depleted embryos displayed severe reduction of dorsal markers and ubiquitous transcription of the ventral marker sizzled. Syntabulin was required for the maternal Wnt/β-Catenin signal, since ventralization could be completely rescued by injection of β-catenin (or syntabulin) mRNA. The data suggest an evolutionarily conserved role for Syntabulin, a protein that bridges microtubule motors and membrane vesicles, during dorso-ventral axis formation in the vertebrates.
Collapse
|
33
|
Oulhen N, Wessel GM. Every which way--nanos gene regulation in echinoderms. Genesis 2014; 52:279-86. [PMID: 24376110 DOI: 10.1002/dvg.22737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/16/2013] [Indexed: 12/12/2022]
Abstract
Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | | |
Collapse
|
34
|
Zhang Y, Cooke A, Park S, Dewey CN, Wickens M, Sheets MD. Bicaudal-C spatially controls translation of vertebrate maternal mRNAs. RNA (NEW YORK, N.Y.) 2013; 19:1575-82. [PMID: 24062572 PMCID: PMC3851724 DOI: 10.1261/rna.041665.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The Xenopus Cripto-1 protein is confined to the cells of the animal hemisphere during early embryogenesis where it regulates the formation of anterior structures. Cripto-1 protein accumulates only in animal cells because cripto-1 mRNA in cells of the vegetal hemisphere is translationally repressed. Here, we show that the RNA binding protein, Bicaudal-C (Bic-C), functioned directly in this vegetal cell-specific repression. While Bic-C protein is normally confined to vegetal cells, ectopic expression of Bic-C in animal cells repressed a cripto-1 mRNA reporter and associated with endogenous cripto-1 mRNA. Repression by Bic-C required its N-terminal domain, comprised of multiple KH motifs, for specific binding to relevant control elements within the cripto-1 mRNA and a functionally separable C-terminal translation repression domain. Bic-C-mediated repression required the 5' CAP and translation initiation factors, but not a poly(A) tail or the conserved SAM domain within Bic-C. Bic-C-directed immunoprecipitation followed by deep sequencing of associated mRNAs identified multiple Bic-C-regulated mRNA targets, including cripto-1 mRNA, providing new insights and tools for understanding the role of Bic-C in vertebrate development.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Amy Cooke
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sookhee Park
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Colin N. Dewey
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael D. Sheets
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Corresponding authorE-mail
| |
Collapse
|
35
|
A NANOS3 mutation linked to protein degradation causes premature ovarian insufficiency. Cell Death Dis 2013; 4:e825. [PMID: 24091668 PMCID: PMC3824677 DOI: 10.1038/cddis.2013.368] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 11/08/2022]
Abstract
Primary ovarian insufficiency (POI), or premature ovarian failure, is defined as the cessation of ovarian function before the age of 40. An insufficient ovarian follicle pool derived from primordial germ cells (PGCs) is an important cause of POI. Although the Nanos gene family is known to be required for PGC development and maintenance in diverse model organisms, the relevance of this information to human biology is not yet clear. In this study, we screened the coding regions of the NANOS1, NANOS2 and NANOS3 genes in 100 Chinese POI patients and identified four variants in the coding regions of these three genes, including one synonymous variant in NANOS3, one missense variant in each of NANOS1 and NANOS2 and one potentially relevant mutation (c.457C>T; p.Arg153Trp, heterozygous) in NANOS3. We demonstrated that the p.Arg153Trp substitution decreases the stability of NANOS3, potentially resulting in a hypomorph. Furthermore, an investigation of the relationship between the number of PGCs and the dosage of NANOS3 in mouse models showed that the population of PGCs is controlled by the level of NANOS3 protein. Taken together, our results provide new insight into the properties of the NANOS3 protein and establish that NANOS3 mutation is one possible cause of POI.
Collapse
|
36
|
Nijjar S, Woodland HR. Localisation of RNAs into the germ plasm of vitellogenic Xenopus oocytes. PLoS One 2013; 8:e61847. [PMID: 23626739 PMCID: PMC3633952 DOI: 10.1371/journal.pone.0061847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/14/2013] [Indexed: 11/21/2022] Open
Abstract
We have studied the localisation of mRNAs in full-grown Xenopus laevis oocytes by injecting fluorescent RNAs, followed by confocal microscopy of the oocyte cortex. Concentrating on RNA encoding the Xenopus Nanos homologue, nanos1 (formerly Xcat2), we find that it consistently localised into aggregated germ plasm ribonucleoprotein (RNP) particles, independently of cytoskeletal integrity. This implies that a diffusion/entrapment-mediated mechanism is active, as previously reported for previtellogenic oocytes. Sometimes this was accompanied by localisation into scattered particles of the “late”, Vg1/VegT pathway; occasionally only late pathway localisation was seen. The Xpat RNA behaved in an identical fashion and for neither RNA was the localisation changed by any culture conditions tested. The identity of the labelled RNP aggregates as definitive germ plasm was confirmed by their inclusion of abundant mitochondria and co-localisation with the germ plasm protein Hermes. Further, the nanos1/Hermes RNP particles are interspersed with those containing the germ plasm protein Xpat. These aggregates may be followed into the germ plasm of unfertilized eggs, but with a notable reduction in its quantity, both in terms of injected molecules and endogenous structures. Our results conflict with previous reports that there is no RNA localisation in large oocytes, and that during mid-oogenesis even germ plasm RNAs localise exclusively by the late pathway. We find that in mid oogenesis nanos1 RNA also localises to germ plasm but also by the late pathway. Late pathway RNAs, Vg1 and VegT, also may localise into germ plasm. Our results support the view that mechanistically the two modes of localisation are extremely similar, and that in an injection experiment RNAs might utilise either pathway, the distinction in fates being very subtle and subject to variation. We discuss these results in relation to their biological significance and the results of others.
Collapse
Affiliation(s)
- Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Hugh R. Woodland
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Taguchi A, Takii M, Motoishi M, Orii H, Mochii M, Watanabe K. Analysis of localization and reorganization of germ plasm in Xenopus transgenic line with fluorescence-labeled mitochondria. Dev Growth Differ 2013; 54:767-76. [PMID: 23067138 DOI: 10.1111/dgd.12005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Germ plasm is found in germ-line cells of Xenopus and thought to include the determinant of primordial germ cells (PGCs). As mitochondria is abundant in germ plasm, vital staining of mitochondria was used to analyze the movement and function of germ plasm; however, its application was limited in early cleavage embryos. We made transgenic Xenopus, harboring enhanced green fluorescent protein (EGFP) fused to the mitochondria transport signal (Dria-line). Germ plasm with EGFP-labeled mitochondria was clearly distinguishable from the other cytoplasm, and retained mostly during one generation of germ-line cells in Dria-line females. Using the Dria-line, we show that germ plasm is reorganized from near the cell membrane to the perinuclear space at St. 9, dependent on the microtubule system.
Collapse
Affiliation(s)
- Ayaka Taguchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun, Hyogo, 678-1297, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Regulation of cell polarity and RNA localization in vertebrate oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:127-85. [PMID: 24016525 DOI: 10.1016/b978-0-12-407694-5.00004-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has long been appreciated that the inheritance of maternal cytoplasmic determinants from different regions of the egg can lead to differential specification of blastomeres during cleavage. Localized RNAs are important determinants of cell fate in eggs and embryos but are also recognized as fundamental regulators of cell structure and function. This chapter summarizes recent molecular and genetic experiments regarding: (1) mechanisms that regulate polarity during different stages of vertebrate oogenesis, (2) pathways that localize presumptive protein and RNA determinants within the polarized oocyte and egg, and (3) how these determinants act in the embryo to determine the ultimate cell fates. Emphasis is placed on studies done in Xenopus, where extensive work has been done in these areas, and comparisons are drawn with fish and mammals. The prospects for future work using in vivo genome manipulation and other postgenomic approaches are also discussed.
Collapse
|
39
|
Gao M, Arkov AL. Next generation organelles: structure and role of germ granules in the germline. Mol Reprod Dev 2012; 80:610-23. [PMID: 23011946 DOI: 10.1002/mrd.22115] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/14/2012] [Indexed: 12/20/2022]
Abstract
Germ cells belong to a unique class of stem cells that gives rise to eggs and sperm, and ultimately to an entire organism after gamete fusion. In many organisms, germ cells contain electron-dense structures that are also known as nuage or germ granules. Although germ granules were discovered more than 100 years ago, their composition, structure, assembly, and function are not fully understood. Germ granules contain non-coding RNAs, mRNAs, and proteins required for germline development. Here we review recent studies that highlight the importance of several protein families in germ granule assembly and function, including germ granule inducers, which initiate the granule formation, and downstream components, such as RNA helicases and Tudor domain-Piwi protein-piRNA complexes. Assembly of these components into one granule is likely to result in a highly efficient molecular machine that ensures translational control and protects germline DNA from mutations caused by mobile genetic elements. Furthermore, recent studies have shown that different somatic cells, including stem cells and neurons, produce germ granule components that play a crucial role in stem cell maintenance and memory formation, indicating a much more diverse functional repertoire for these organelles than previously thought.
Collapse
Affiliation(s)
- Ming Gao
- Department of Biological Sciences, Murray State University, Murray, Kentucky 42071, USA
| | | |
Collapse
|
40
|
Ye H, Chen X, Wei Q, Zhou L, Liu T, Gui J, Li C, Cao H. Molecular and expression characterization of a nanos1 homologue in Chinese sturgeon, Acipenser sinensis. Gene 2012; 511:285-92. [PMID: 23010197 DOI: 10.1016/j.gene.2012.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 08/20/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
Abstract
The nanos gene family was essential for germ line development in diverse organisms. In the present study, the full-length cDNA of a nanos1 homologue in A. sinensis, Asnanos1, was isolated and characterized. The cDNA sequence of Asnanos1 was 1489 base pairs (bp) in length and encoded a peptide of 228 amino acid residues. Multiple sequence alignment showed that the zinc-finger motifs of Nanos1 were highly conserved in vertebrates. By RT-PCR analysis, Asnanos1 mRNAs were ubiquitously detected in all tissues examined except for the fat, including liver, spleen, heart, ovary, kidney, muscle, intestines, pituitary, hypothalamus, telencephalon, midbrain, cerebellum, and medulla oblongata. Moreover, a specific polyclonal antibody was prepared from the in vitro expressed partial AsNanos1 protein. Western blot analysis revealed that the tissue expression pattern of AsNanos1 was not completely coincided with that of its mRNAs, which was not found in fat, muscle and intestines. Additionally, by immunofluoresence localization, it was observed that AsNanos1 protein was in the cytoplasm of primary oocytes and spermatocytes. The presented results indicated that the expression pattern of Asnanos1 was differential conservation and divergence among diverse species.
Collapse
Affiliation(s)
- Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tada H, Mochii M, Orii H, Watanabe K. Ectopic formation of primordial germ cells by transplantation of the germ plasm: direct evidence for germ cell determinant in Xenopus. Dev Biol 2012; 371:86-93. [PMID: 23046626 DOI: 10.1016/j.ydbio.2012.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 08/13/2012] [Accepted: 08/19/2012] [Indexed: 11/24/2022]
Abstract
In many animals, the germ line is specified by a distinct cytoplasmic structure called germ plasm (GP). GP is necessary for primordial germ cell (PGC) formation in anuran amphibians including Xenopus. However, it is unclear whether GP is a direct germ cell determinant in vertebrates. Here we demonstrate that GP acts autonomously for germ cell formation in Xenopus. EGFP-labeled GP from the vegetal pole was transplanted into animal hemisphere of recipient embryos. Cells carrying transplanted GP (T-GP) at the ectopic position showed characteristics similar to the endogenous normal PGCs in subcellular distribution of GP and presence of germ plasm specific molecules. However, T-GP-carrying-cells in the ectopic tissue did not migrate towards the genital ridge. T-GP-carrying cells from gastrula or tailbud embryos were transferred into the endoderm of wild-type hosts. From there, they migrated into the developing gonad. To clarify whether ectopic T-GP-carrying cells can produce functional germ cells, they were identified by changing the recipients, from the wild-type Xenopus to transgenic Xenopus expressing DsRed2. After transferring T-GP carrying cells labeled genetically with DsRed2 into wild-type hosts, we could find chimeric gonads in mature hosts. Furthermore, the spermatozoa and eggs derived from T-GP-carrying cells were fertile. Thus, we have demonstrated that Xenopus germ plasm is sufficient for germ cell determination.
Collapse
Affiliation(s)
- Haru Tada
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun, Hyogo 678-1297, Japan
| | | | | | | |
Collapse
|
42
|
Kawakami Y, Ishihara M, Saito T, Fujimoto T, Adachi S, Arai K, Yamaha E. Cryopreservation of green fluorescent protein (GFP)-labeled primordial germ cells with GFP fused to the 3' untranslated region of the nanos gene by vitrification of Japanese eel (Anguilla japonica) somite stage embryos. J Anim Sci 2012; 90:4256-65. [PMID: 22829617 DOI: 10.2527/jas.2011-4884] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primordial germ cells (PGC) are the only cell type in developing embryos with the potential to transmit genetic information to the next generation. In this study, PGC of Japanese eel (Anguilla japonica) were visualized by injection of mRNA synthesized from a construct carrying the green fluorescent protein (GFP) gene fused to the 3' untranslated region of the Japanese eel nanos gene. We investigated the feasibility of cryopreserving Japanese eel PGC by vitrification of dechorionated whole somite stage embryos. The GFP-labeled PGC were rapidly cooled using liquid nitrogen after exposure to a pretreatment solution containing 1.5 M cryoprotectant (methanol, dimethyl sulfoxide, and glycerol for 10 min and ethylene glycol for 10, 20, and 30 min) and a vitrification solution containing 3 M cryoprotectant and 0.5 M sucrose for 1, 5, and 10 min. Ethylene glycerol is an effective cryoprotectant for embryonic cells and shows no evidence of ice formation after thawing. Vitrified and thawed PGC were transplanted into blastula stage embryos from zebrafish (Danio rerio). The GFP-labeled PGC migrated toward the host gonadal ridge, suggesting maintenance of their normal migration motility. These techniques may assist in achieving inter- and intraspecies germ-line chimers using donor Japanese eel PGC.
Collapse
Affiliation(s)
- Y Kawakami
- Nanae Fresh Water Laboratory, Field Science Center of Northern Biosphere, Hokkaido University, Nanae 041-1105, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Lai F, Singh A, King ML. Xenopus Nanos1 is required to prevent endoderm gene expression and apoptosis in primordial germ cells. Development 2012; 139:1476-86. [PMID: 22399685 DOI: 10.1242/dev.079608] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nanos is expressed in multipotent cells, stem cells and primordial germ cells (PGCs) of organisms as diverse as jellyfish and humans. It functions together with Pumilio to translationally repress targeted mRNAs. Here we show by loss-of-function experiments that Xenopus Nanos1 is required to preserve PGC fate. Morpholino knockdown of maternal Nanos1 resulted in a striking decrease in PGCs and a loss of germ cells from the gonads. Lineage tracing and TUNEL staining reveal that Nanos1-deficient PGCs fail to migrate out of the endoderm. They appear to undergo apoptosis rather than convert to normal endoderm. Whereas normal PGCs do not become transcriptionally active until neurula, Nanos1-depleted PGCs prematurely exhibit a hyperphosphorylated RNA polymerase II C-terminal domain at the midblastula transition. Furthermore, they inappropriately express somatic genes characteristic of endoderm regulated by maternal VegT, including Xsox17α, Bix4, Mixer, GATA4 and Edd. We further demonstrate that Pumilio specifically binds VegT RNA in vitro and represses, along with Nanos1, VegT translation within PGCs. Repressed VegT RNA in wild-type PGCs is significantly less stable than VegT in Nanos1-depleted PGCs. Our data indicate that maternal VegT RNA is an authentic target of Nanos1/Pumilio translational repression. We propose that Nanos1 functions to translationally repress RNAs that normally specify endoderm and promote apoptosis, thus preserving the germline.
Collapse
Affiliation(s)
- Fangfang Lai
- Department of Cell Biology, University of Miami School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | | | | |
Collapse
|
44
|
Shahbabian K, Chartrand P. Control of cytoplasmic mRNA localization. Cell Mol Life Sci 2012; 69:535-52. [PMID: 21984598 PMCID: PMC11115051 DOI: 10.1007/s00018-011-0814-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/09/2011] [Accepted: 09/01/2011] [Indexed: 12/17/2022]
Abstract
mRNA localization is a mechanism used by various organisms to control the spatial and temporal production of proteins. This process is a highly regulated event that requires multiple cis- and trans-acting elements that mediate the accurate localization of target mRNAs. The intrinsic nature of localization elements, together with their interaction with different RNA-binding proteins, establishes control mechanisms that can oversee the transcript from its birth in the nucleus to its specific final destination. In this review, we aim to summarize the different mechanisms of mRNA localization, with a particular focus on the various control mechanisms that affect the localization of mRNAs in the cytoplasm.
Collapse
Affiliation(s)
- Karen Shahbabian
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| | - Pascal Chartrand
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| |
Collapse
|
45
|
King ML, Messitt TJ, Mowry KL. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 2012; 97:19-33. [PMID: 15601255 DOI: 10.1042/bc20040067] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Localization of maternal mRNAs in many developing organisms provides the basis for both initial polarity during oogenesis and patterning during embryogenesis. Prominent examples of this phenomenon are found in Xenopus laevis, where localized maternal mRNAs generate developmental polarity along the animal/vegetal axis. Targeting of mRNA molecules to specific subcellular regions is a fundamental mechanism for spatial regulation of gene expression, and considerable progress has been made in defining the underlying molecular pathways.
Collapse
Affiliation(s)
- Mary Lou King
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1011 NW 15th St., Miami, FL 33136, USA.
| | | | | |
Collapse
|
46
|
Abstract
The localization of mRNAs in developing animal cells is essential for establishing cellular polarity and setting up the body plan for subsequent development. Cellular and molecular mechanisms by which maternal mRNAs are localized during oogenesis have been extensively studied in Drosophila and Xenopus. In contrast, evidence for mechanisms used in the localization of mRNAs encoded by developmentally important genes has also been accumulating in several other organisms. This offers the opportunity to unravel the fundamental mechanisms of mRNA localization shared among many species, as well as unique mechanisms specifically acquired or retained by animals based on their developmental needs. In addition to maternal mRNAs, the localization of zygotically expressed mRNAs in the cells of cleaving embryos is also important for early development. In this review, mRNA localization dynamics in the oocytes/eggs of Drosophila and Xenopus are first summarized, and evidence for localized mRNAs in the oocytes/eggs and cleaving embryos of other organisms is then presented.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
47
|
VerMilyea MD, Maneck M, Yoshida N, Blochberger I, Suzuki E, Suzuki T, Spang R, Klein CA, Perry ACF. Transcriptome asymmetry within mouse zygotes but not between early embryonic sister blastomeres. EMBO J 2011; 30:1841-51. [PMID: 21468028 PMCID: PMC3101998 DOI: 10.1038/emboj.2011.92] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/03/2011] [Indexed: 11/09/2022] Open
Abstract
Transcriptome regionalization is an essential polarity determinant among metazoans, directing embryonic axis formation during normal development. Although conservation of this principle in mammals is assumed, recent evidence is conflicting and it is not known whether transcriptome asymmetries exist within unfertilized mammalian eggs or between the respective cleavage products of early embryonic divisions. We here address this by comparing transcriptome profiles of paired single cells and sub-cellular structures obtained microsurgically from mouse oocytes and totipotent embryos. Paired microsurgical spindle and remnant samples from unfertilized metaphase II oocytes possessed distinguishable profiles. Fertilization produces a totipotent 1-cell embryo (zygote) and associated spindle-enriched second polar body whose paired profiles also differed, reflecting spindle transcript enrichment. However, there was no programmed transcriptome asymmetry between sister cells within 2- or 3-cell embryos. Accordingly, there is transcriptome asymmetry within mouse oocytes, but not between the sister blastomeres of early embryos. This work places constraints on pre-patterning in mammals and provides documentation correlating potency changes and transcriptome partitioning at the single-cell level.
Collapse
Affiliation(s)
- Matthew D VerMilyea
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Matthias Maneck
- Department of Pathology, University of Regensburg, Regensburg, Germany
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Naoko Yoshida
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Biomedical Sciences, Ritsumeikan University, Shiga, Japan
| | | | - Emi Suzuki
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Toru Suzuki
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Biology and Biochemistry, Laboratory of Mammalian Molecular Embryology, and Bath Centre for Regenerative Medicine, University of Bath, Bath, UK
| | - Rainer Spang
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Christoph A Klein
- Department of Pathology, University of Regensburg, Regensburg, Germany
| | - Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Biology and Biochemistry, Laboratory of Mammalian Molecular Embryology, and Bath Centre for Regenerative Medicine, University of Bath, Bath, UK
| |
Collapse
|
48
|
Abstract
SummaryIn Xenopus laevis oocytes a mitochondrial cloud (MC) is found between the nucleus and the plasma membrane at stages I–II of oogenesis. The MC contains RNAs that are transported to the future vegetal pole at stage II of oogenesis. In particular, germinal plasm mRNAs are found in the Message Transport Organiser (METRO) region, the MC region opposite to the nucleus. At stages II–III, a second pathway transports Vg1 and VegT mRNAs to the area where the MC content merges with the vegetal cortex. Microtubules become polarized at the sites of migration of Vg1 and VegT mRNAs through an unknown signalling mechanism. In early meiotic stages, the centrioles are almost completely lost with their remnants being dispersed into the cytoplasm and the MC, which may contain a MTOC to be used in the later localization pathway of the mRNAs. In mammals, XNOA 36 encodes a member of a highly conserved protein family and localises to the nucleolus or in the centromeres. In the Xenopus late stage I oocyte, XNOA 36 mRNA is transiently segregated in one half of the oocyte, anchored by a cytoskeletal network that contains spectrin. Here we found that XNOA 36 transcript also localises to the nucleoli and in the METRO region. XNOA 36 protein immunolocalization, using an antibody employed for the library immunoscreening that depicted XNOA 36 expression colonies, labels the migrating MC, the cytoplasm of stage I oocytes and in particular the vegetal cortex facing the MC. The possible role of XNOA 36 in mRNA anchoring to the vegetal cortex or in participating in early microtubule reorganization is discussed.
Collapse
|
49
|
Luo X, Nerlick S, An W, King ML. Xenopus germline nanos1 is translationally repressed by a novel structure-based mechanism. Development 2011; 138:589-98. [PMID: 21205802 DOI: 10.1242/dev.056705] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The translational repressor Nanos is expressed in the germline and stem cell populations of jellyfish as well as humans. Surprisingly, we observed that unlike other mRNAs, synthetic nanos1 RNA translates very poorly if at all after injection into Xenopus oocytes. The current model of simple sequestration of nanos1 within germinal granules is insufficient to explain this observation and suggests that a second level of repression must be operating. We find that an RNA secondary structural element immediately downstream of the AUG start site is both necessary and sufficient to prevent ribosome scanning in the absence of a repressor. Accordingly, repression is relieved by small in-frame insertions before this secondary structure, or translational control element (TCE), that provide the 15 nucleotides required for ribosome entry. nanos1 is translated shortly after fertilization, pointing to the existence of a developmentally regulated activator. Oocyte extracts were rendered fully competent for nanos1 translation after the addition of a small amount of embryo extract, confirming the presence of an activator. Misexpression of Nanos1 in oocytes from unlocalized RNA results in abnormal development, highlighting the importance of TCE-mediated translational repression. Although found in prokaryotes, steric hindrance as a mechanism for negatively regulating translation is novel for a eukaryotic RNA. These observations unravel a new mode of nanos1 regulation at the post-transcriptional level that is essential for normal development.
Collapse
Affiliation(s)
- Xueting Luo
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
50
|
Pawlak JB, Sellars MJ, Wood A, Hertzler PL. Cleavage and gastrulation in the Kuruma shrimp Penaeus (Marsupenaeus) japonicus (Bate): a revised cell lineage and identification of a presumptive germ cell marker. Dev Growth Differ 2011; 52:677-92. [PMID: 20874712 DOI: 10.1111/j.1440-169x.2010.01205.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A previous study suggested that mesendoderm (ME) cell arrest occurred at the 64-cell stage and a ring of eight presumptive naupliar mesoderm cells or crown cells surrounded the blastopore in the Kuruma shrimp Penaeus (Marsupenaeus) japonicus. Since this varied from the pattern observed in other penaeoidean shrimp, cleavage and gastrulation was re-examined in P. japonicus using the nucleic acid stain Sytox Green and confocal microscopy. In contrast to the earlier study, cleavage and gastrulation followed the pattern observed in other penaeoidean shrimp. The ME cells arrested at the 32-cell stage, ingressed into the blastocoel, and resumed division after a three cell cycle delay. Nine naupliar mesoderm or crown cells surrounded the blastopore and their descendants invaginated during gastrulation. An intracellular body (ICB) was detected by Sytox Green and SYTO RNASelect staining to be segregated to one ME cell in P. japonicus, as described previously in Penaeus monodon. Staining of the ICB was eliminated by pre-treatment with RNase but not DNase. The ICB was also found in two other penaeoidean shrimp, Penaeus vannamei (Family Penaeidae) and Sicyonia ingentis (Family Sicyoniidae). The results support the hypothesis that the ICB is a germ granule found in the Dendrobranchiata.
Collapse
Affiliation(s)
- John B Pawlak
- Central Michigan University, Department of Biology, Mount Pleasant, Michigan 48859, USA
| | | | | | | |
Collapse
|