1
|
Pozmanter C, Benner L, Kelly SE, Curnutte H, Emilfork L, Van Doren M. Tudor domain containing protein 5-like identifies a novel germline body and regulates maternal RNAs during oogenesis in Drosophila. Genetics 2025; 229:iyaf024. [PMID: 39982762 DOI: 10.1093/genetics/iyaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Tudor domain-containing proteins are conserved across the animal kingdom for their function in germline development and fertility. Previously, we demonstrated that Tudor domain-containing protein 5-like plays an important role in the germline where it promotes male identity. However, Tudor domain-containing protein 5-like is also expressed in both the ovary and testis during later stages of germline development, suggesting that it plays a role in germline differentiation in both sexes. We found that Tudor domain-containing protein 5-like localizes to a potentially novel germline body and plays a role in posttranscriptional gene regulation. Additionally, embryos laid by Tdrd5l-mutant females exhibited reduced viability and displayed dorsal appendage defects suggesting a failure of proper dorsal-ventral patterning. As dorsal-ventral patterning is dependent on gurken (grk), we examined Gurken expression during oogenesis. We observed premature accumulation of Gurken protein in nurse cells indicating that translation is no longer properly repressed during mRNA transport to the oocyte. We also observed increased nurse cell accumulation of the cytoplasmic polyadenylation element binding protein Oo18 RNA-binding protein, a translational activator of grk. Decreasing orb function was able to partially rescue the Tdrd5l-mutant phenotype, and so defects in Orb expression are likely a primary cause of the defects in Tdrd5l mutants. Our data indicate that Tdrd5l is important for translational repression of maternal mRNAs such as orb, and possibly others, following their synthesis in the nurse cells and during their transport to the oocyte.
Collapse
Affiliation(s)
- Caitlin Pozmanter
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Leif Benner
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, 6 Center Drive, Bldg. 6B Room 3B326, Bethesda, MD 20892, USA
| | - Sydney E Kelly
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Harrison Curnutte
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Laura Emilfork
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Mark Van Doren
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Chen R, Grill S, Lin B, Saiduddin M, Lehmann R. Origin and establishment of the germline in Drosophila melanogaster. Genetics 2025; 229:iyae217. [PMID: 40180587 PMCID: PMC12005264 DOI: 10.1093/genetics/iyae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/09/2024] [Indexed: 04/05/2025] Open
Abstract
The continuity of a species depends on germ cells. Germ cells are different from all the other cell types of the body (somatic cells) as they are solely destined to develop into gametes (sperm or egg) to create the next generation. In this review, we will touch on 4 areas of embryonic germ cell development in Drosophila melanogaster: the assembly and function of germplasm, which houses the determinants for germ cell specification and fate and the mitochondria of the next generation; the process of pole cell formation, which will give rise to primordial germ cells (PGCs); the specification of pole cells toward the PGC fate; and finally, the migration of PGCs to the somatic gonadal precursors, where they, together with somatic gonadal precursors, form the embryonic testis and ovary.
Collapse
Affiliation(s)
- Ruoyu Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Vilcek Institute of Graduate Studies, Department of Cell Biology, NYU School of Medicine, New York University, New York, NY 10016, USA
| | - Sherilyn Grill
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariyah Saiduddin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Vilcek Institute of Graduate Studies, Department of Cell Biology, NYU School of Medicine, New York University, New York, NY 10016, USA
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Kahlon U, Ricca FD, Pillai SJ, Olivetta M, Tharp KM, Jao LE, Dudin O, McDonald K, Aydogan MG. A mitochondrial redox switch licenses the onset of morphogenesis in animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620733. [PMID: 39553983 PMCID: PMC11565760 DOI: 10.1101/2024.10.28.620733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Embryos undergo pre-gastrulation cleavage cycles to generate a critical cell mass before transitioning to morphogenesis. The molecular underpinnings of this transition have traditionally centered on zygotic chromatin remodeling and genome activation1,2, as their repression can prevent downstream processes of differentiation and organogenesis. Despite precedents that oxygen depletion can similarly suspend development in early embryos3-6, hinting at a pivotal role for oxygen metabolism in this transition, whether there is a bona fide chemical switch that licenses the onset of morphogenesis remains unknown. Here we discover that a mitochondrial oxidant acts as a metabolic switch to license the onset of animal morphogenesis. Concomitant with the instatement of mitochondrial membrane potential, we found a burst-like accumulation of mitochondrial superoxide (O2 -) during fly blastoderm formation. In vivo chemistry experiments revealed that an electron leak from site IIIQo at ETC Complex III is responsible for O2 - production. Importantly, depleting mitochondrial O2 - fully mimics anoxic conditions and, like anoxia, induces suspended animation prior to morphogenesis, but not after. Specifically, H2O2, and not ONOO-, NO, or HO•, can single-handedly account for this mtROS-based response. We demonstrate that depleting mitochondrial O2 - similarly prevents the onset of morphogenetic events in vertebrate embryos and ichthyosporea, close relatives of animals. We postulate that such redox-based metabolic licensing of morphogenesis is an ancient trait of holozoans that couples the availability of oxygen to development, conserved from early-diverging animal relatives to vertebrates.
Collapse
Affiliation(s)
- Updip Kahlon
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- Touro College of Osteopathic Medicine, Touro University, USA
- These authors have contributed equally
| | - Francesco Dalla Ricca
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- Dev. & Stem Cell Biology Graduate Program, University of California, San Francisco, USA
- These authors have contributed equally
| | - Saraswathi J. Pillai
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- These authors have contributed equally
| | - Marine Olivetta
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Kevin M. Tharp
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, USA
| | - Omaya Dudin
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Kent McDonald
- Electron Microscope Lab, University of California, Berkeley, USA
| | - Mustafa G. Aydogan
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- Nutrition and Obesity Research Center, University of California, San Francisco, USA
| |
Collapse
|
4
|
Receptor-mediated yolk uptake is required for oskar mRNA localization and cortical anchorage of germ plasm components in the Drosophila oocyte. PLoS Biol 2021; 19:e3001183. [PMID: 33891588 PMCID: PMC8064586 DOI: 10.1371/journal.pbio.3001183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/11/2021] [Indexed: 11/22/2022] Open
Abstract
The Drosophila germ plasm is responsible for germ cell formation. Its assembly begins with localization of oskar mRNA to the posterior pole of the oocyte. The oskar translation produces 2 isoforms with distinct functions: short Oskar recruits germ plasm components, whereas long Oskar remodels actin to anchor the components to the cortex. The mechanism by which long Oskar anchors them remains elusive. Here, we report that Yolkless, which facilitates uptake of nutrient yolk proteins into the oocyte, is a key cofactor for long Oskar. Loss of Yolkless or depletion of yolk proteins disrupts the microtubule alignment and oskar mRNA localization at the posterior pole of the oocyte, whereas microtubule-dependent localization of bicoid mRNA to the anterior and gurken mRNA to the anterior-dorsal corner remains intact. Furthermore, these mutant oocytes do not properly respond to long Oskar, causing defects in the actin remodeling and germ plasm anchoring. Thus, the yolk uptake is not merely the process for nutrient incorporation, but also crucial for oskar mRNA localization and cortical anchorage of germ plasm components in the oocyte. A study of the fruit fly Drosophila reveals that receptor-mediated yolk uptake is not merely a nutrient storage process for future embryogenesis, but is also required for localization of Oskar mRNA and cortical anchorage of germ plasm components in the oocyte during oogenesis.
Collapse
|
5
|
Dynamic structural order of a low-complexity domain facilitates assembly of intermediate filaments. Proc Natl Acad Sci U S A 2020; 117:23510-23518. [PMID: 32907935 PMCID: PMC7519307 DOI: 10.1073/pnas.2010000117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The main point of our manuscript is focused on the structure of the low-complexity (LC) domain of the Tm1-I/C intermediate filament protein in the context of assembled intermediate filaments. We found that the LC tail domain of Tm1-I/C exists in precisely the same cross-β conformation within its proper biologic assembly as it does in labile, amyloid-like polymers made from the tail domain alone. This science represents a conceptually distinct advance that may form the cornerstone understanding of how the thousands of LC domains expressed in eukaryotic cells operate in a mechanistic sense, and stands in conflict with previous research claiming that LC domains function in the absence of molecular structure. The coiled-coil domains of intermediate filament (IF) proteins are flanked by regions of low sequence complexity. Whereas IF coiled-coil domains assume dimeric and tetrameric conformations on their own, maturation of eight tetramers into cylindrical IFs is dependent on either “head” or “tail” domains of low sequence complexity. Here we confirm that the tail domain required for assembly of Drosophila Tm1-I/C IFs functions by forming labile cross-β interactions. These interactions are seen in polymers made from the tail domain alone, as well as in assembled IFs formed by the intact Tm1-I/C protein. The ability to visualize such interactions in situ within the context of a discrete cellular assembly lends support to the concept that equivalent interactions may be used in organizing other dynamic aspects of cell morphology.
Collapse
|
6
|
Lasko P. Patterning the Drosophila embryo: A paradigm for RNA-based developmental genetic regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1610. [PMID: 32543002 PMCID: PMC7583483 DOI: 10.1002/wrna.1610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
Embryonic anterior–posterior patterning is established in Drosophila melanogaster by maternally expressed genes. The mRNAs of several of these genes accumulate at either the anterior or posterior pole of the oocyte via a number of mechanisms. Many of these mRNAs are also under elaborate translational regulation. Asymmetric RNA localization coupled with spatially restricted translation ensures that their proteins are restricted to the position necessary for the developmental process that they drive. Bicoid (Bcd), the anterior determinant, and Oskar (Osk), the determinant for primordial germ cells and posterior patterning, have been studied particularly closely. In early embryos an anterior–posterior gradient of Bcd is established, activating transcription of different sets of zygotic genes depending on local Bcd concentration. At the posterior pole, Osk seeds formation of polar granules, ribonucleoprotein complexes that accumulate further mRNAs and proteins involved in posterior patterning and germ cell specification. After fertilization, polar granules associate with posterior nuclei and mature into nuclear germ granules. Osk accumulates in these granules, and either by itself or as part of the granules, stimulates germ cell division. This article is categorized under:RNA Export and Localization > RNA Localization Translation > Translation Regulation RNA in Disease and Development > RNA in Development
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.,Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
7
|
Kina H, Yoshitani T, Hanyu-Nakamura K, Nakamura A. Rapid and efficient generation of GFP-knocked-in Drosophila by the CRISPR-Cas9-mediated genome editing. Dev Growth Differ 2019; 61:265-275. [PMID: 31037730 DOI: 10.1111/dgd.12607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 11/30/2022]
Abstract
The CRISPR-Cas9 technology has been a powerful means to manipulate the genome in a wide range of organisms. A series of GFP knocked-in (GFPKI ) Drosophila strains have been generated through CRISPR-Cas9-induced double strand breaks coupled with homology-directed repairs in the presence of donor plasmids. They visualized specific cell types or intracellular structures in both fixed and live specimen. We provide a rapid and efficient strategy to identify KI lines. This method requires neither co-integration of a selection marker nor prior establishment of sgRNA-expressing transgenic lines. The injection of the mixture of a sgRNA/Cas9 expression plasmid and a donor plasmid into cleavage stage embryos efficiently generated multiple independent KI lines. A PCR-based selection allows to identify KI fly lines at the F1 generation (approximately 4 weeks after injection). These GFPKI strains have been deposited in the Kyoto Drosophila stock center, and made freely available to researchers at non-profit organizations. Thus, they will be useful resources for Drosophila research.
Collapse
Affiliation(s)
- Hirono Kina
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Takashi Yoshitani
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Kazuko Hanyu-Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,School of Pharmacy, Kumamoto University, Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
8
|
Krishnakumar P, Riemer S, Perera R, Lingner T, Goloborodko A, Khalifa H, Bontems F, Kaufholz F, El-Brolosy MA, Dosch R. Functional equivalence of germ plasm organizers. PLoS Genet 2018; 14:e1007696. [PMID: 30399145 PMCID: PMC6219760 DOI: 10.1371/journal.pgen.1007696] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/16/2018] [Indexed: 11/18/2022] Open
Abstract
The proteins Oskar (Osk) in Drosophila and Bucky ball (Buc) in zebrafish act as germ plasm organizers. Both proteins recapitulate germ plasm activities but seem to be unique to their animal groups. Here, we discover that Osk and Buc show similar activities during germ cell specification. Drosophila Osk induces additional PGCs in zebrafish. Surprisingly, Osk and Buc do not show homologous protein motifs that would explain their related function. Nonetheless, we detect that both proteins contain stretches of intrinsically disordered regions (IDRs), which seem to be involved in protein aggregation. IDRs are known to rapidly change their sequence during evolution, which might obscure biochemical interaction motifs. Indeed, we show that Buc binds to the known Oskar interactors Vasa protein and nanos mRNA indicating conserved biochemical activities. These data provide a molecular framework for two proteins with unrelated sequence but with equivalent function to assemble a conserved core-complex nucleating germ plasm. Multicellular organisms use gametes for their propagation. Gametes are formed from germ cells, which are specified during embryogenesis in some animals by the inheritance of RNP granules known as germ plasm. Transplantation of germ plasm induces extra germ cells, whereas germ plasm ablation leads to the loss of gametes and sterility. Therefore, germ plasm is key for germ cell formation and reproduction. However, the molecular mechanisms of germ cell specification by germ plasm in the vertebrate embryo remain an unsolved question. Proteins, which assemble the germ plasm, are known as germ plasm organizers. Here, we show that the two germ plasm organizers Oskar from the fly and Bucky ball from the fish show similar functions by using a cross species approach. Both are intrinsically disordered proteins, which rapidly changed their sequence during evolution. Moreover, both proteins still interact with conserved components of the germ cell specification pathway. These data might provide a first example of two proteins with the same biological role, but distinct sequence.
Collapse
Affiliation(s)
- Pritesh Krishnakumar
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Stephan Riemer
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Roshan Perera
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Thomas Lingner
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Alexander Goloborodko
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Hazem Khalifa
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Franck Bontems
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Switzerland
| | - Felix Kaufholz
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Mohamed A. El-Brolosy
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Roland Dosch
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
- * E-mail:
| |
Collapse
|
9
|
DeHaan H, McCambridge A, Armstrong B, Cruse C, Solanki D, Trinidad JC, Arkov AL, Gao M. An in vivo proteomic analysis of the Me31B interactome in Drosophila germ granules. FEBS Lett 2017; 591:3536-3547. [PMID: 28945271 DOI: 10.1002/1873-3468.12854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022]
Abstract
Drosophila Me31B is a conserved protein of germ granules, ribonucleoprotein complexes essential for germ cell development. Me31B post-transcriptionally regulates mRNAs by interacting with other germ granule proteins. However, a Me31B interactome is lacking. Here, we use an in vivo proteomics approach to show that the Me31B interactome contains polypeptides from four functional groups: RNA regulatory proteins, glycolytic enzymes, cytoskeleton/motor proteins, and germ plasm components. We further show that Me31B likely colocalizes with the germ plasm components Tudor (Tud), Vasa, and Aubergine in the nuage and germ plasm and provide evidence that Me31B may directly bind to Tud in a symmetrically dimethylated arginine-dependent manner. Our study supports the role of Me31B in RNA regulation and suggests its novel roles in germ granule assembly and function.
Collapse
Affiliation(s)
- Hunter DeHaan
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | | | - Carlie Cruse
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Dhruv Solanki
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, USA
| |
Collapse
|
10
|
Comparative Proteomic Profiling Reveals Molecular Characteristics Associated with Oogenesis and Oocyte Maturation during Ovarian Development of Bactrocera dorsalis (Hendel). Int J Mol Sci 2017; 18:ijms18071379. [PMID: 28665301 PMCID: PMC5535872 DOI: 10.3390/ijms18071379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 01/16/2023] Open
Abstract
Time-dependent expression of proteins in ovary is important to understand oogenesis in insects. Here, we profiled the proteomes of developing ovaries from Bactrocera dorsalis (Hendel) to obtain information about ovarian development with particular emphasis on differentially expressed proteins (DEPs) involved in oogenesis. A total of 4838 proteins were identified with an average peptide number of 8.15 and sequence coverage of 20.79%. Quantitative proteomic analysis showed that a total of 612 and 196 proteins were differentially expressed in developing and mature ovaries, respectively. Furthermore, 153, 196 and 59 potential target proteins were highly expressed in early, vitellogenic and mature ovaries and most tested DEPs had the similar trends consistent with the respective transcriptional profiles. These proteins were abundantly expressed in pre-vitellogenic and vitellogenic stages, including tropomyosin, vitellogenin, eukaryotic translation initiation factor, heat shock protein, importin protein, vitelline membrane protein, and chorion protein. Several hormone and signal pathway related proteins were also identified during ovarian development including piRNA, notch, insulin, juvenile, and ecdysone hormone signal pathways. This is the first report of a global ovary proteome of a tephritid fruit fly, and may contribute to understanding the complicate processes of ovarian development and exploring the potentially novel pest control targets.
Collapse
|
11
|
Hurd TR, Herrmann B, Sauerwald J, Sanny J, Grosch M, Lehmann R. Long Oskar Controls Mitochondrial Inheritance in Drosophila melanogaster. Dev Cell 2017; 39:560-571. [PMID: 27923120 DOI: 10.1016/j.devcel.2016.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/21/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022]
Abstract
Inherited mtDNA mutations cause severe human disease. In most species, mitochondria are inherited maternally through mechanisms that are poorly understood. Genes that specifically control the inheritance of mitochondria in the germline are unknown. Here, we show that the long isoform of the protein Oskar regulates the maternal inheritance of mitochondria in Drosophila melanogaster. We show that, during oogenesis, mitochondria accumulate at the oocyte posterior, concurrent with the bulk streaming and churning of the oocyte cytoplasm. Long Oskar traps and maintains mitochondria at the posterior at the site of primordial germ cell (PGC) formation through an actin-dependent mechanism. Mutating long oskar strongly reduces the number of mtDNA molecules inherited by PGCs. Therefore, Long Oskar ensures germline transmission of mitochondria to the next generation. These results provide molecular insight into how mitochondria are passed from mother to offspring, as well as how they are positioned and asymmetrically partitioned within polarized cells.
Collapse
Affiliation(s)
- Thomas Ryan Hurd
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Beate Herrmann
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Julia Sauerwald
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Justina Sanny
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Markus Grosch
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Ruth Lehmann
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
12
|
Zheng J, Gao M, Huynh N, Tindell SJ, Vo HDL, McDonald WH, Arkov AL. In vivo mapping of a dynamic ribonucleoprotein granule interactome in early Drosophila embryos. FEBS Open Bio 2016; 6:1248-1256. [PMID: 28203524 PMCID: PMC5302063 DOI: 10.1002/2211-5463.12144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/21/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022] Open
Abstract
Macromolecular complexes and organelles play crucial roles within cells, but their native architectures are often unknown. Here, we use an evolutionarily conserved germline organelle, the germ granule, as a paradigm. In Drosophila embryos, we map one of its interactomes using a novel in vivo crosslinking approach that employs two interacting granule proteins and determines their common neighbor molecules. We identified an in vivo granule assembly of Tudor, Aubergine, motor and metabolic proteins, and RNA helicases, and provide evidence for direct interactions within this assembly using purified components. Our study indicates that germ granules contain efficient biochemical reactors involved in post‐transcriptional gene regulation.
Collapse
Affiliation(s)
- Jimiao Zheng
- Department of Biological Sciences Murray State University USA
| | - Ming Gao
- Biology Department Indiana University Northwest Gary IN USA
| | - Nhan Huynh
- Department of Biological Sciences Murray State University USA; Present address: University of Alberta Edmonton AB Canada
| | | | - Hieu D L Vo
- Department of Biological Sciences Murray State University USA
| | - W Hayes McDonald
- Department of Biochemistry Mass Spectrometry Research Center Vanderbilt University School of Medicine Nashville TN USA
| | - Alexey L Arkov
- Department of Biological Sciences Murray State University USA
| |
Collapse
|
13
|
Wessels HH, Imami K, Baltz AG, Kolinski M, Beldovskaya A, Selbach M, Small S, Ohler U, Landthaler M. The mRNA-bound proteome of the early fly embryo. Genome Res 2016; 26:1000-9. [PMID: 27197210 PMCID: PMC4937569 DOI: 10.1101/gr.200386.115] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/26/2016] [Indexed: 12/22/2022]
Abstract
Early embryogenesis is characterized by the maternal to zygotic transition (MZT), in which maternally deposited messenger RNAs are degraded while zygotic transcription begins. Before the MZT, post-transcriptional gene regulation by RNA-binding proteins (RBPs) is the dominant force in embryo patterning. We used two mRNA interactome capture methods to identify RBPs bound to polyadenylated transcripts within the first 2 h of Drosophila melanogaster embryogenesis. We identified a high-confidence set of 476 putative RBPs and confirmed RNA-binding activities for most of 24 tested candidates. Most proteins in the interactome are known RBPs or harbor canonical RBP features, but 99 exhibited previously uncharacterized RNA-binding activity. mRNA-bound RBPs and TFs exhibit distinct expression dynamics, in which the newly identified RBPs dominate the first 2 h of embryonic development. Integrating our resource with in situ hybridization data from existing databases showed that mRNAs encoding RBPs are enriched in posterior regions of the early embryo, suggesting their general importance in posterior patterning and germ cell maturation.
Collapse
Affiliation(s)
- Hans-Hermann Wessels
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Koshi Imami
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Alexander G Baltz
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Marcin Kolinski
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Matthias Selbach
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Stephen Small
- Department of Biology, New York University, New York, New York 10003, USA
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany; Department of Biology, Humboldt University, 10115 Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
14
|
Quantitative analysis of cytoskeletal reorganization during epithelial tissue sealing by large-volume electron tomography. Nat Cell Biol 2015; 17:605-14. [DOI: 10.1038/ncb3159] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/13/2015] [Indexed: 12/26/2022]
|
15
|
Inoue H, Yoshimura J, Iwabuchi K. Gene expression of protein-coding and non-coding RNAs related to polyembryogenesis in the parasitic wasp, Copidosoma floridanum. PLoS One 2014; 9:e114372. [PMID: 25469914 PMCID: PMC4255003 DOI: 10.1371/journal.pone.0114372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/06/2014] [Indexed: 11/18/2022] Open
Abstract
Polyembryony is a unique form of development in which many embryos are clonally produced from a single egg. Polyembryony is known to occur in many animals, but the underlying genetic mechanism responsible is unknown. In a parasitic wasp, Copidosoma floridanum, polyembryogenesis is initiated during the formation and division of the morula. In the present study, cDNA libraries were constructed from embryos at the cleavage and subsequent primary morula stages, times when polyembryogenesis is likely to be controlled genetically. Of 182 and 263 cDNA clones isolated from these embryos, 38% and 70%, respectively, were very similar to protein-coding genes obtained from BLAST analysis and 55 and 65 clones, respectively, were stage-specific. In our libraries we also detected a high frequency of long non-coding RNA. Some of these showed stage-specific expression patterns in reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis. The stage-specificity of expression implies that these protein-coding and non-coding genes are related to polyembryogenesis in C. floridanum. The non-coding genes are not similar to any known non-coding RNAs and so are good candidates as regulators of polyembryogenesis.
Collapse
Affiliation(s)
- Hiroki Inoue
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Jin Yoshimura
- Graduate School of Science and Technology, and Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka, Japan
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States of America
- Marine Biosystems Research Center, Chiba University, Kamogawa, Chiba, Japan
| | - Kikuo Iwabuchi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- * E-mail:
| |
Collapse
|
16
|
Kloc M, Jedrzejowska I, Tworzydlo W, Bilinski SM. Balbiani body, nuage and sponge bodies--term plasm pathway players. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:341-8. [PMID: 24398038 DOI: 10.1016/j.asd.2013.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/28/2013] [Accepted: 12/18/2013] [Indexed: 05/14/2023]
Abstract
In many animal species, germ cells are specified by maternally provided, often asymmetrically localized germ cell determinant, termed the germ plasm. It has been shown that in model organisms such as Xenopus laevis, Danio rerio and Drosophila melanogaster germ plasm components (various proteins, mRNAs and mitochondria) are delivered to the proper position within the egg cell by germline specific organelles, i.e. Balbiani bodies, nuage accumulations and/or sponge bodies. In the present article, we review the current knowledge on morphology, molecular composition and functioning of these organelles in main lineages of arthropods and different ovary types on the backdrop of data derived from the studies of the model vertebrate species.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Hospital, The Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - Izabela Jedrzejowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
17
|
Ewen-Campen B, Jones TEM, Extavour CG. Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect. Biol Open 2013; 2:556-68. [PMID: 23789106 PMCID: PMC3683158 DOI: 10.1242/bio.20134390] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/01/2013] [Indexed: 01/23/2023] Open
Abstract
Primordial germ cell (PGC) formation in holometabolous insects like Drosophila melanogaster relies on maternally synthesised germ cell determinants that are asymmetrically localised to the oocyte posterior cortex. Embryonic nuclei that inherit this "germ plasm" acquire PGC fate. In contrast, historical studies of basally branching insects (Hemimetabola) suggest that a maternal requirement for germ line genes in PGC specification may be a derived character confined principally to Holometabola. However, there have been remarkably few investigations of germ line gene expression and function in hemimetabolous insects. Here we characterise PGC formation in the milkweed bug Oncopeltus fasciatus, a member of the sister group to Holometabola, thus providing an important evolutionary comparison to members of this clade. We examine the transcript distribution of orthologues of 19 Drosophila germ cell and/or germ plasm marker genes, and show that none of them localise asymmetrically within Oncopeltus oocytes or early embryos. Using multiple molecular and cytological criteria, we provide evidence that PGCs form after cellularisation at the site of gastrulation. Functional studies of vasa and tudor reveal that these genes are not required for germ cell formation, but that vasa is required in adult males for spermatogenesis. Taken together, our results provide evidence that Oncopeltus germ cells may form in the absence of germ plasm, consistent with the hypothesis that germ plasm is a derived strategy of germ cell specification in insects.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | | | | |
Collapse
|
18
|
Gao M, Arkov AL. Next generation organelles: structure and role of germ granules in the germline. Mol Reprod Dev 2012; 80:610-23. [PMID: 23011946 DOI: 10.1002/mrd.22115] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/14/2012] [Indexed: 12/20/2022]
Abstract
Germ cells belong to a unique class of stem cells that gives rise to eggs and sperm, and ultimately to an entire organism after gamete fusion. In many organisms, germ cells contain electron-dense structures that are also known as nuage or germ granules. Although germ granules were discovered more than 100 years ago, their composition, structure, assembly, and function are not fully understood. Germ granules contain non-coding RNAs, mRNAs, and proteins required for germline development. Here we review recent studies that highlight the importance of several protein families in germ granule assembly and function, including germ granule inducers, which initiate the granule formation, and downstream components, such as RNA helicases and Tudor domain-Piwi protein-piRNA complexes. Assembly of these components into one granule is likely to result in a highly efficient molecular machine that ensures translational control and protects germline DNA from mutations caused by mobile genetic elements. Furthermore, recent studies have shown that different somatic cells, including stem cells and neurons, produce germ granule components that play a crucial role in stem cell maintenance and memory formation, indicating a much more diverse functional repertoire for these organelles than previously thought.
Collapse
Affiliation(s)
- Ming Gao
- Department of Biological Sciences, Murray State University, Murray, Kentucky 42071, USA
| | | |
Collapse
|
19
|
Silistino-Souza R, Peruquetti RL, Taboga SR, Vilela de Azeredo-Oliveira MT. Chromatoid body: Remnants of nucleolar proteins during spermatogenesis in triatomine (Heteroptera, Triatominae). Micron 2012; 43:954-60. [DOI: 10.1016/j.micron.2012.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/02/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
20
|
Nuage morphogenesis becomes more complex: two translocation pathways and two forms of nuage coexist in Drosophila germline syncytia. Cell Tissue Res 2011; 344:169-81. [PMID: 21365220 DOI: 10.1007/s00441-011-1145-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/03/2011] [Indexed: 12/18/2022]
Abstract
We have developed a simple and reliable method of preserving antigen immunoreactivity with concomitant excellent retention of the cell ultrastructure. Using this method, we have been able to follow the origin and developmental stages of nuage accumulations within the nurse cell/oocyte syncytium in the ovary of the fruit fly, Drosophila melanogaster, at the ultrastructural level. We have found two morphologically and biochemically distinct forms of nuage material in the nurse cell cytoplasm: translocating accumulations of nuage containing the Vasa protein, termed sponge bodies and stationary polymorphic accumulations of nuage enriched in Argonaute and Survival of motor neuron proteins. Immunogold labeling combined with confocal fluorescent and ultrastructural analyses have revealed that the Vasa-containing nuage accumulations remain closely associated with the cisternae of the endoplasmic reticulum throughout their lifetimes. The migration mechanism of the Vasa-positive nuage appears distinct from the microtubule-dependent translocation of oskar ribonucleoprotein complexes. We postulate that these two distinct nuage translocation pathways converge in the formation of the polar granules within the polar/germ plasm of the oocyte posterior pole. We also provide morphological and immunocytochemical evidence that these polymorphic nuage accumulations correspond to the recently described cytoplasmic domains termed U body-P body complexes.
Collapse
|
21
|
Anne J. C-terminal moiety of Tudor contains its in vivo activity in Drosophila. PLoS One 2010; 5:e14378. [PMID: 21179416 PMCID: PMC3003691 DOI: 10.1371/journal.pone.0014378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/16/2010] [Indexed: 12/12/2022] Open
Abstract
Background In early Drosophila embryos, the germ plasm is localized to the posterior pole region and is partitioned into the germline progenitors, known as pole cells. Germ plasm, or pole plasm, contains the polar granules which form during oogenesis and are required for germline development. Components of these granules are also present in the perinuclear region of the nurse cells, the nuage. One such component is Tudor (Tud) which is a large protein containing multiple Tudor domains. It was previously reported that specific Tudor domains are required for germ cell formation and Tud localization. Methodology/Principal Findings In order to better understand the function of Tud the distribution and functional activity of fragments of Tud were analyzed. These fragments were fused to GFP and the fusion proteins were synthesized during oogenesis. Non-overlapping fragments of Tud were found to be able to localize to both the nuage and pole plasm. By introducing these fragments into a tud mutant background and testing their ability to rescue the tud phenotype, I determined that the C-terminal moiety contains the functional activity of Tud. Dividing this fragment into two parts reduces its localization in pole plasm and abolishes its activity. Conclusions/Significance I conclude that the C-terminal moiety of Tud contains all the information necessary for its localization in the nuage and pole plasm and its pole cell-forming activity. The present results challenge published data and may help refining the functional features of Tud.
Collapse
Affiliation(s)
- Joël Anne
- Department of Developmental Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| |
Collapse
|
22
|
Anne J. Targeting and anchoring Tudor in the pole plasm of the Drosophila oocyte. PLoS One 2010; 5:e14362. [PMID: 21179512 PMCID: PMC3002268 DOI: 10.1371/journal.pone.0014362] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/16/2010] [Indexed: 11/19/2022] Open
Abstract
Background Germline formation is a highly regulated process in all organisms. In Drosophila embryos germ cells are specified by the pole plasm, a specialized cytoplasmic region containing polar granules. Components of these granules are also present in the perinuclear ring surrounding nurse cells, the nuage. Two such molecules are the Vasa and Tudor proteins. How Tudor localizes and is maintained in the pole plasm is, however, not known. Methodology/Principal Findings Here, the process of Tudor localization in nuage and pole plasm was analyzed. The initial positioning of Tudor at the posterior pole of stage 9 oocytes was found to occur in the absence of a structurally detectable nuage. However, in mutants for genes encoding components of the nuage, including vasa, aubergine, maelstrom, and krimper, Tudor was detached from the posterior cortex in stage 10 oocytes, suggesting a prior passage in the nuage for its stability in the pole plasm. Further studies indicated that Valois, which was previously shown to bind in vitro to Tudor, mediates the localization of Tudor in the pole plasm by physically interacting with Oskar, the polar granule organizer. An association between Tudor and Vasa mediated by RNA was also detected in ovarian extracts. Conclusions/Significance The present data challenge the view that the assembly of the polar granules occurs in a stepwise and hierarchical manner and, consequently, a revised model of polar granule assembly is proposed. In this model Oskar recruits two downstream components of the polar granules, Vasa and Tudor, independently from each other: Vasa directly interacts with Oskar while Valois mediates the recruitment of Tudor by interacting with Oskar and Tudor.
Collapse
Affiliation(s)
- Joël Anne
- Department of Developmental Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| |
Collapse
|
23
|
Creed TM, Loganathan SN, Varonin D, Jackson CA, Arkov AL. Novel role of specific Tudor domains in Tudor-Aubergine protein complex assembly and distribution during Drosophila oogenesis. Biochem Biophys Res Commun 2010; 402:384-9. [PMID: 20946872 PMCID: PMC3014500 DOI: 10.1016/j.bbrc.2010.10.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/08/2010] [Indexed: 01/06/2023]
Abstract
Germ cells give rise to the next generation and contain ribonucleoprotein particles, germ granules. In these granules, Piwi protein Aubergine has been shown to interact with Tudor protein in Drosophila. Tudor protein has 11 Tudor domains and it has been unclear to what extent all these domains are involved in the interaction with Aubergine. Here we present direct biochemical evidence that Tudor-Aubergine interaction surface is composed of different Tudor domains including those that have not been previously implicated in Aubergine recognition. Furthermore, we show that specific single Tudor domains determine localization of Tudor complex to different sites in ovarian germ cells. Our data suggest that multiple Tudor domains of germline proteins from various species are redundantly used for interaction with the same protein partner during germline development.
Collapse
Affiliation(s)
- T. Michael Creed
- Department of Biological Sciences, Murray State University, 2112 Biology Building, Murray, KY 42071, USA
| | - Sudan N. Loganathan
- Department of Biological Sciences, Murray State University, 2112 Biology Building, Murray, KY 42071, USA
| | - Dan Varonin
- Department of Biological Sciences, Murray State University, 2112 Biology Building, Murray, KY 42071, USA
| | - Christina A. Jackson
- Department of Biological Sciences, Murray State University, 2112 Biology Building, Murray, KY 42071, USA
| | - Alexey L. Arkov
- Department of Biological Sciences, Murray State University, 2112 Biology Building, Murray, KY 42071, USA
| |
Collapse
|
24
|
|
25
|
Arkov AL, Ramos A. Building RNA-protein granules: insight from the germline. Trends Cell Biol 2010; 20:482-90. [PMID: 20541937 PMCID: PMC2929181 DOI: 10.1016/j.tcb.2010.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 11/30/2022]
Abstract
The germline originates from primordial embryonic germ cells which give rise to sperm and egg cells and consequently, to the next generation. Germ cells of many organisms contain electron-dense granules that comprise RNA and proteins indispensable for germline development. Here we review recent reports that provide important insights into the structure and function of crucial RNA and protein components of the granules, including DEAD-box helicases, Tudor domain proteins, Piwi/Argonaute proteins and piRNA. Collectively, these components function in translational control, remodeling of ribonucleoprotein complexes and transposon silencing. Furthermore, they interact with each other by means of conserved structural modules and post-translationally modified amino acids. These data suggest a widespread use of several protein motifs in germline development and further our understanding of other ribonucleoprotein structures, for example, processing bodies and neuronal granules.
Collapse
Affiliation(s)
- Alexey L Arkov
- Department of Biological Sciences, Murray State University, 2112 Biology Building, Murray, KY 42071, USA.
| | | |
Collapse
|
26
|
Thomson TC, Fitzpatrick KE, Johnson J. Intrinsic and extrinsic mechanisms of oocyte loss. Mol Hum Reprod 2010; 16:916-27. [PMID: 20651035 DOI: 10.1093/molehr/gaq066] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A great deal of evolutionary conservation has been found in the control of oocyte development, from invertebrates to women. However, little is known of mechanisms that control oocyte loss over time. Oocyte loss is often assumed to be a result of oocyte-intrinsic deficiencies or damage. In fruit flies, starvation results in halted oocyte production by germline stem cells and induces oocyte loss midway through development. When we fed wild-type flies the bacterial compound Rapamycin (RAP) to mimic starvation, production of new oocytes continued, but mid-stage loss sterilized the animals. Surprisingly, follicle cell invasion and phagocytosis of the oocyte preceded any signs of germ cell death. RAP-induced egg chamber loss was prevented when RAP receptor FKBP12 was knocked down specifically in follicle cells. Oogenesis continued past the mid-stages, and these mutants continued to lay embryos that could develop into normal adults. Hence, intact healthy oocytes can be destroyed by somatic cells responding to extrinsic stimuli. We termed this process inducible somatic oocyte destruction. RAP treatment of mouse follicles in vitro resulted in phagocytic uptake of the oocyte by granulosa cells as seen in flies. We hypothesize that extrinsic modes of oocyte loss occur in mammals.
Collapse
Affiliation(s)
- Travis C Thomson
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, Yale School of Medicine, 333 Cedar Street FMB 329F, New Haven, CT 06520, USA
| | | | | |
Collapse
|
27
|
Anne J. Arginine methylation of SmB is required for Drosophila germ cell development. Development 2010; 137:2819-28. [PMID: 20659974 DOI: 10.1242/dev.052944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sm proteins constitute the common core of spliceosomal small nuclear ribonucleoproteins. Although Sm proteins are known to be methylated at specific arginine residues within the C-terminal arginine-glycine dipeptide (RG) repeats, the biological relevance of these modifications remains unknown. In this study, a tissue-specific function of arginine methylation of the SmB protein was identified in Drosophila. Analysis of the distribution of SmB during oogenesis revealed that this protein accumulates at the posterior pole of the oocyte, a cytoplasmic region containing the polar granules, which are necessary for the formation of primordial germ cells. The pole plasm localisation of SmB requires the methylation of arginine residues in its RG repeats by the Capsuléen-Valois methylosome complex. Functional studies showed that the methylation of these arginine residues is essential for distinct processes of the germline life cycle, including germ cell formation, migration and differentiation. In particular, the methylation of a subset of these arginine residues appears essential for the anchoring of the polar granules at the posterior cortex of the oocyte, whereas the methylation of another subset controls germ cell migration during embryogenesis. These results demonstrate a crucial role of arginine methylation in directing the subcellular localisation of SmB and that this modification contributes specifically to the establishment and development of germ cells.
Collapse
Affiliation(s)
- Joël Anne
- Department of Developmental Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, Heidelberg, Germany.
| |
Collapse
|
28
|
Siomi MC, Mannen T, Siomi H. How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev 2010; 24:636-46. [PMID: 20360382 DOI: 10.1101/gad.1899210] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PIWI (P-element-induced wimpy testis) proteins are a subset of the Argonaute proteins and are expressed predominantly in the germlines of a variety of organisms, including Drosophila and mammals. PIWI proteins associate specifically with PIWI-interacting RNAs (piRNAs), small RNAs that are also expressed predominantly in germlines, and silence transposable DNA elements and other genes showing complementarities to the sequences of associated piRNAs. This mechanism helps to maintain the integrity of the genome and the development of gametes. PIWI proteins have been shown recently to contain symmetrical dimethyl arginines (sDMAs), and this modification is mediated by the methyltransferase PRMT5 (also known as Dart5 or Capsuleen). It was then demonstrated that multiple members of the Tudor (Tud) family of proteins, which are necessary for gametogenesis in both flies and mice, associate with PIWI proteins specifically through sDMAs in various but particular combinations. Although Tud domains in Tud family members are known to be sDMA-binding modules, involvement of the Tudor family at the molecular level in the piRNA pathway has only recently come into focus.
Collapse
Affiliation(s)
- Mikiko C Siomi
- Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
29
|
NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. Proc Natl Acad Sci U S A 2010; 107:3594-9. [PMID: 20133598 DOI: 10.1073/pnas.0908664107] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nanos is one of the evolutionarily conserved proteins implicated in germ cell development. We have previously shown that NANOS2 plays an important role in both the maintenance and sexual development of germ cells. However, the molecular mechanisms underlying these events have remained elusive. In our present study, we found that NANOS2 localizes to the P-bodies, known centers of RNA degradation that are abundantly accumulated in male gonocytes. We further identified by immunoprecipitation that the components of the CCR4-NOT deadenylation complex are NANOS2-interacting proteins and found that NANOS2 promotes the localization of CNOT proteins to P-bodies in vivo. We also elucidated that the NANOS2/CCR4-NOT complex has deadenylase activity in vitro, and that some of the RNAs implicated in meiosis interact with NANOS2 and are accumulated in its absence. Our current data thus indicate that the expression of these RNA molecules is normally suppressed via a NANOS2-mediated mechanism. We propose from our current findings that NANOS2-interacting RNAs may be recruited to P-bodies and degraded by the enzymes contained therein through NANOS2-mediated deadenylation.
Collapse
|
30
|
Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y, Inagaki S, Huang H, Chen D, Kodama T, Siomi H, Siomi MC. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J 2010; 28:3820-31. [PMID: 19959991 DOI: 10.1038/emboj.2009.365] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/10/2009] [Indexed: 12/25/2022] Open
Abstract
In Drosophila, the PIWI proteins, Aubergine (Aub), AGO3, and Piwi are expressed in germlines and function in silencing transposons by associating with PIWI-interacting RNAs (piRNAs). Recent studies show that PIWI proteins contain symmetric dimethyl-arginines (sDMAs) and that dPRMT5/Capsuleen/DART5 is the modifying enzyme. Here, we show that Tudor (Tud), one of Tud domain-containing proteins, associates with Aub and AGO3, specifically through their sDMA modifications and that these three proteins form heteromeric complexes. piRNA precursor-like molecules are detected in these complexes. The expression levels of Aub and AGO3, along with their degree of sDMA modification, were not changed by tud mutations. However, the population of transposon-derived piRNAs associated with Aub and AGO3 was altered by tud mutations, whereas the total amounts of small RNAs on Aub and AGO3 was increased. Loss of dprmt5 did not change the stability of Aub, but impaired its association with Tud and lowered piRNA association with Aub. Thus, in germline cells, piRNAs are quality-controlled by dPRMT5 that modifies PIWI proteins, in tight association with Tud.
Collapse
Affiliation(s)
- Kazumichi M Nishida
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
For almost 100 years, insects have been favorable "model systems" in biology. Just to mention a few examples: fruit flies in genetics and developmental biology; bugs and caterpillars in hormone research; houseflies, blowflies, and locusts in neurobiology; silk moths in pheromone research; honeybees and crickets in neuroethology. For more than 50 years the electron microscope (EM) has been a valuable tool in analyzing the structure of cells and organs of these creatures. However, progress in specimen preparation was relatively slow compared with mammalian material and, in 1970, it was taken for granted that insects were much more difficult to fix than mammals. Since then, methods have dramatically improved, and satisfactory results can now be obtained routinely with chemical as well as cryofixation. In this chapter we briefly demonstrate what can be achieved with insect material, and help the researcher to find the most appropriate method for her/his systems and scientific questions.
Collapse
Affiliation(s)
- Thomas A Keil
- Department Molecular Structural Biology, Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | | |
Collapse
|
32
|
Szakmary A, Reedy M, Qi H, Lin H. The Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster. ACTA ACUST UNITED AC 2009; 185:613-27. [PMID: 19433453 PMCID: PMC2711570 DOI: 10.1083/jcb.200903034] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yb regulates the proliferation of both germline and somatic stem cells in the Drosophila melanogaster ovary by activating piwi and hh expression in niche cells. In this study, we show that Yb protein is localized as discrete cytoplasmic spots exclusively in the somatic cells of the ovary and testis. These spots, which are different from all known cytoplasmic structures in D. melanogaster, are evenly electron-dense spheres 1.5 µm in diameter (herein termed the Yb body). The Yb body is frequently associated with mitochondria and a less electron-dense sphere of similar size that appears to be RNA rich. There are one to two Yb bodies/cell, often located close to germline cells. The N-terminal region of Yb is required for hh expression in niche cells, whereas the C-terminal region is required for localization to Yb bodies. The entire Yb protein is necessary for piwi expression in niche cells. A double mutant of Yb and a novel locus show male germline loss, revealing a function for Yb in male germline stem cell maintenance.
Collapse
Affiliation(s)
- Akos Szakmary
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
33
|
Thomson T, Liu N, Arkov A, Lehmann R, Lasko P. Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins. Mech Dev 2008; 125:865-73. [PMID: 18590813 PMCID: PMC2570953 DOI: 10.1016/j.mod.2008.06.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 05/16/2008] [Accepted: 06/04/2008] [Indexed: 11/22/2022]
Abstract
Germ plasm, a specialized cytoplasm present at the posterior of the early Drosophila embryo, is necessary and sufficient for germ cell formation. Germ plasm is rich in mitochondria and contains electron dense structures called polar granules. To identify novel polar granule components we isolated proteins that associate in early embryos with Vasa (VAS) and Tudor (TUD), two known polar granule associated molecules. We identified Maternal expression at 31B (ME31B), eIF4A, Aubergine (AUB) and Transitional Endoplasmic Reticulum 94 (TER94) as components of both VAS and TUD complexes and confirmed their localization to polar granules by immuno-electron microscopy. ME31B, eIF4A and AUB are also present in processing (P) bodies, suggesting that polar granules, which are necessary for germ line formation, might be related to P bodies. Our recovery of ER associated proteins TER94 and ME31B confirms that polar granules are closely linked to the translational machinery and to mRNP assembly.
Collapse
Affiliation(s)
- Travis Thomson
- Department of Biology and Developmental Biology Research Initiative, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, H3A 1B1, Canada
| | - Niankun Liu
- Department of Biology and Developmental Biology Research Initiative, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, H3A 1B1, Canada
| | - Alexey Arkov
- Developmental Genetics Program, HHMI, Kimmel Center of Biology and Medicine at the Skirball Institute, Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Ruth Lehmann
- Developmental Genetics Program, HHMI, Kimmel Center of Biology and Medicine at the Skirball Institute, Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Paul Lasko
- Department of Biology and Developmental Biology Research Initiative, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
34
|
Yokota S. Historical survey on chromatoid body research. Acta Histochem Cytochem 2008; 41:65-82. [PMID: 18787638 PMCID: PMC2532602 DOI: 10.1267/ahc.08010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/14/2008] [Indexed: 12/22/2022] Open
Abstract
The chromatoid body (CB) is a male reproductive cell-specific organelle that appears in spermatocytes and spermatids. The cytoplasmic granule corresponding to the CB was first discovered some 130 years ago by von Brunn in 1876. Thirty years later the German term "chromatoide Körper" (chromatoid body) was introduced to describe this granule and is still used today. In this review, first, the results obtained by light microscopic studies on the CB for the first 60 years are examined. Next, many findings revealed by electron microscopic studies are reviewed. Finally, recent molecular cell biological studies concerning the CB are discussed. The conclusion obtained by exploring the papers on CB published during the past 130 years is that many of the modern molecular cell biological studies are undoubtedly based on information accumulated by vast amounts of early studies.
Collapse
Affiliation(s)
- Sadaki Yokota
- Section of Functional Morphology, Faculty of Pharmaceutical Science, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan.
| |
Collapse
|
35
|
The Caenorhabditis elegans rsd-2 and rsd-6 genes are required for chromosome functions during exposure to unfavorable environments. Genetics 2008; 178:1875-93. [PMID: 18430922 DOI: 10.1534/genetics.107.085472] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In Caenorhabditis elegans, exogenous dsRNA can elicit systemic RNAi, a process that requires the function of many genes. Considering that the activities of many of these genes are also required for normal development, it is surprising that exposure to high concentrations of dsRNA does not elicit adverse consequences to animals. Here, we report inducible phenotypes in attenuated C. elegans strains reared in environments that include nonspecific dsRNA and elevated temperature. Under these conditions, chromosome integrity is compromised in RNAi-defective strains harboring mutations in rsd-2 or rsd-6. Specifically, rsd-2 mutants display defects in transposon silencing, while meiotic chromosome disjunction is affected in rsd-6 mutants. RSD-2 proteins localize to multiple cellular compartments, including the nucleolus and cytoplasmic compartments that, in part, are congruent with calreticulin and HAF-6. We considered that the RNAi defects in rsd-2 mutants might have relevance to membrane-associated functions; however, endomembrane compartmentalization and endocytosis/exocytosis markers in rsd-2 and rsd-6 mutants appear normal. The mutants also possess environmentally sensitive defects in cell-autonomous RNAi elicited from transgene-delivered dsRNAs. Thus, the ultimate functions of rsd-2 and rsd-6 in systemic RNAi are remarkably complex and environmentally responsive.
Collapse
|
36
|
Nakabayashi T, Nagao I, Kinjo M, Aoki Y, Tanaka M, Ohta N. Stress-induced environmental changes in a single cell as revealed by fluorescence lifetime imaging. Photochem Photobiol Sci 2008; 7:671-4. [PMID: 18528550 DOI: 10.1039/b805032e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence lifetime image of HeLa cells expressing an enhanced green fluorescent protein (EGFP)-fusion protein changes under stress, which allows noninvasive determination of the status of individual cells.
Collapse
Affiliation(s)
- Takakazu Nakabayashi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Vilmos P, Henn L, Szathmári M, Lukácsovich T, Sipos L, Erdélyi M. Application of the dual-tagging gene trap method combined with a novel automatic selection system to identify genes involved in germ cell development in Drosophila melanogaster. ACTA BIOLOGICA HUNGARICA 2008; 58 Suppl:81-94. [PMID: 18297796 DOI: 10.1556/abiol.58.2007.suppl.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The passage of highly specialized germ cells to future generations is essential for the maintenance of species. To date, conventional genetic screens identified relatively few genes that are involved in germ cell development. We aimed to identify germ line specific genes on the X chromosome of Drosophila melanogaster by the application of a new method: the dual-tagging gene-trap system (GT). A modified version of the gene-trap element was used in our experiments and the resulting insertional mutants were screened for grandchild-less phenotype with the help of the attached-X system and a sensitized genetic background developed in our laboratory. Among the 800 insertions mapped to the X chromosome 33 new mutations were identified that exhibited grandchild-less phenotype, 6 gave visible phenotype and 12 were conditional lethal. The cloning of a selected group of the 33 lines showing grandchild-less phenotype confirmed that we have identified new candidates for genes involved in germ cell development. One of them named pebbled (peb) is discussed in details in this paper. Finally, we also describe a novel automatic selection system developed in our laboratory which enables the extension of the GT mutagenesis to the autosomes.
Collapse
Affiliation(s)
- P Vilmos
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
38
|
Lehmann R, Ephrussi A. Germ plasm formation and germ cell determination in Drosophila. CIBA FOUNDATION SYMPOSIUM 2007; 182:282-96; discussion 296-300. [PMID: 7530619 DOI: 10.1002/9780470514573.ch16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In organisms as diverse as frogs, worms and flies germline precursor cells are set aside from the somatic cells early in development. It has been proposed that specific molecules, referred to as germ cell determinants, are deposited in the egg and direct the germ cell fate, but the molecular nature and function of these determinants is not fully understood. Genetic and molecular analysis in Drosophila melanogaster indicates that germ cell determination involves not only the synthesis of specific germ cell factors but also the proper localization and assembly of a morphologically distinct germ plasm. A pathway for germ plasm assembly has been established in which the oskar gene has a central role. The amount of oskar product in the embryo controls the number of germ cells formed and mislocalization of oskar RNA and protein in the egg cell leads to the formation of ectopic germ cells in the embryo. In addition to its role in anchoring germ cell-specific signals, the germ plasm also serves as the source of abdomen-specific signal. Such a colocalization of morphogenetic signals involved in germ cell formation and in the specification of the body axis is not unique to Drosophila but is also found in Caenorhabditis elegans and Xenopus.
Collapse
Affiliation(s)
- R Lehmann
- Whitehead Institute, MIT Biology Department, Howard Hughes Medical Institute, Cambridge, MA 02142
| | | |
Collapse
|
39
|
Coffman JA, Denegre JM. Mitochondria, redox signaling and axis specification in metazoan embryos. Dev Biol 2007; 308:266-80. [PMID: 17586486 DOI: 10.1016/j.ydbio.2007.05.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 05/30/2007] [Accepted: 05/30/2007] [Indexed: 11/29/2022]
Abstract
Mitochondria are not only the major energy generators of the eukaryotic cell but they are also sources of signals that control gene expression and cell fate. While mitochondria are often asymmetrically distributed in early embryos, little is known about how they contribute to axial patterning. Here we review studies of mitochondrial distribution in metazoan eggs and embryos and the mechanisms of redox signaling, and speculate on the role that mitochondrial anisotropies might play in the developmental specification of cell fate during embryogenesis of sea urchins and other animals.
Collapse
Affiliation(s)
- James A Coffman
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA.
| | | |
Collapse
|
40
|
Lim AK, Kai T. Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:6714-9. [PMID: 17428915 PMCID: PMC1871851 DOI: 10.1073/pnas.0701920104] [Citation(s) in RCA: 295] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Indexed: 01/25/2023] Open
Abstract
The nuage is an electron-dense perinuclear structure that is known to be a hallmark of animal germ-line cells. Although the conservation of the nuage throughout evolution accentuates its essentiality, its role(s) and the exact mechanism(s) by which it functions in the germ line still remain unknown. Here, we report a nuage component, Krimper (KRIMP), in Drosophila melanogaster and show that it ensures the repression of the selfish genetic elements in the female germ line. The Krimp loss-of-function allele exhibited female sterility, defects in karyosome formation and oocyte polarity, and precocious osk translation. These phenotypes are commonly observed in the other nuage component mutants, vasa (vas) and maelstrom (mael), and the RNA-silencing component mutants, spindle-E (spn-E) and aubergine (aub), suggesting a shared underlying defect that uses RNA silencing. Moreover, we demonstrated that the localization of the nuage components depends on both SPN-E and AUB and that the selfish genetic elements were derepressed to different extents in the nuage component mutants, as well as in aub and armitage (armi) mutants. In the nuage component mutants, vas, krimp, and mael, the levels of roo, I-element, and HeT-A repeat-associated small interfering RNAs were greatly reduced. Hence, our data suggest that the nuage functions as a specialized center that protects the genome in the germ-line cells via gene regulation mediated by repeat-associated small interfering RNAs.
Collapse
Affiliation(s)
- Ai Khim Lim
- Germ-Line Biology Laboratory, Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604
| | - Toshie Kai
- Germ-Line Biology Laboratory, Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604
| |
Collapse
|
41
|
Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 2007; 8:9-22. [PMID: 17183357 DOI: 10.1038/nrm2080] [Citation(s) in RCA: 721] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-transcriptional processes have a central role in the regulation of eukaryotic gene expression. Although it has been known for a long time that these processes are functionally linked, often by the use of common protein factors, it has only recently become apparent that many of these processes are also physically connected. Indeed, proteins that are involved in mRNA degradation, translational repression, mRNA surveillance and RNA-mediated gene silencing, together with their mRNA targets, colocalize within discrete cytoplasmic domains known as P bodies. The available evidence indicates that P bodies are sites where mRNAs that are not being translated accumulate, the information carried by associated proteins and regulatory RNAs is integrated, and their fate - either translation, silencing or decay - is decided.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Kent McDonald
- Electron Microscope Laboratory, University of California, Berkeley, California 94720, USA
| |
Collapse
|
43
|
Zhao Q, Qin L, Jiang F, Wu B, Yue W, Xu F, Rong Z, Yuan H, Xie X, Gao Y, Bai C, Bartlam M, Pei X, Rao Z. Structure of Human Spindlin1. J Biol Chem 2007; 282:647-56. [PMID: 17082182 DOI: 10.1074/jbc.m604029200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spindlin1, a meiotic spindle-binding protein that is highly expressed in ovarian cancer cells, was first identified as a gene involved in gametogenesis. It appeared to be a target for cell cycle-dependent phosphorylation and was demonstrated to disturb the cell cycle. Here we report the crystal structure of human spindlin1 to 2.2A of resolution, representing the first three-dimensional structure from the spin/ssty (Y-linked spermiogenesis-specific transcript) gene family. The refined structure, containing three repeats of five/four anti-parallel beta-strands, exhibits a novel arrangement of tandem Tudor-like domains. Two phosphate ions, chelated by Thr-95 and other residues, appear to stabilize the long loop between domains I and II, which might mediate the cell cycle regulation activity of spindlin1. Flow cytometry experiments indicate that cells expressing spindlin1 display a different cell cycle distribution in mitosis, whereas those expressing a T95A mutant, which had a great decrease in phosphorous content, have little effect on the cell cycle. We further identified associations of spindlin1 with nucleic acid to provide a biochemical basis for its cell cycle regulation and other functions.
Collapse
Affiliation(s)
- Qiang Zhao
- Tsinghua-Institute of Biophysics Joint Research Group for Structural Biology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hosokawa M, Shoji M, Kitamura K, Tanaka T, Noce T, Chuma S, Nakatsuji N. Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP: domain composition, intracellular localization, and function in male germ cells in mice. Dev Biol 2006; 301:38-52. [PMID: 17141210 DOI: 10.1016/j.ydbio.2006.10.046] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 10/27/2006] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
The germ-line cells of many animals possess a characteristic cytoplasmic structure termed nuage or germinal granules. In mice, nuage that is prominent in postnatal male germ cells is also called intermitochondrial cement or chromatoid bodies. TDRD1/MTR-1, which contains Tudor domain repeats, is a specific component of the mouse nuage, analogously to Drosophila Tudor, a constituent of polar granules/nuage in oocytes and embryos. We show that TDRD6 and TDRD7/TRAP, which also contain multiple Tudor domains, specifically localize to nuage and form a ribonucleoprotein complex together with TDRD1/MTR-1. The characteristic co-localization of TDRD1, 6 and 7 was disrupted in a mutant of mouse vasa homologue/DEAD box polypeptide 4 (Mvh/Ddx4), which encodes another evolutionarily conserved component of nuage. In vivo over-expression experiments of the TDRD proteins and truncated forms during male germ cell differentiation showed that a single Tudor domain is a structural unit that localizes or accumulates to nuage, but the expression of the truncated, putative dominant negative forms is detrimental to meiotic spermatocytes. These results indicate that the Tudor-related proteins, which contain multiple repeats of the Tudor domain, constitute an evolutionarily conserved class of nuage components in the germ-line, and their localization or accumulation to nuage is likely conferred by a Tudor domain structure and downstream of Mvh, while the characteristic repeated architecture of the domain is functionally essential for the differentiation of germ cells.
Collapse
Affiliation(s)
- Mihoko Hosokawa
- Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Shogoin, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Chuma S, Hosokawa M, Kitamura K, Kasai S, Fujioka M, Hiyoshi M, Takamune K, Noce T, Nakatsuji N. Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc Natl Acad Sci U S A 2006; 103:15894-9. [PMID: 17038506 PMCID: PMC1635099 DOI: 10.1073/pnas.0601878103] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embryonic patterning and germ-cell specification in mice are regulative and depend on zygotic gene activities. However, there are mouse homologues of Drosophila maternal effect genes, including vasa and tudor, that function in posterior and germ-cell determination. We report here that a targeted mutation in Tudor domain containing 1/mouse tudor repeat 1 (Tdrd1/Mtr-1), a tudor-related gene in mice, leads to male sterility because of postnatal spermatogenic defects. TDRD1/MTR-1 predominantly localizes to nuage/germinal granules, an evolutionarily conserved structure in the germ line, and its intracellular localization is downstream of mouse vasa homologue/DEAD box polypeptide 4 (Mvh/Ddx4), similar to Drosophila vasa-tudor. Tdrd1/Mtr-1 mutants lack, and Mvh/Ddx4 mutants show, strong reduction of intermitochondrial cement, a form of nuage in both male and female germ cells, whereas chromatoid bodies, another specialized form of nuage in spermatogenic cells, are observed in Tdrd1/Mtr-1 mutants. Hence, intermitochondrial cement is not a direct prerequisite for oocyte development and fertility in mice, indicating differing requirements for nuage and/or its components between male and female germ cells. The result also proposes that chromatoid bodies likely have an origin independent of or additional to intermitochondrial cement. The analogy between Mvh-Tdrd1 in mouse spermatogenic cells and vasa-tudor in Drosophila oocytes suggests that this molecular pathway retains an essential role(s) that functions in divergent species and in different stages/sexes of the germ line.
Collapse
Affiliation(s)
- Shinichiro Chuma
- Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Megosh HB, Cox DN, Campbell C, Lin H. The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr Biol 2006; 16:1884-94. [PMID: 16949822 DOI: 10.1016/j.cub.2006.08.051] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 07/27/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND The germ plasm has long been demonstrated to be necessary and sufficient for germline determination, with translational regulation playing a key role in the process. Beyond this, little is known about molecular activities underlying germline determination. RESULTS We report the function of Drosophila PIWI, DICER-1, and dFMRP (Fragile X Mental Retardation Protein) in germline determination. PIWI is a maternal component of the polar granule, a germ-plasm-specific organelle essential for germline specification. Depleting maternal PIWI does not affect OSK or VASA expression or abdominal patterning but leads to failure in pole-plasm maintenance and primordial-germ-cell (PGC) formation, whereas doubling and tripling the maternal piwi dose increases OSK and VASA levels correspondingly and doubles and triples the number of PGCs, respectively. Moreover, PIWI forms a complex with dFMRP and DICER-1, but not with DICER-2, in polar-granule-enriched fractions. Depleting DICER-1, but not DICER-2, also leads to a severe pole-plasm defect and a reduced PGC number. These effects are also seen, albeit to a lesser extent, for dFMRP, another component of the miRISC complex. CONCLUSIONS Because DICER-1 is required for the miRNA pathway and DICER-2 is required for the siRNA pathway yet neither is required for the rasiRNA pathway, our data implicate a crucial role of the PIWI-mediated miRNA pathway in regulating the levels of OSK, VASA, and possibly other genes involved in germline determination in Drosophila.
Collapse
Affiliation(s)
- Heather B Megosh
- Department of Cell Biology and Duke University Medical Center, Durham, North Carolina 27705, USA
| | | | | | | |
Collapse
|
47
|
Ikenishi K, Nishiumi F, Komiya T. The Xdsg protein in presumptive primordial germ cells (pPGCs) is essential to their differentiation into PGCs in Xenopus. Dev Biol 2006; 297:483-92. [PMID: 16806152 DOI: 10.1016/j.ydbio.2006.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 05/08/2006] [Accepted: 05/23/2006] [Indexed: 11/24/2022]
Abstract
In order to know the role of the Xdsg gene in presumptive PGCs (pPGCs) of Xenopus, we attempted to inhibit the translation of Xdsg mRNA in pPGCs by injecting antisense morpholino oligo (asMO), together with Fluorescein Dextran-Lysine (FDL), into single germ plasm-bearing cells of 32-cell embryos. Among three types of asMOs complementary to different parts of the 5'-untranslated region of Xdsg mRNA tested, only one asMO, designated as Xdsg-3, inhibited the translation of the mRNA in FDL-labeled pPGCs, resulting in the absence of labeled PGCs in experimental tadpoles. On the other hand, two other asMOs, Xdsg-1 and -2, did not inhibit the translation, so that a similar number of labeled PGCs found in FDL-injected but asMO-uninjected control tadpoles were observed in experimental tadpoles derived from asMO-injected embryos. Surprisingly, use of Xdsg-3 asMO resulted in the disappearance of the protein of Xenopus vasa homolog (Xenopus vasa-like gene 1, XVLG1) from FDL-labeled pPGCs by inhibiting the translation of XVLG1 mRNA. However, the effect of Xdsg-3 asMO on the translation of Xdsg and XVLG1 mRNAs and PGC formation could be canceled by the coinjection with Xdsg mRNA. Consequently, the Xdsg protein in pPGCs may play an important role in the formation of PGCs by regulating the production of XVLG1 protein.
Collapse
Affiliation(s)
- Kohji Ikenishi
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan.
| | | | | |
Collapse
|
48
|
Irion U, Adams J, Chang CW, St Johnston D. Miranda couples oskar mRNA/Staufen complexes to the bicoid mRNA localization pathway. Dev Biol 2006; 297:522-33. [PMID: 16905128 DOI: 10.1016/j.ydbio.2006.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 11/17/2022]
Abstract
The double-stranded RNA binding protein Staufen is required for the microtubule-dependent localization of bicoid and oskar mRNAs to opposite poles of the Drosophila oocyte and also mediates the actin-dependent localization of prospero mRNA during the asymmetric neuroblast divisions. The posterior localization of oskar mRNA requires Staufen RNA binding domain 2, whereas prospero mRNA localization mediated the binding of Miranda to RNA binding domain 5, suggesting that different Staufen domains couple mRNAs to distinct localization pathways. Here, we show that the expression of Miranda during mid-oogenesis targets Staufen/oskar mRNA complexes to the anterior of the oocyte, resulting in bicaudal embryos that develop an abdomen and pole cells instead of the head and thorax. Anterior Miranda localization requires microtubules, rather than actin, and depends on the function of Exuperantia and Swallow, indicating that Miranda links Staufen/oskar mRNA complexes to the bicoid mRNA localization pathway. Since Miranda is expressed in late oocytes and bicoid mRNA localization requires the Miranda-binding domain of Staufen, Miranda may play a redundant role in the final step of bicoid mRNA localization. Our results demonstrate that different Staufen-interacting proteins couple Staufen/mRNA complexes to distinct localization pathways and reveal that Miranda mediates both actin- and microtubule-dependent mRNA localization.
Collapse
Affiliation(s)
- Uwe Irion
- The Gurdon Institute, University of Cambridge, Tennis Court Rd., Cambridge, CB2 1QN, UK
| | | | | | | |
Collapse
|
49
|
Mo S, Song P, Lv D, Chen Y, Zhou W, Gong W, Zhu Z. Zebrafish z-otu, a novel Otu and Tudor domain-containing gene, is expressed in early stages of oogenesis and embryogenesis. ACTA ACUST UNITED AC 2006; 1732:1-7. [PMID: 16469398 DOI: 10.1016/j.bbaexp.2005.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 12/06/2005] [Accepted: 12/19/2005] [Indexed: 11/28/2022]
Abstract
Several studies have suggested that Otu domain had de-ubiquitinating activity and Tudor domain was important for the formation of germ cells. Here, we reported a novel zebrafish ovary-specific gene containing Otu and Tudor domain, z-otu, which was expressed at stages I-III oocytes and embryonic stages from zygotes to early blastula during embryonic cells maintained their totipotency. Therefore, z-otu might link the ubiquitin signaling pathway to early oogenesis and maintaining the totipotency of embryonic cell.
Collapse
Affiliation(s)
- Saijun Mo
- Laboratory of Molecular Genetics and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
All germ cells throughout the animal kingdom contain cytoplasmic cloud-like accumulations of material called nuage. Polar bodies in Drosophila oocytes are probably the best known forms of nuage. In spermatogenic cells, the nuage is called chromatoid body (CB). In early spermatids of the rat, it has a diameter of 1-1.5 microm and a finely filamentous lobular structure. Typically, it is associated with a multitude of vesicles. It is first clearly seen in mid- and late pachytene spermatocytes as an intermitochondrial dense material. During early spermiogenesis it is seen near the Golgi complex and frequently connected by material continuities through nuclear pore complexes with intranuclear particles. In living cells, the CB moves around the Golgi complex and has frequent contacts with it. The CB also moves perpendicularly to the nuclear envelope, and even through cytoplasmic bridges to the neighbour spermatids. One of the major components of the CB is a DEAD-box RNA helicase VASA that belongs to a class of proteins thought to act as RNA chaperones. It is a general marker of all germ cells and best characterized in Drosophila. The mouse VASA homologue was recently used as a marker of sperm formation from embryonic stem cells. It becomes generally accepted that the CB with its associated structures constitute a mechanism of post-transcriptional processing and storage of several mRNA species that are shared between neighbour cells and used for translation when the genome of the spermatids becomes inactive.
Collapse
Affiliation(s)
- Martti Parvinen
- Department of Anatomy, University of Turku, FIN-20520 Turku, Finland.
| |
Collapse
|