1
|
Pérez-Mojica JE, Enders L, Walsh J, Lau KH, Lempradl A. Continuous transcriptome analysis reveals novel patterns of early gene expression in Drosophila embryos. CELL GENOMICS 2023; 3:100265. [PMID: 36950383 PMCID: PMC10025449 DOI: 10.1016/j.xgen.2023.100265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The transformative events during early organismal development lay the foundation for body formation and long-term phenotype. The rapid progression of events and the limited material available present major barriers to studying these earliest stages of development. Herein, we report an operationally simple RNA sequencing approach for high-resolution, time-sensitive transcriptome analysis in early (≤3 h) Drosophila embryos. This method does not require embryo staging but relies on single-embryo RNA sequencing and transcriptome ordering along a developmental trajectory (pseudo-time). The resulting high-resolution, time-sensitive mRNA expression profiles reveal the exact onset of transcription and degradation for thousands of transcripts. Further, using sex-specific transcription signatures, embryos can be sexed directly, eliminating the need for Y chromosome genotyping and revealing patterns of sex-biased transcription from the beginning of zygotic transcription. Our data provide an unparalleled resolution of gene expression during early development and enhance the current understanding of early transcriptional processes.
Collapse
Affiliation(s)
- J. Eduardo Pérez-Mojica
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 4930, USA
| | - Lennart Enders
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Joseph Walsh
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 4930, USA
| | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 4930, USA
| | - Adelheid Lempradl
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 4930, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Farrell JA, O'Farrell PH. From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition. Annu Rev Genet 2014; 48:269-94. [PMID: 25195504 DOI: 10.1146/annurev-genet-111212-133531] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Many, if not most, embryos begin development with extremely short cell cycles that exhibit unusually rapid DNA replication and no gap phases. The commitment to the cell cycle in the early embryo appears to preclude many other cellular processes that only emerge as the cell cycle slows just prior to gastrulation at a major embryonic transition known as the mid-blastula transition (MBT). As reviewed here, genetic and molecular studies in Drosophila have identified changes that extend S phase and introduce a post-replicative gap phase, G2, to slow the cell cycle. Although many mysteries remain about the upstream regulators of these changes, we review the core mechanisms of the change in cell cycle regulation and discuss advances in our understanding of how these might be timed and triggered. Finally, we consider how the elements of this program may be conserved or changed in other organisms.
Collapse
Affiliation(s)
- Jeffrey A Farrell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138;
| | | |
Collapse
|
3
|
Zhou Q, Zhang T, Xu W, Yu L, Yi Y, Zhang Z. Analysis of four achaete-scute homologs in Bombyx mori reveals new viewpoints of the evolution and functions of this gene family. BMC Genet 2008; 9:24. [PMID: 18321391 PMCID: PMC2315653 DOI: 10.1186/1471-2156-9-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 03/06/2008] [Indexed: 11/22/2022] Open
Abstract
Background achaete-scute complexe (AS-C) has been widely studied at genetic, developmental and evolutional levels. Genes of this family encode proteins containing a highly conserved bHLH domain, which take part in the regulation of the development of central nervous system and peripheral nervous system. Many AS-C homologs have been isolated from various vertebrates and invertebrates. Also, AS-C genes are duplicated during the evolution of Diptera. Functions besides neural development controlling have also been found in Drosophila AS-C genes. Results We cloned four achaete-scute homologs (ASH) from the lepidopteran model organism Bombyx mori, including three proneural genes and one neural precursor gene. Proteins encoded by them contained the characteristic bHLH domain and the three proneural ones were also found to have the C-terminal conserved motif. These genes regulated promoter activity through the Class A E-boxes in vitro. Though both Bm-ASH and Drosophila AS-C have four members, they are not in one by one corresponding relationships. Results of RT-PCR and real-time PCR showed that Bm-ASH genes were expressed in different larval tissues, and had well-regulated expressional profiles during the development of embryo and wing/wing disc. Conclusion There are four achaete-scute homologs in Bombyx mori, the second insect having four AS-C genes so far, and these genes have multiple functions in silkworm life cycle. AS-C gene duplication in insects occurs after or parallel to, but not before the taxonomic order formation during evolution.
Collapse
Affiliation(s)
- Qingxiang Zhou
- The Biotechnology Research Institute, National Engineering of crop germplasm and genetic improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | | | | | | | | | | |
Collapse
|
4
|
Mattar P, Britz O, Johannes C, Nieto M, Ma L, Rebeyka A, Klenin N, Polleux F, Guillemot F, Schuurmans C. A screen for downstream effectors of Neurogenin2 in the embryonic neocortex. Dev Biol 2004; 273:373-89. [PMID: 15328020 DOI: 10.1016/j.ydbio.2004.06.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 06/18/2004] [Accepted: 06/22/2004] [Indexed: 11/29/2022]
Abstract
Neurogenin (Ngn) 1 and Ngn2 encode basic-helix-loop-helix transcription factors expressed in the developing neocortex. Like other proneural genes, Ngns participate in the specification of neural fates and neuronal identities, but downstream effectors remain poorly defined. We set out to identify Ngn2 effectors in the cortex using a subtractive hybridization screen and identified several regionally expressed genes that were misregulated in Ngn2 and Ngn1;Ngn2 mutants. Included were genes down-regulated in germinal zone progenitors (e.g., Nlgn1, Unc5H4, and Dcc) and in postmitotic neurons in the cortical plate (e.g., Bhlhb5 and NFIB) and subplate (e.g., Mef2c, srGAP3, and protocadherin 9). Further analysis revealed that Ngn2 mutant subplate neurons were misspecified and that thalamocortical afferents (TCAs) that normally target this layer instead inappropriately projected towards the germinal zone. Strikingly, EphA5 and Sema3c, which encode repulsive guidance cues, were down-regulated in the Ngn2 and Ngn1;Ngn2 mutant germinal zones, providing a possible molecular basis for axonal targeting defects. Thus, we identified several new components of the differentiation cascade(s) activated downstream of Ngn1 and Ngn2 and provided novel insights into a new developmental process controlled by these proneural genes. Further analysis of the genes isolated in our screen should provide a fertile basis for understanding the molecular mechanisms underlying corticogenesis.
Collapse
Affiliation(s)
- Pierre Mattar
- University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wrischnik LA, Timmer JR, Megna LA, Cline TW. Recruitment of the Proneural Gene scute to the Drosophila Sex-Determination Pathway. Genetics 2003; 165:2007-27. [PMID: 14704182 PMCID: PMC1462923 DOI: 10.1093/genetics/165.4.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract
In flies, scute (sc) works with its paralogs in the achaete-scute-complex (ASC) to direct neuronal development. However, in the family Drosophilidae, sc also acquired a role in the primary event of sex determination, X chromosome counting, by becoming an X chromosome signal element (XSE)—an evolutionary step shown here to have occurred after sc diverged from its closest paralog, achaete (ac). Two temperature-sensitive alleles, scsisB2 and scsisB3, which disrupt only sex determination, were recovered in a powerful F1 genetic selection and used to investigate how sc was recruited to the sex-determination pathway. scsisB2 revealed 3′ nontranscribed regulatory sequences likely to be involved. The scsisB2 lesion abolished XSE activity when combined with mutations engineered in a sequence upstream of all XSEs. In contrast, changes in Sc protein sequence seem not to have been important for recruitment. The observation that the other new allele, scsisB3, eliminates the C-terminal half of Sc without affecting neurogenesis and that scsisB1, the most XSE-specific allele previously available, is a nonsense mutant, would seem to suggest the opposite, but we show that housefly Sc can substitute for fruit fly Sc in sex determination, despite lacking Drosophilidae-specific conserved residues in its C-terminal half. Lack of synergistic lethality among mutations in sc, twist, and dorsal argue against a proposed role for sc in mesoderm formation that had seemed potentially relevant to sex-pathway recruitment. The screen that yielded new sc alleles also generated autosomal duplications that argue against the textbook view that fruit fly sex signal evolution recruited a set of autosomal signal elements comparable to the XSEs.
Collapse
Affiliation(s)
- Lisa A Wrischnik
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | | | | | |
Collapse
|
6
|
Rosenberg MI, Parkhurst SM. Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination. Cell 2002; 109:447-58. [PMID: 12086602 DOI: 10.1016/s0092-8674(02)00732-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Yeast SIR2 is a NAD+-dependent histone deacetylase required for heterochromatic silencing at telomeres, rDNA, and mating-type loci. We find that the Drosophila homolog of Sir2 (dSir2) also encodes deacetylase activity and is required for heterochromatic silencing, but unlike ySir2, is not required for silencing at telomeres. We show that dSir2 interacts genetically and physically with members of the Hairy/Deadpan/E(Spl) family of bHLH euchromatic repressors, key regulators of Drosophila development. dSir2 is an essential gene whose loss of function results in both segmentation defects and skewed sex ratios, associated with reduced activities of the Hairy and Deadpan bHLH repressors. These results indicate that Sir2 in higher organisms plays an essential role in both euchromatic repression and heterochromatic silencing.
Collapse
Affiliation(s)
- Miriam I Rosenberg
- Division of Basic Sciences and Program in Developmental Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
7
|
Walker JJ, Lee KK, Desai RN, Erickson JW. The Drosophila melanogaster sex determination gene sisA is required in yolk nuclei for midgut formation. Genetics 2000; 155:191-202. [PMID: 10790394 PMCID: PMC1461051 DOI: 10.1093/genetics/155.1.191] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During sex determination, the sisterlessA (sisA) gene functions as one of four X:A numerator elements that set the alternative male or female regulatory states of the switch gene Sex-lethal. In somatic cells, sisA functions specifically in sex determination, but its expression pattern also hints at a role in the yolk cell, a syncytial structure believed to provide energy and nutrients to the developing embryo. Previous studies of sisA have been limited by the lack of a null allele, leaving open the possibility that sisA has additional functions. Here we report the isolation and molecular characterization of four new sisA alleles including two null mutations. Our findings highlight key aspects of sisA structure-function and reveal important qualitative differences between the effects of sisA and the other strong X:A numerator element, sisterlessB, on Sex-lethal expression. We use genetic, expression, clonal, and phenotypic analyses to demonstrate that sisA has an essential function in the yolk nuclei of both sexes. In the absence of sisA, endoderm migration and midgut formation are blocked, suggesting that the yolk cell may have a direct role in larval gut development. To our knowledge, this is the first report of a requirement for the yolk nuclei in Drosophila development.
Collapse
Affiliation(s)
- J J Walker
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
8
|
Zhuang Y, Barndt RJ, Pan L, Kelley R, Dai M. Functional replacement of the mouse E2A gene with a human HEB cDNA. Mol Cell Biol 1998; 18:3340-9. [PMID: 9584174 PMCID: PMC108915 DOI: 10.1128/mcb.18.6.3340] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/1997] [Accepted: 02/24/1998] [Indexed: 02/07/2023] Open
Abstract
The mammalian E2A, HEB, and E2-2 genes encode a unique class of basic helix-loop-helix (bHLH) transcription factors that are evolutionarily conserved and essential for embryonic and postnatal development. While the structural and functional similarities among the gene products are well demonstrated, it is not clear why deletion of E2A, but not HEB or E2-2, leads to a complete arrest in B-lymphocyte development. To understand the molecular basis of the functional specificity between E2A and HEB/E2-2 in mammalian development, we generated and tested a panel of E2A knockin mutations including subtle mutations in the E12 and E47 exons and substitution of both E12 and E47 exons with a human HEB cDNA. We find that the alternatively spliced E12 and E47 bHLH proteins of the E2A gene play similar and additive roles in supporting B lymphopoiesis. Further, we find that HEB driven by the endogenous E2A promoter can functionally replace E2A in supporting B-cell commitment and differentiation toward completion. Finally, the postnatal lethality associated with E2A disruption is fully rescued by the addition of HEB. This study suggests that the functional divergence among E12, E47, and HEB in different cell types is partially defined by the context of gene expression.
Collapse
Affiliation(s)
- Y Zhuang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
9
|
Abstract
Rate constancy of DNA sequence evolution was examined for three species of Drosophila, using two samples: the published sequences of eight genes from regions of the normal recombination rates and new data of the four AS-C (ac, sc, l'sc and ase) and ci genes. The AS-C and ci genes were chosen because these genes are located in the regions of very reduced recombination in Drosophila melanogaster and their locations remain unchanged throughout the entire lineages involved, yielding less effect of ancestral polymorphism in the study of rate constancy. The synonymous substitution pattern of the three lineages was found to be erratic in both samples. The dispersion index for replacement substitution was relatively high for the per, G6pd and ac genes. A significant heterogeneity was found in the number of synonymous substitutions in the three lineages between the two samples of genes with different recombination rates. This is partly due to a lack of the lineage effect in the D. melanogaster and Drosophila simulans lineages in the AS-C and ci genes in contrast to Akashi's observation of genes in regions of normal recombination. The higher codon bias in Drosophila yakuba as compared with D. melanogaster and D. simulans was observed in the four AS-C genes, which suggests change(s) in action of natural selection involved in codon usage on these genes. Fluctuating selection intensity may also be responsible for the observed locus-lineage interaction effects in synonymous substitution.
Collapse
Affiliation(s)
- T S Takano
- Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka-ken 411-8540, Japan.
| |
Collapse
|
10
|
Hager JH, Cline TW. Induction of female Sex-lethal RNA splicing in male germ cells: implications for Drosophila germline sex determination. Development 1997; 124:5033-48. [PMID: 9362474 DOI: 10.1242/dev.124.24.5033] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
With a focus on Sex-lethal (Sxl), the master regulator of Drosophila somatic sex determination, we compare the sex determination mechanism that operates in the germline with that in the soma. In both cell types, Sxl is functional in females (2X2A) and nonfunctional in males (1X2A). Somatic cell sex is determined initially by a dose effect of X:A numerator genes on Sxl transcription. Once initiated, the active state of SXL is maintained by a positive autoregulatory feedback loop in which Sxl protein insures its continued synthesis by binding to Sxl pre-mRNA and thereby imposing the productive (female) splicing mode. The gene splicing-necessary factor (snf), which encodes a component of U1 and U2 snRNPs, participates in this RNA splicing control. Here we show that an increase in the dose of snf+ can trigger the female Sxl RNA splicing mode in male germ cells and can feminize triploid intersex (2X3A) germ cells. These snf+ dose effects are as dramatic as those of X:A numerator genes on Sxl in the soma and qualify snf as a numerator element of the X:A signal for Sxl in the germline. We also show that female-specific regulation of Sxl in the germline involves a positive autoregulatory feedback loop on RNA splicing, as it does in the soma. Neither a phenotypically female gonadal soma nor a female dose of X chromosomes in the germline is essential for the operation of this feedback loop, although a female X-chromosome dose in the germline may facilitate it. Engagement of the Sxl splicing feedback loop in somatic cells invariably imposes female development. In contrast, engagement of the Sxl feedback loop in male germ cells does not invariably disrupt spermatogenesis; nevertheless, it is premature to conclude that Sxl is not a switch gene in germ cells for at least some sex-specific aspects of their differentiation. Ironically, the testis may be an excellent organ in which to study the interactions among regulatory genes such as Sxl, snf, ovo and otu which control female-specific processes in the ovary.
Collapse
Affiliation(s)
- J H Hager
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | |
Collapse
|
11
|
Krause M, Park M, Zhang JM, Yuan J, Harfe B, Xu SQ, Greenwald I, Cole M, Paterson B, Fire A. A C. elegans E/Daughterless bHLH protein marks neuronal but not striated muscle development. Development 1997; 124:2179-89. [PMID: 9187144 DOI: 10.1242/dev.124.11.2179] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The E proteins of mammals, and the related Daughterless (DA) protein of Drosophila, are ubiquitously expressed helix-loop-helix (HLH) transcription factors that play a role in many developmental processes. We report here the characterization of a related C. elegans protein, CeE/DA, which has a dynamic and restricted distribution during development. CeE/DA is present embryonically in neuronal precursors, some of which are marked by promoter activity of a newly described Achaete-scute-like gene hlh-3. In contrast, we have been unable to detect CeE/DA in CeMyoD-positive striated muscle cells. In vitro gel mobility shift analysis detects dimerization of CeE/DA with HLH-3 while efficient interaction of CeE/DA with CeMyoD is not seen. These studies suggest multiple roles for CeE/DA in C. elegans development and provide evidence that both common and alternative strategies have evolved for the use of related HLH proteins in controlling cell fates in different species.
Collapse
Affiliation(s)
- M Krause
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892-0510, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Grens A, Mason E, Marsh JL, Bode HR. Evolutionary conservation of a cell fate specification gene: the Hydra achaete-scute homolog has proneural activity in Drosophila. Development 1995; 121:4027-35. [PMID: 8575303 DOI: 10.1242/dev.121.12.4027] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the Achaete-scute family of basic helix-loop-helix transcription factors are involved in cell fate specification in vertebrates and invertebrates. We have isolated and characterized a cnidarian achaete-scute homolog, CnASH, from Hydra vulgaris, a representative of an evolutionarily ancient branch of metazoans. There is a single achaete-scute gene in Hydra, and the bHLH domain of the predicted gene product shares a high degree of amino acid sequence similarity with those of vertebrate and Drosophila Achaete-scute proteins. In Hydra, CnASH is expressed in a subset of the interstitial cells as well as differentiation intermediates of the nematocyte pathways. In vitro translated CnASH protein can form heterodimers with the Drosophila bHLH protein Daughterless, and these dimers bind to consensus Achaete-scute DNA binding sites in a sequence-specific manner. Ectopic expression of CnASH in wild-type late third instar Drosophila larvae and early pupae leads to the formation of ectopic sensory organs, mimicking the effect of ectopic expression of the endogenous achaete-scute genes. Expression of CnASH in flies that are achaete and scute double mutants gives partial rescue of the mutant phenotype, comparable to the degree of rescue obtained by ectopic expression of the Drosophila genes. These results indicate that the achaete-scute type of bHLH genes for cell fate specification, as well as their mode of action, arose early and have been conserved during metazoan evolution.
Collapse
Affiliation(s)
- A Grens
- Developmental Biology Center, University of California, Irvine 92717, USA
| | | | | | | |
Collapse
|
13
|
Liu Y, Belote JM. Protein-protein interactions among components of the Drosophila primary sex determination signal. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:182-9. [PMID: 7651341 DOI: 10.1007/bf02190799] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sex determination in Drosophila melanogaster is initiated in the early embryo by a signal provided by three types of genes: (1) X-linked numerator elements [e.g., sisterless-a (sis-a) and sisterless-b (sis-b)], (2) autosomally linked denominator elements [e.g., deadpan (dpn)], and (3) maternal factors [e.g., daughterless (da)]. This signal acts to stimulate transcription from an embryo-specific promoter of the master regulatory gene Sex-lethal (Sxl) in embryos that have two X chromosomes (females), while it fails to activate Sxl in those with only one X (males). It has been previously proposed that competitive dimerizations among the components of this signal might provide the molecular basis for this sex specificity. Here, we use the yeast two-hybrid system to demonstrate specific protein-protein interactions among the above-mentioned factors, and to delimit their interacting domains. These results support and extend the model of the molecular basis of the X/A ratio signal.
Collapse
Affiliation(s)
- Y Liu
- Department of Biology, Syracuse University, NY 13244, USA
| | | |
Collapse
|
14
|
Abstract
In both Drosophila melanogaster and Caenorhabditis elegans somatic sex determination, germline sex determination, and dosage compensation are controlled by means of a chromosomal signal known as the X:A ratio. A variety of mechanisms are used for establishing and implementing the chromosomal signal, and these do not appear to be similar in the two species. Instead, the study of sex determination and dosage compensation is providing more general lessons about different types of signaling pathways used to control alternative developmental states of cells and organisms.
Collapse
Affiliation(s)
- S M Parkhurst
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | |
Collapse
|
15
|
Hinz U, Giebel B, Campos-Ortega JA. The basic-helix-loop-helix domain of Drosophila lethal of scute protein is sufficient for proneural function and activates neurogenic genes. Cell 1994; 76:77-87. [PMID: 8287481 DOI: 10.1016/0092-8674(94)90174-0] [Citation(s) in RCA: 274] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The development of most epidermal sensory organs in Drosophila is controlled by achaete and scute, two of the genes of the achaete-scute complex (AS-C). The genes of the AS-C encode members of the basic-helix-loop-helix (bHLH) class of transcriptional regulators, and their activity defines proneural cell clusters in the imaginal discs from which sensory organ mother cells are singled out by a process of lateral inhibition. Ectopic expression of lethal of scute, another member of the AS-C, normally dispensable for sensory organ development in the adult, promotes this process independently of the activity of the other AS-C genes. This demonstrates a high degree of functional redundancy of the products of the AS-C. Furthermore, neurogenic genes are activated in ectopic proneural clusters, allowing development of epidermal progenitor cells. Finally, the bHLH domain is necessary and sufficient to mediate the proneural function, to activate neurogenic genes, and to allow lateral inhibition.
Collapse
Affiliation(s)
- U Hinz
- Institut für Entwicklungsbiologie, Universität zu Köln, Federal Republic of Germany
| | | | | |
Collapse
|
16
|
Sánchez L, Granadino B, Torres M. Sex determination in Drosophila melanogaster: X-linked genes involved in the initial step of sex-lethal activation. DEVELOPMENTAL GENETICS 1994; 15:251-64. [PMID: 8062457 DOI: 10.1002/dvg.1020150307] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sex determination is the commitment of an embryo to either the female or the male developmental pathway. The ratio of X chromosomes to sets of autosomes is the primary genetic signal that determines sex in Drosophila, by triggering the functional state of the gene Sex-lethal: in females (2X;2A) Sxl will be ON, whereas in males (X;2A) Sxl will be OFF. Genetic and molecular studies have defined a set of genes involved in the formation of the X:A signal, as well as other genes, with either maternal or zygotic effects, which are also involved in regulating the initial step of Sex-lethal activation. We review these data and present new data on two more regions of the X chromosome that define other genes needed for Sxl activation. In addition, we report on the interaction between some of the genes regulating Sxl activation.
Collapse
Affiliation(s)
- L Sánchez
- Centro de Investigaciones Biológicas, Velázquez, Madrid, Spain
| | | | | |
Collapse
|
17
|
Duffy JB, Gergen JP. Sex, segments, and the central nervous system: common genetic mechanisms of cell fate determination. ADVANCES IN GENETICS 1994; 31:1-28. [PMID: 8036992 DOI: 10.1016/s0065-2660(08)60394-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J B Duffy
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
18
|
Affiliation(s)
- H Weintraub
- Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute Laboratory, Seattle, Washington 98104
| |
Collapse
|
19
|
Affiliation(s)
- Y N Jan
- Howard Hughes Medical Institute, University of California, San Francisco 94143-0724
| | | |
Collapse
|
20
|
Burtis KC. The regulation of sex determination and sexually dimorphic differentiation in Drosophila. Curr Opin Cell Biol 1993; 5:1006-14. [PMID: 8129938 DOI: 10.1016/0955-0674(93)90085-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sex determination and sexually dimorphic differentiation in Drosophila involve multiple regulatory mechanisms, including alternative splicing, transcriptional control, subcellular compartmentalization, and intercellular signal transduction. Regulatory interactions occur throughout the development of the fly, some requiring the continuous function of the genes involved, and others being temporally limited, but having permanent consequences. The control of sexual differentiation in Drosophila is, for the most part, subject to the continuous active control of numerous regulatory proteins operating at many levels.
Collapse
|
21
|
Erickson JW, Cline TW. A bZIP protein, sisterless-a, collaborates with bHLH transcription factors early in Drosophila development to determine sex. Genes Dev 1993; 7:1688-702. [PMID: 8370520 DOI: 10.1101/gad.7.9.1688] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sexual identity in Drosophila is determined by zygotic X-chromosome dose. Two potent indicators of X-chromosome dose are sisterless-a (sis-a) and sisterless-b (sis-b). Genetic analysis has shown that a diplo-X dose of these genes activates their regulatory target, the feminizing switch gene Sex-lethal (Sxl), whereas a haplo-X dose leaves Sxl inactive. sis-b encodes a transcriptional activator of the bHLH family that dimerizes with several other HLH proteins required for the proper assessment of X dose. Here, we report that sis-a encodes a bZIP protein homolog that functions in all somatic nuclei to activate Sxl transcription. In contrast with other elements of the sex-determination signal, the functioning of this transcription factor in somatic cells may be specific to X-chromosome counting. Using in situ hybridization, we determined the time course of sis-a, sis-b, and Sxl transcription during the first few hours after fertilization. The pattern of sis-a RNA accumulation is very similar to that for sis-b, with a peak in nuclear cycle 12 at about the time of onset of Sxl transcription. Considered in the context of other studies, these results suggest that the ability to distinguish one X from two is attributable to combinatorial interactions between bZIP and bHLH proteins and their target, Sxl, as well as to positive and negative interactions with maternally supplied and zygotically produced proteins.
Collapse
Affiliation(s)
- J W Erickson
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
22
|
Cronmiller C, Cummings CA. The daughterless gene product in Drosophila is a nuclear protein that is broadly expressed throughout the organism during development. Mech Dev 1993; 42:159-69. [PMID: 8217842 DOI: 10.1016/0925-4773(93)90005-i] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The daughterless (da) gene in Drosophila functions in the regulation of at least three significant developmental pathways: sex determination, neurogenesis and oogenesis. As a member of the helix-loop-helix (HLH) family of DNA binding proteins, the da gene product appears to act as a transcription factor. Based on the genetic and molecular characterization of da, it has been proposed that the da protein (Da) functions as a generic member of this family, serving throughout development as a necessary binding partner for an assortment of other HLH proteins. As a result of temporally and/or spatially restricted expression, these binding partners would provide some regulatory specificity to the functional transcription complex. In order to participate in this way in the regulation of multiple genes, Da must be expressed in numerous times and places during development. Using anti-Da antibodies, we validate two predictions of this scenario of Da function: (1) Da protein is not only nuclear localized, but also associated with chromosomes in vivo; and (2) Da protein is widely distributed, both spatially and temporally, throughout development. With regard to the essential role of maternal da+ in progeny sex determination, little, if any, Da protein is synthesized in the maternal germline. This suggests that the female-specific germline function of da+ is provided to the zygote as maternally synthesized RNA that becomes translated early in embryogenesis.
Collapse
Affiliation(s)
- C Cronmiller
- Department of Biology, University of Virginia, Charlottesville 22901
| | | |
Collapse
|