1
|
Gao T, Liu Y, Li J, Zhang Y, Wu B. Function of manchette and intra-manchette transport in spermatogenesis and male fertility. Cell Commun Signal 2025; 23:250. [PMID: 40442757 PMCID: PMC12123824 DOI: 10.1186/s12964-025-02213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
The manchette is a transient skirt-like structure consisting of microtubules (MTs) and filamentous actin (F-actin) surrounding the elongating sperm head during spermiogenesis. It is pivotal in sperm head shaping controlled by the acrosome-acroplaxome-manchette complex, acrosome formation, and flagellar assembly by microtubular-based protein delivery. Defects in the manchette frequently lead to teratozoospermia concomitant with oligozoospermia and asthenozoospermia, but the pathogenic mechanism underlying manchette function and its role in male infertility remain poorly understood. In this review, we systematically described the assembly and disassembly of the manchette, intra-manchette transport (IMT) and its regulatory model, the function and mechanism of manchette and IMT in regulating sperm head shaping and flagellar assembly during spermatogenesis; summarized the research progress of manchette-related genes related to male infertility; and listed the manchette-related proteins in knockout mouse models and clinical cases, which provide the theoretical basis for an in-depth understanding of the molecular mechanism of manchette involved in spermatogenesis and male fertility for understanding the potentially developing treatments for infertility and reproductive disorders.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Liu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Li
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yvxia Zhang
- The First People's Hospital of Kunshan, Suzhou, China
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Hasse T, Zhang Z, Huang YMM. In Silico Discovery of Potential Inhibitors Targeting the MEIG1-PACRG Complex for Male Contraceptive Development. Proteins 2025. [PMID: 40265567 DOI: 10.1002/prot.26829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025]
Abstract
The interaction between meiosis-expressed gene 1 (MEIG1) and Parkin co-regulated gene (PACRG) is a critical determinant of spermiogenesis, the process by which round spermatids mature into functional spermatozoa. Disruption of the MEIG1-PACRG complex can impair sperm development, highlighting its potential as a therapeutic target for addressing male infertility or for the development of non-hormonal contraceptive methods. This study used virtual screening, molecular docking, and molecular dynamics (MD) simulations to identify small molecule inhibitors targeting the MEIG1-PACRG interface. MD simulations provided representative protein conformations, which were used to virtually screen a library of 821 438 compounds, resulting in 48 high-ranking candidates for each protein. PACRG emerged as a favorable target due to its flexible binding pockets and better docking scores compared to MEIG1. Key binding residues with compounds included W50, Y68, N70, and E74 on MEIG1, and K93, W96, E101, and H137 on PACRG. MD simulations revealed that compound stability in MEIG1 complexes is primarily maintained by hydrogen bonding with E74 and π-π stacking interactions with W50 and Y68. In PACRG complexes, compound stabilization is facilitated by hydrogen bonding with E101 and π-π interactions involving W96 and H137. These findings highlight distinct molecular determinants of ligand binding for each protein. Our work provides mechanistic insights and identifies promising compounds for further experimental validation, establishing a foundation for developing MEIG1-PACRG interaction inhibitors as male contraceptives.
Collapse
Affiliation(s)
- Timothy Hasse
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Yu-Ming M Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
3
|
Herrboldt MA, Wright CNC, Bonett RM. Seasonal heterochrony of reproductive development and gene expression in a polymorphic salamander. Dev Dyn 2025; 254:330-347. [PMID: 39360498 DOI: 10.1002/dvdy.744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Life cycle evolution includes ecological transitions and shifts in the timing of somatic and reproductive development (heterochrony). However, heterochronic changes can be tissue-specific, ultimately leading to the differential diversification of traits. Salamanders exhibit alternative life cycle polymorphisms involving either an aquatic to terrestrial metamorphosis (biphasic) or retention of aquatic larval traits into adulthood (paedomorphic). In this study, we used gene expression and histology to evaluate how life cycle evolution impacts temporal reproductive patterns in males of a polymorphic salamander. RESULTS We found that heterochrony shifts the distribution of androgen signaling in the integument, which is correlated with significant differences in seasonal reproductive gland development and pheromone gene expression. In the testes, androgen receptor (ar) expression does not significantly vary between morphs or across seasons. We found significant differences in the onset of spermatogenesis, but by peak breeding season the testes were the same with respect to both histology and gene expression. CONCLUSION This study provides an example of how seasonal heterochronic shifts in tissue-specific ar gene expression can disparately impact seasonal development and expression patterns across tissues, providing a potential mechanism for differential diversification of reproductive traits.
Collapse
Affiliation(s)
| | - Claire N C Wright
- Department of Biological Science, University of Tulsa, Tulsa, Oklahoma, USA
| | - Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, Oklahoma, USA
| |
Collapse
|
4
|
Sheng Y, Yap YT, Li W, Dhikhirullahi O, Niu C, Rabbani M, Krawetz SA, Hammoud SS, Orwig KE, Zhang Z. Normal embryo development needs MEIG1-mediated sperm formation. FASEB J 2025; 39:e70426. [PMID: 40035530 DOI: 10.1096/fj.202500109r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Normal embryo development is a complex process that requires normal sperm to fertilize normal oocytes. Abnormal embryogenesis can be caused by either abnormal oocytes or abnormal sperm. However, the impact of sperm-associated factors is often underappreciated. Association between defects in sperm chromatin and poor embryo development has been consistently reported. In sperm cells, most histones are replaced by protamines to remodel sperm cell chromatin. However, the mechanism of nuclear protein replacement is largely unknown. Meiosis expressed gene 1 (MEIG1) plays a unique role in male fertility. The protein is recruited to the manchette at a late stage of spermatogenesis. The manchette is a unique structure only present in male germ cells, and one of the proposed functions is replacing histones with protamines. In this study, ICSI was conducted using sperm heads from the Meig1 KO mice. Significantly reduced fertilization was observed, and few embryos developed to blastocysts, which were associated with severe sperm DNA damage. Thus, we discovered an unexpected role for MEIG1 extending beyond spermatogenesis to include a role in embryogenesis, likely through remodeling sperm chromatin.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yi Tian Yap
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Wei Li
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Opeyemi Dhikhirullahi
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Changmin Niu
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, USA
- School of Nursing School of Public Health, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen A Krawetz
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhibing Zhang
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, USA
- School of Nursing School of Public Health, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Hasse T, Zhang Z, Huang YMM. In silico discovery of potential inhibitors targeting the MEIG1-PACRG complex for male contraceptive development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628759. [PMID: 39763986 PMCID: PMC11702573 DOI: 10.1101/2024.12.16.628759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The interaction between meiosis-expressed gene 1 (MEIG1) and Parkin co-regulated gene (PACRG) is a critical determinant of spermiogenesis, the process by which round spermatids mature into functional spermatozoa. Disruption of the MEIG1-PACRG complex can impair sperm development, highlighting its potential as a therapeutic target for addressing male infertility or for the development of non-hormonal contraceptive methods. This study used virtual screening, molecular docking, and molecular dynamics (MD) simulations to identify small molecule inhibitors targeting the MEIG1-PACRG interface. MD simulations provided representative protein conformations, which were used to virtually screen a library of over 800,000 compounds, resulting in 48 high-ranking candidates for each protein. PACRG emerged as a favorable target due to its flexible binding pockets and better docking scores compared to MEIG1. Key binding residues with compounds included W50, Y68, N70, and E74 on MEIG1, and K93, W96, E101, and H137 on PACRG. MD simulations revealed that compound stability in MEIG1 complexes is primarily maintained by hydrogen bonding with E74 and π-π stacking interactions with W50 and Y68. In PACRG complexes, compound stabilization is facilitated by hydrogen bonding with E101 and π-π interactions involving W96 and H137. These findings highlight distinct molecular determinants of ligand binding for each protein. Our work provides mechanistic insights and identifies promising compounds for further experimental validation, establishing a foundation for developing MEIG1-PACRG interaction inhibitors as male contraceptives.
Collapse
|
6
|
Podgrajsek R, Hodzic A, Stimpfel M, Kunej T, Peterlin B. Insight into the complexity of male infertility: a multi-omics review. Syst Biol Reprod Med 2024; 70:73-90. [PMID: 38517373 DOI: 10.1080/19396368.2024.2317804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024]
Abstract
Male infertility is a reproductive disorder, accounting for 40-50% of infertility. Currently, in about 70% of infertile men, the cause remains unknown. With the introduction of novel omics and advancement in high-throughput technology, potential biomarkers are emerging. The main purpose of our work was to overview different aspects of omics approaches in association with idiopathic male infertility and highlight potential genes, transcripts, non-coding RNA, proteins, and metabolites worth further exploring. Using the Gene Ontology (GO) analysis, we aimed to compare enriched GO terms from each omics approach and determine their overlapping. A PubMed database screening for the literature published between February 2014 and June 2022 was performed using the keywords: male infertility in association with different omics approaches: genomics, epigenomics, transcriptomics, ncRNAomics, proteomics, and metabolomics. A GO enrichment analysis was performed using the Enrichr tool. We retrieved 281 global studies: 171 genomics (DNA level), 21 epigenomics (19 of methylation and two histone residue modifications), 15 transcriptomics, 31 non-coding RNA, 29 proteomics, two protein posttranslational modification, and 19 metabolomics studies. Gene ontology comparison showed that different omics approaches lead to the identification of different molecular factors and that the corresponding GO terms, obtained from different omics approaches, do not overlap to a larger extent. With the integration of novel omics levels into the research of idiopathic causes of male infertility, using multi-omic systems biology approaches, we will be closer to finding the potential biomarkers and consequently becoming aware of the entire spectrum of male infertility, their cause, prognosis, and potential treatment.
Collapse
Affiliation(s)
- Rebeka Podgrajsek
- Department of Human Reproduction, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Alenka Hodzic
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Novo mesto, Novo Mesto, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Netherton JK, Ogle RA, Robinson BR, Molloy M, Krisp C, Velkov T, Casagranda F, Dominado N, Silva Balbin Villaverde AI, Zhang XD, Hime GR, Baker MA. The role of HnrnpF/H as a driver of oligoteratozoospermia. iScience 2024; 27:110198. [PMID: 39092172 PMCID: PMC11292545 DOI: 10.1016/j.isci.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Male subfertility or infertility is a common condition often characterized by men producing a low number of sperm with poor quality. To gain insight into this condition, we performed a quantitative proteomic analysis of semen samples obtained from infertile and fertile men. At least 6 proteins showed significant differences in regulation of alternatively spliced isoforms. To investigate this link between aberrant alternative splicing and production of poor-quality spermatozoa, we overexpressed the hnrnpH/F-orthologue Glorund (Glo) in Drosophila, which was also found to be abundant in poor quality human sperm. Transgenic animals produced low numbers of morphologically defective spermatozoa and aberrant formation of the "dense body," an organelle akin to the mammalian manchette. Furthermore, fertility trials demonstrated that transgenic flies were either completely infertile or highly subfertile. These findings suggest that dysregulation of hnrnpH/F is likely to result in the production of low-quality semen, leading to subfertility or infertility in men.
Collapse
Affiliation(s)
- Jacob K. Netherton
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rachel A. Ogle
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Benjamin R. Robinson
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Department of Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility, Department of Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | - Tony Velkov
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, VIC 3168, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole Dominado
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark A. Baker
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
8
|
An J, Wang J, Kong S, Song S, Chen W, Yuan P, He Q, Chen Y, Li Y, Yang Y, Wang W, Li R, Yan L, Yan Z, Qiao J. GametesOmics: A Comprehensive Multi-omics Database for Exploring the Gametogenesis in Humans and Mice. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad004. [PMID: 38862425 PMCID: PMC12012701 DOI: 10.1093/gpbjnl/qzad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 06/13/2024]
Abstract
Gametogenesis plays an important role in the reproduction and evolution of species. The transcriptomic and epigenetic alterations in this process can influence the reproductive capacity, fertilization, and embryonic development. The rapidly increasing single-cell studies have provided valuable multi-omics resources. However, data from different layers and sequencing platforms have not been uniformed and integrated, which greatly limits their use for exploring the molecular mechanisms that underlie oogenesis and spermatogenesis. Here, we develop GametesOmics, a comprehensive database that integrates the data of gene expression, DNA methylation, and chromatin accessibility during oogenesis and spermatogenesis in humans and mice. GametesOmics provides a user-friendly website and various tools, including Search and Advanced Search for querying the expression and epigenetic modification(s) of each gene; Tools with Differentially expressed gene (DEG) analysis for identifying DEGs, Correlation analysis for demonstrating the genetic and epigenetic changes, Visualization for displaying single-cell clusters and screening marker genes as well as master transcription factors (TFs), and MethylView for studying the genomic distribution of epigenetic modifications. GametesOmics also provides Genome Browser and Ortholog for tracking and comparing gene expression, DNA methylation, and chromatin accessibility between humans and mice. GametesOmics offers a comprehensive resource for biologists and clinicians to decipher the cell fate transition in germ cell development, and can be accessed at http://gametesomics.cn/.
Collapse
Affiliation(s)
- Jianting An
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jing Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Siming Kong
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shi Song
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Wei Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Peng Yuan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Qilong He
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yidong Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ye Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yi Yang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Wei Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Liying Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Zhiqiang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100191, China
| |
Collapse
|
9
|
Wang Y, Huang X, Sun G, Chen J, Wu B, Luo J, Tang S, Dai P, Zhang F, Li J, Wang L. Coiled-coil domain-containing 38 is required for acrosome biogenesis and fibrous sheath assembly in mice. J Genet Genomics 2024; 51:407-418. [PMID: 37709195 DOI: 10.1016/j.jgg.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
During spermiogenesis, haploid spermatids undergo dramatic morphological changes to form slender sperm flagella and cap-like acrosomes, which are required for successful fertilization. Severe deformities in flagella cause a male infertility syndrome, multiple morphological abnormalities of the flagella (MMAF), while acrosomal hypoplasia in some cases leads to sub-optimal embryonic developmental potential. However, evidence regarding the occurrence of acrosomal hypoplasia in MMAF is limited. Here, we report the generation of base-edited mice knocked out for coiled-coil domain-containing 38 (Ccdc38) via inducing a nonsense mutation and find that the males are infertile. The Ccdc38-KO sperm display acrosomal hypoplasia and typical MMAF phenotypes. We find that the acrosomal membrane is loosely anchored to the nucleus and fibrous sheaths are disorganized in Ccdc38-KO sperm. Further analyses reveal that Ccdc38 knockout causes a decreased level of TEKT3, a protein associated with acrosome biogenesis, in testes and an aberrant distribution of TEKT3 in sperm. We finally show that intracytoplasmic sperm injection overcomes Ccdc38-related infertility. Our study thus reveals a previously unknown role for CCDC38 in acrosome biogenesis and provides additional evidence for the occurrence of acrosomal hypoplasia in MMAF.
Collapse
Affiliation(s)
- Yaling Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guoying Sun
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Jingwen Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Bangguo Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jiahui Luo
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Shuyan Tang
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Peng Dai
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Feng Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.
| |
Collapse
|
10
|
Mohanty G, Tourzani DA, Gervasi MG, Houle E, Oluwayiose O, Suvorov A, Richard Pilsner J, Visconti PE. Effects of preconception exposure to phthalates on mouse sperm capacitation parameters. Andrology 2023; 11:1484-1494. [PMID: 36891737 PMCID: PMC11004914 DOI: 10.1111/andr.13423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/04/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Phthalates have been linked to adverse male reproductive health, including poor sperm quality and embryo quality as well as a longer time to pregnancy (months of unprotected intercourse before conception occurs). The present study aimed to evaluate the effect of preconception exposure to two ubiquitous phthalate chemicals, di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and their mixture on sperm function, fertilization, and embryo development in mice. MATERIALS AND METHODS Adult male C57BL/6J mice aged 8-9 weeks were exposed to di(2-ethylhexyl) phthalate, di-n-butyl phthalate, or their mixture (di-n-butyl phthalate + di(2-ethylhexyl) phthalate) at 2.5 mg/kg/day or vehicle for 40 days (equivalent to one spermatogenic cycle) via surgically implanted osmotic pumps. Caudal epididymal spermatozoa were extracted and analyzed for motility using computer-assisted sperm analyses. Sperm phosphorylation of protein kinase A substrates and tyrosine phosphorylation, markers of early and late capacitation events, respectively, were analyzed by Western blots. In vitro fertilization was used to evaluate the sperm fertilizing capacity. RESULTS While the study did not reveal any significant differences in sperm motility and fertilization potential, abnormal sperm morphology was observed in all phthalate exposures, particularly in the phthalate mixture group. In addition, the study revealed significant differences in sperm concentration between control and exposed groups. Moreover, protein phosphorylation of protein kinase A substrates was decreased in the di(2-ethylhexyl) phthalate and mixture exposure groups, while no significant changes in protein tyrosine phosphorylation were observed in any of the groups. Assessment of the reproductive functionality did not reveal significant effects on in vitro fertilization and early embryo development rates but showed wide variability in the phthalate mixture group. CONCLUSION Our findings suggest that preconception phthalate exposure affects sperm numbers and phosphorylation of protein kinase A substrates involved in capacitation. Future research is warranted to examine the associations between phthalate exposure and capacitation in human spermatozoa.
Collapse
Affiliation(s)
- Gayatri Mohanty
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, USA
| | - Darya A. Tourzani
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, USA
| | - María G. Gervasi
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, USA
| | - Emily Houle
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Oladele Oluwayiose
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Alexander Suvorov
- Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - J. Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, USA
| |
Collapse
|
11
|
Tian S, Tu C, He X, Meng L, Wang J, Tang S, Gao Y, Liu C, Wu H, Zhou Y, Lv M, Lin G, Jin L, Cao Y, Tang D, Zhang F, Tan YQ. Biallelic mutations in CFAP54 cause male infertility with severe MMAF and NOA. J Med Genet 2023; 60:827-834. [PMID: 36593121 DOI: 10.1136/jmg-2022-108887] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Spermatogenic impairments can lead to male infertility by different pathological conditions, such as multiple morphological abnormalities of the sperm flagella (MMAF) and non-obstructive azoospermia (NOA). Genetic factors are involved in impaired spermatogenesis. METHODS AND RESULTS Here, we performed genetic analyses through whole-exome sequencing in a cohort of 334 Han Chinese probands with severe MMAF or NOA. Biallelic variants of CFAP54 were identified in three unrelated men, including one homozygous frameshift variant (c.3317del, p.Phe1106Serfs*19) and two compound heterozygous variants (c.878G>A, p.Arg293His; c.955C>T, p.Arg319Cys and c.4885C>T, p.Arg1629Cys; c.937G>A, p.Gly313Arg). All of the identified variants were absent or extremely rare in the public human genome databases and predicted to be damaging by bioinformatic tools. The men harbouring CFAP54 mutations exhibited abnormal sperm morphology, reduced sperm concentration and motility in ejaculated semen. Significant axoneme disorganisation and other ultrastructure abnormities were also detected inside the sperm cells from men harbouring CFAP54 mutations. Furthermore, immunofluorescence assays showed remarkably reduced staining of four flagellar assembly-associated proteins (IFT20, IFT52, IFT122 and SPEF2) in the spermatozoa of CFAP54-deficient men. Notably, favourable clinical pregnancy outcomes were achieved with sperm from men carrying CFAP54 mutations after intracytoplasmic sperm injection treatment. CONCLUSION Our genetic analyses and experimental observations revealed that biallelic deleterious mutations of CFAP54 can induce severe MMAF and NOA in humans.
Collapse
Affiliation(s)
- Shixiong Tian
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Jiaxiong Wang
- Center for Reproduction and Genetics, State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Shuyan Tang
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Chunyu Liu
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Yiling Zhou
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Li Jin
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Feng Zhang
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
12
|
Chen C, Zhu B, Tang X, Chen B, Liu M, Gao N, Li S, Gu J. Genome-Wide Assessment of Runs of Homozygosity by Whole-Genome Sequencing in Diverse Horse Breeds Worldwide. Genes (Basel) 2023; 14:1211. [PMID: 37372391 DOI: 10.3390/genes14061211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
In the genomes of diploid organisms, runs of homozygosity (ROH), consecutive segments of homozygosity, are extended. ROH can be applied to evaluate the inbreeding situation of individuals without pedigree data and to detect selective signatures via ROH islands. We sequenced and analyzed data derived from the whole-genome sequencing of 97 horses, investigated the distribution of genome-wide ROH patterns, and calculated ROH-based inbreeding coefficients for 16 representative horse varieties from around the world. Our findings indicated that both ancient and recent inbreeding occurrences had varying degrees of impact on various horse breeds. However, recent inbreeding events were uncommon, particularly among indigenous horse breeds. Consequently, the ROH-based genomic inbreeding coefficient could aid in monitoring the level of inbreeding. Using the Thoroughbred population as a case study, we discovered 24 ROH islands containing 72 candidate genes associated with artificial selection traits. We found that the candidate genes in Thoroughbreds were involved in neurotransmission (CHRNA6, PRKN, and GRM1), muscle development (ADAMTS15 and QKI), positive regulation of heart rate and heart contraction (HEY2 and TRDN), regulation of insulin secretion (CACNA1S, KCNMB2, and KCNMB3), and spermatogenesis (JAM3, PACRG, and SPATA6L). Our findings provide insight into horse breed characteristics and future breeding strategies.
Collapse
Affiliation(s)
- Chujie Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bo Zhu
- Novogene Bioinformatics Institute, Beijing 100015, China
| | - Xiangwei Tang
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bin Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mei Liu
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ning Gao
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Sheng Li
- Maxun Biotechnology Institute, Changsha 410024, China
| | - Jingjing Gu
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Yap YT, Li W, Huang Q, Zhou Q, Zhang D, Sheng Y, Mladenovic-Lucas L, Yee SP, Orwig KE, Granneman JG, Williams DC, Hess RA, Toure A, Zhang Z. DNALI1 interacts with the MEIG1/PACRG complex within the manchette and is required for proper sperm flagellum assembly in mice. eLife 2023; 12:e79620. [PMID: 37083624 PMCID: PMC10185345 DOI: 10.7554/elife.79620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 03/12/2023] [Indexed: 04/22/2023] Open
Abstract
The manchette is a transient and unique structure present in elongating spermatids and required for proper differentiation of the germ cells during spermatogenesis. Previous work indicated that the MEIG1/PACRG complex locates in the manchette and is involved in the transport of cargos, such as SPAG16L, to build the sperm flagellum. Here, using co-immunoprecipitation and pull-down approaches in various cell systems, we established that DNALI1, an axonemal component originally cloned from Chlamydomonas reinhardtii, recruits and stabilizes PACRG and we confirm in vivo, the co-localization of DNALI1 and PACRG in the manchette by immunofluorescence of elongating murine spermatids. We next generated mice with a specific deficiency of DNALI1 in male germ cells, and observed a dramatic reduction of the sperm cells, which results in male infertility. In addition, we observed that the majority of the sperm cells exhibited abnormal morphology including misshapen heads, bent tails, enlarged midpiece, discontinuous accessory structure, emphasizing the importance of DNALI1 in sperm differentiation. Examination of testis histology confirmed impaired spermiogenesis in the mutant mice. Importantly, while testicular levels of MEIG1, PACRG, and SPAG16L proteins were unchanged in the Dnali1 mutant mice, their localization within the manchette was greatly affected, indicating that DNALI1 is required for the formation of the MEIG1/PACRG complex within the manchette. Interestingly, in contrast to MEIG1 and PACRG-deficient mice, the DNALI1-deficient mice also showed impaired sperm spermiation/individualization, suggesting additional functions beyond its involvement in the manchette structure. Overall, our work identifies DNALI1 as a protein required for sperm development.
Collapse
Affiliation(s)
- Yi Tian Yap
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Wei Li
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Qian Huang
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and TechnologyWuhanChina
| | - Qi Zhou
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and TechnologyWuhanChina
| | - David Zhang
- College of William and MaryWilliamsburgUnited States
| | - Yi Sheng
- Molecular Genetics and Developmental Biology Graduate Program, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Ljljiana Mladenovic-Lucas
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health CenterFarmingtonUnited States
| | - Kyle E Orwig
- Molecular Genetics and Developmental Biology Graduate Program, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North CarolinaChapel HillUnited States
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of IllinoisUrbanaUnited States
| | - Aminata Toure
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Physiology and Pathophysiology of Sperm cells, Institute for Advanced BiosciencesGrenobleFrance
| | - Zhibing Zhang
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Obstetrics & Gynecology, Wayne State UniversityDetroitUnited States
| |
Collapse
|
14
|
Hasse T, Zhang Z, Huang YMM. Molecular dynamics study reveals key disruptors of MEIG1-PACRG interaction. Proteins 2023; 91:555-566. [PMID: 36444670 PMCID: PMC10374433 DOI: 10.1002/prot.26449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Interactions between the meiosis-expressed gene 1 (MEIG1) and Parkin co-regulated gene (PACRG) protein are critical in the formation of mature sperm cells. Targeting either MEIG1 or PACRG protein could be a contraceptive strategy. The W50A and Y68A mutations on MEIG1 are known to interrupt the MEIG1-PACRG interactions resulting in defective sperm cells. However, the details about how the mutants disrupt the protein-protein binding are not clear. In this study, we reveal insights on MEIG1 and PACRG protein dynamics by applying Gaussian-accelerated molecular dynamics (GaMD) simulations and post-GaMD analysis. Our results show that the mutations destabilize the protein-protein interfacial interaction. The effect of the Y68A mutation is more significant than W50A as Y68 forms stronger polar interactions with PACRG. Because both human and mouse models demonstrate similar dynamic properties, the findings from mouse proteins can be applied to the human system. Moreover, we report a potential ligand binding pocket on the MEIG1 and PACRG interaction surface that could be a target for future drug design to inhibit the MEIG1-PACRG interaction. PACRG shows more qualified pockets along the protein-protein interface, implying that it is a better target than MEIG1. Our work provides a fundamental understanding of MEIG1 and PACRG protein dynamics, paving the way for drug discovery in male-based contraception.
Collapse
Affiliation(s)
- Timothy Hasse
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Yu-Ming M Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
15
|
Zhu H, Wen Z, Zhang A, Liu D, Wang H, Cheng Y, Yang X, Xiao Y, Li J, Sun D, Wu B, Gao J. RhoGDIα regulates spermatogenesis through Rac1/cofilin/F-actin signaling. Commun Biol 2023; 6:214. [PMID: 36823181 PMCID: PMC9950379 DOI: 10.1038/s42003-023-04579-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Spermatogenesis is an extremely complex process, and any obstruction can cause male infertility. RhoGDIα has been identified as a risk of male sterility. In this study, we generate RhoGDIα knockout mice, and find that the males have severely low fertility. The testes from RhoGDIα-/- mice are smaller than that in WT mice. The numbers of spermatogonia and spermatocytes are decreased in RhoGDIα-/- testis. Spermatogenesis is compromised, and spermatocyte meiosis is arrested at zygotene stage in RhoGDIα-/- mice. Acrosome dysplasia is also observed in sperms of the mutant mice. At the molecular level, RhoGDIα deficiency activate the LIMK/cofilin signaling pathway, inhibiting F-actin depolymerization, impairing testis and inducing low fertility in mouse. In addition, the treatment of RhoGDIα-/- mice with Rac1 inhibitor NSC23766 alleviate testis injury and improve sperm quality by inhibiting the LIMK/cofilin/F-actin pathway during spermatogenesis. Together, these findings reveal a previously unrecognized RhoGDIα/Rac1/F-actin-dependent mechanism involved in spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Zongzhuang Wen
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Dongyue Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Hongxiang Wang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Yin Cheng
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Xing Yang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Yu Xiao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China
| | - Jianyuan Li
- Key Laboratory of Male Reproductive Health, National Health and Family Planning Commission, Beijing, 100081, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250100, China.
| |
Collapse
|
16
|
Umer N, Phadke S, Shakeri F, Arévalo L, Lohanadan K, Kirfel G, Sylvester M, Buness A, Schorle H. PFN4 is required for manchette development and acrosome biogenesis during mouse spermiogenesis. Development 2022; 149:276289. [PMID: 35950913 PMCID: PMC9481974 DOI: 10.1242/dev.200499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
Profilin 4 (Pfn4) is expressed during spermiogenesis and localizes to the acrosome-acroplaxome-manchette complex. Here, we generated PFN4-deficient mice, with sperm displaying severe impairment in manchette formation. Interestingly, HOOK1 staining suggests that the perinuclear ring is established; however, ARL3 staining is disrupted, suggesting that lack of PFN4 does not interfere with the formation of the perinuclear ring and initial localization of HOOK1, but impedes microtubular organization of the manchette. Furthermore, amorphous head shape and flagellar defects were detected, resulting in reduced sperm motility. Disrupted cis- and trans-Golgi networks and aberrant production of proacrosomal vesicles caused impaired acrosome biogenesis. Proteomic analysis showed that the proteins ARF3, SPECC1L and FKBP1, which are involved in Golgi membrane trafficking and PI3K/AKT pathway, are more abundant in Pfn4−/− testes. Levels of PI3K, AKT and mTOR were elevated, whereas AMPK level was reduced, consistent with inhibition of autophagy. This seems to result in blockage of autophagic flux, which could explain the failure in acrosome formation. In vitro fertilization demonstrated that PFN4-deficient sperm is capable of fertilizing zona-free oocytes, suggesting a potential treatment for PFN4-related human infertility. Summary: PFN4-deficient male mice exhibit impaired acrosome formation and malformation of the manchette, leading to amorphous sperm head shape, flagellar abnormalities and sterility.
Collapse
Affiliation(s)
- Naila Umer
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | - Sharang Phadke
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology 2 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 2 , Medical Faculty , , 53127 Bonn , Germany
- Institute for Genomic Statistics and Bioinformatics 3 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 3 , Medical Faculty , , 53127 Bonn , Germany
| | - Lena Arévalo
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn 4 , 53121 Bonn , Germany
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology 5 Core Facility Mass Spectrometry , , Medical Faculty , , 53115 Bonn , Germany
- University of Bonn 5 Core Facility Mass Spectrometry , , Medical Faculty , , 53115 Bonn , Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology 2 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 2 , Medical Faculty , , 53127 Bonn , Germany
- Institute for Genomic Statistics and Bioinformatics 3 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 3 , Medical Faculty , , 53127 Bonn , Germany
| | - Hubert Schorle
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| |
Collapse
|
17
|
Gupta N, Sarkar S, Mehta P, Sankhwar SN, Rajender S. Polymorphisms in the HSF2, LRRC6, MEIG1 and PTIP genes correlate with sperm motility in idiopathic infertility. Andrologia 2022; 54:e14517. [PMID: 35768906 DOI: 10.1111/and.14517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to investigate the association of 24 functionally important single nucleotide polymorphisms (SNPs) with male infertility. In this cross-sectional study, we genotyped 24 functionally important single nucleotide polymorphisms in 24 infertility candidate genes in 500 oligo-/astheno-/oligoastheno-/normo-zoospermic infertile men with idiopathic infertility. Sequenom iPlex gold assay was used for genotyping. Sperm count and motility were compared between prevalent genotypes at each test locus. We did not observe any significant difference in the average sperm count between the alternate genotypes for the loci in the KLK3, LRRC6, MEIG1, HSF2, ESR2 and PTIP genes. However, we observed a significant difference in sperm motility between the alternate genotypes for the loci in the LRRC6, MEIG1, HSF2 and PTIP genes. Polymorphisms in the LRRC6 (rs200321595), MEIG1 (rs150031795), HSF2 (rs143986686) and PTIP (rs61752013) genes show association with sperm motility.
Collapse
Affiliation(s)
- Nishi Gupta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Saumya Sarkar
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Poonam Mehta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
TCFL5 deficiency impairs the pachytene to diplotene transition during spermatogenesis in the mouse. Sci Rep 2022; 12:10956. [PMID: 35768632 PMCID: PMC9242989 DOI: 10.1038/s41598-022-15167-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Spermatogenesis is a complex, multistep process during which spermatogonia give rise to spermatozoa. Transcription Factor Like 5 (TCFL5) is a transcription factor that has been described expressed during spermatogenesis. In order to decipher the role of TCFL5 during in vivo spermatogenesis, we generated two mouse models. Ubiquitous removal of TCFL5 generated by breeding TCFL5fl/fl with SOX2-Cre mice resulted in sterile males being unable to produce spermatozoa due to a dramatic alteration of the testis architecture presenting meiosis arrest and lack of spermatids. SYCP3, SYCP1 and H1T expression analysis showed that TCFL5 deficiency causes alterations during pachytene/diplotene transition resulting in a meiotic arrest in a diplotene-like stage. Even more, TCFL5 deficient pachytene showed alterations in the number of MLH1 foci and the condensation of the sexual body. In addition, tamoxifen-inducible TCFL5 knockout mice showed, besides meiosis phenotype, alterations in the spermatids elongation process resulting in aberrant spermatids. Furthermore, TCFL5 deficiency increased spermatogonia maintenance genes (Dalz, Sox2, and Dmrt1) but also increased meiosis genes (Syce1, Stag3, and Morc2a) suggesting that the synaptonemal complex forms well, but cannot separate and meiosis does not proceed. TCFL5 is able to bind to the promoter of Syce1, Stag3, Dmrt1, and Syce1 suggesting a direct control of their expression. In conclusion, TCFL5 plays an essential role in spermatogenesis progression being indispensable for meiosis resolution and spermatids maturation.
Collapse
|
19
|
MEIG1 determines the manchette localization of IFT20 and IFT88, two intraflagellar transport components in male germ cells. Dev Biol 2022; 485:50-60. [PMID: 35257720 DOI: 10.1016/j.ydbio.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
Abstract
Sperm flagella formation is a complex process that requires cargo transport systems to deliver structural proteins for sperm flagella assembly. Two cargo transport systems, the intramanchette transport (IMT) and intraflagellar transport (IFT), have been shown to play critical roles in spermatogenesis and sperm flagella formation. IMT exists only in elongating spermatids, while IFT is responsible for delivering cargo proteins in the developing cilia/flagella. Our laboratory discovered that mouse meiosis expressed gene 1 (MEIG1), a gene essential for sperm flagella formation, is present in the manchette of elongating spermatids. IFT complex components, IFT20 and IFT88, are also present in the manchette of the elongating spermatids. Given that the three proteins have the same localization in elongating spermatids and are essential for normal spermatogenesis and sperm flagella formation, we hypothesize that they are in the same complex, which is supported by co-immunoprecipitation assay using mouse testis extracts. In the Meig1 knockout mice, neither IFT20 nor IFT88 was present in the manchette in the elongating spermatids even though their localizations were normal in spermatocytes and round spermatids. However, MEIG1 was still present in the manchette in elongating spermatids of the conditional Ift20 knockout mice. In the sucrose gradient assay, both IFT20 and IFT88 proteins drifted from higher density fractions to lighter ones in the Meig1 knockout mice. MEIG1 distribution was not changed in the conditional Ift20 knockout mice. Finally, testicular IFT20 and IFT88 protein and mRNA levels were significantly reduced in Meig1 knockout mice. Our data suggests that MEIG1 is a key protein in determining the manchette localization of certain IFT components, including IFT20 and IFT88, in male germ cells.
Collapse
|
20
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
21
|
Chen T, Zhou Y, Liu X, Liu Y, Yuan J, Wang Z. Adenylyl cyclase 3 deficiency results in dysfunction of blood-testis barrier during mouse spermiogenesis. Theriogenology 2021; 180:40-52. [PMID: 34953349 DOI: 10.1016/j.theriogenology.2021.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Human infertility has become a global medical and social health problem. Mice deficient in type 3 adenylyl cyclase (AC3), a key enzyme that synthesizes cyclic adenosine monophosphate (cAMP), develop male infertility, although the underlying molecular mechanisms remain unknown. We performed a label-free quantitative (LFQ) proteomics analyses to identify testicular differentially expressed proteins (DEPs) and their respective biological processes. Furthermore, histological examination demonstrated that AC3 deficiency in mice led to mild impairment of spermatogenesis, including the thinning of seminiferous epithelium and local lesions in the testis. We further identified that the integrity of the blood-testis barrier (BTB) was impaired in AC3 knockout (AC3-/-) mice accompanied with the reduction in the expression of tight junctions (TJs) and ectoplasmic specialization (ESs)-related proteins. In addition, the deletion of AC3 in mice also reduced the germ cell proliferation, increased apoptosis, and decreased lipid deposition in the seminiferous tubules. Collectively, our results revealed a role of AC3 in regulating the BTB integrity during spermatogenesis. Thus, our findings provide new perspectives for future research in male infertility.
Collapse
Affiliation(s)
- Tingrong Chen
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Yanfen Zhou
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Xinxia Liu
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Yuxin Liu
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Junkai Yuan
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Zhenshan Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China.
| |
Collapse
|
22
|
Umer N, Arévalo L, Phadke S, Lohanadan K, Kirfel G, Sons D, Sofia D, Witke W, Schorle H. Loss of Profilin3 Impairs Spermiogenesis by Affecting Acrosome Biogenesis, Autophagy, Manchette Development and Mitochondrial Organization. Front Cell Dev Biol 2021; 9:749559. [PMID: 34869336 PMCID: PMC8632698 DOI: 10.3389/fcell.2021.749559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Profilins (PFNs) are key regulatory proteins for the actin polymerization in cells and are encoded in mouse and humans by four Pfn genes. PFNs are involved in cell mobility, cell growth, neurogenesis, and metastasis of tumor cells. The testes-specific PFN3 is localized in the acroplaxome-manchette complex of developing spermatozoa. We demonstrate that PFN3 further localizes in the Golgi complex and proacrosomal vesicles during spermiogenesis, suggesting a role in vesicle transport for acrosome formation. Using CRISPR/Cas9 genome editing, we generated mice deficient for Pfn3. Pfn3-/- males are subfertile, displaying a type II globozoospermia. We revealed that Pfn3-/- sperm display abnormal manchette development leading to an amorphous sperm head shape. Additionally, Pfn3-/- sperm showed reduced sperm motility resulting from flagellum deformities. We show that acrosome biogenesis is impaired starting from the Golgi phase, and mature sperm seems to suffer from a cytoplasm removal defect. An RNA-seq analysis revealed an upregulation of Trim27 and downregulation of Atg2a. As a consequence, mTOR was activated and AMPK was suppressed, resulting in the inhibition of autophagy. This dysregulation of AMPK/mTOR affected the autophagic flux, which is hallmarked by LC3B accumulation and increased SQSTM1 protein levels. Autophagy is involved in proacrosomal vesicle fusion and transport to form the acrosome. We conclude that this disruption leads to the observed malformation of the acrosome. TRIM27 is associated with PFN3 as determined by co-immunoprecipitation from testis extracts. Further, actin-related protein ARPM1 was absent in the nuclear fraction of Pfn3-/- testes and sperm. This suggests that lack of PFN3 leads to destabilization of the PFN3-ARPM1 complex, resulting in the degradation of ARPM1. Interestingly, in the Pfn3-/- testes, we detected increased protein levels of essential actin regulatory proteins, cofilin-1 (CFL1), cofilin-2 (CFL2), and actin depolymerizing factor (ADF). Taken together, our results reveal the importance for PFN3 in male fertility and implicate this protein as a candidate for male factor infertility in humans.
Collapse
Affiliation(s)
- Naila Umer
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Sharang Phadke
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Dominik Sons
- Department of Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Denise Sofia
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Walter Witke
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
23
|
Li W, Huang Q, Zhang L, Liu H, Zhang D, Yuan S, Yap Y, Qu W, Shiang R, Song S, Hess RA, Zhang Z. A single amino acid mutation in the mouse MEIG1 protein disrupts a cargo transport system necessary for sperm formation. J Biol Chem 2021; 297:101312. [PMID: 34673028 PMCID: PMC8592874 DOI: 10.1016/j.jbc.2021.101312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/22/2022] Open
Abstract
Mammalian spermatogenesis is a highly coordinated process that requires cooperation between specific proteins to coordinate diverse biological functions. For example, mouse Parkin coregulated gene (PACRG) recruits meiosis-expressed gene 1 (MEIG1) to the manchette during normal spermiogenesis. Here we mutated Y68 of MEIG1 using the CRISPR/cas9 system and examined the biological and physiological consequences in mice. All homozygous mutant males examined were completely infertile, and sperm count was dramatically reduced. The few developed sperm were immotile and displayed multiple abnormalities. Histological staining showed impaired spermiogenesis in these mutant mice. Immunofluorescent staining further revealed that this mutant MEIG1 was still present in the cell body of spermatocytes, but also that more MEIG1 accumulated in the acrosome region of round spermatids. The mutant MEIG1 and a cargo protein of the MEIG1/PACRG complex, sperm-associated antigen 16L (SPAG16L), were no longer found to be present in the manchette; however, localization of the PACRG component was not changed in the mutants. These findings demonstrate that Y68 of MEIG1 is a key amino acid required for PACRG to recruit MEIG1 to the manchette to transport cargo proteins during sperm flagella formation. Given that MEIG1 and PACRG are conserved in humans, small molecules that block MEIG1/PACRG interaction are likely ideal targets for the development of male contraconception drugs.
Collapse
Affiliation(s)
- Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Qian Huang
- Department of Physiology, Wayne State University, Detroit, Michigan, USA; Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Hong Liu
- Department of Physiology, Wayne State University, Detroit, Michigan, USA; Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - David Zhang
- School of Arts and Sciences, College of William and Mary, Williamsburg, Virginia, USA
| | - Shuo Yuan
- Department of Physiology, Wayne State University, Detroit, Michigan, USA; Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yitian Yap
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Wei Qu
- Department of Physiology, Wayne State University, Detroit, Michigan, USA; Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Rita Shiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shizheng Song
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan, USA; Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
24
|
Song WH, Zuidema D, Yi YJ, Zigo M, Zhang Z, Sutovsky M, Sutovsky P. Mammalian Cell-Free System Recapitulates the Early Events of Post-Fertilization Sperm Mitophagy. Cells 2021; 10:2450. [PMID: 34572103 PMCID: PMC8466530 DOI: 10.3390/cells10092450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Propagation of paternal sperm-contributed mitochondrial genes, resulting in heteroplasmy, is seldom observed in mammals due to post-fertilization degradation of sperm mitochondria, referred to as sperm mitophagy. Whole organelle sperm mitochondrion degradation is thought to be mediated by the interplay between the ubiquitin-proteasome system (UPS) and the autophagic pathway (Song et al., Proc. Natl. Acad. Sci. USA, 2016). Both porcine and primate post-fertilization sperm mitophagy rely on the ubiquitin-binding autophagy receptor, sequestosome 1 (SQSTM1), and the proteasome-interacting ubiquitinated protein dislocase, valosin-containing protein (VCP). Consequently, we anticipated that sperm mitophagy could be reconstituted in a cell-free system consisting of permeabilized mammalian spermatozoa co-incubated with porcine oocyte extracts. We found that SQSTM1 was detected in the midpiece/mitochondrial sheath of the sperm tail after, but not before, co-incubation with oocyte extracts. VCP was prominent in the sperm mitochondrial sheath both before and after the extract co-incubation and was also detected in the acrosome and postacrosomal sheath and the subacrosomal layer of the spermatozoa co-incubated with extraction buffer as control. Such patterns are consistent with our previous observation of SQSTM1 and VCP associating with sperm mitochondria inside the porcine zygote. In addition, it was observed that sperm head expansion mimicked the early stages of paternal pronucleus development in a zygote during prolonged sperm-oocyte extract co-incubation. Treatment with anti-SQSTM1 antibody during extract co-incubation prevented ooplasmic SQSTM1 binding to sperm mitochondria. Even in an interspecific cellular environment encompassing bull spermatozoa and porcine oocyte extract, ooplasmic SQSTM1 was recruited to heterospecific sperm mitochondria. Complementary with the binding of SQSTM1 and VCP to sperm mitochondria, two sperm-borne pro-mitophagy proteins, parkin co-regulated gene product (PACRG) and spermatogenesis associated 18 (SPATA18), underwent localization changes after extract coincubation, which were consistent with their degradation observed inside fertilized porcine oocytes. These results demonstrate that the early developmental events of post-fertilization sperm mitophagy observed in porcine zygote can be reconstituted in a cell-free system, which could become a useful tool for identifying additional molecules that regulate mitochondrial inheritance in mammals.
Collapse
Affiliation(s)
- Won-Hee Song
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
| | - Dalen Zuidema
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
| | - Young-Joo Yi
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon 57922, Korea
| | - Michal Zigo
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon 57922, Korea
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA;
- The C.S. Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Miriam Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
25
|
Oud MS, Houston BJ, Volozonoka L, Mastrorosa FK, Holt GS, Alobaidi BKS, deVries PF, Astuti G, Ramos L, Mclachlan RI, O’Bryan MK, Veltman JA, Chemes HE, Sheth H. Exome sequencing reveals variants in known and novel candidate genes for severe sperm motility disorders. Hum Reprod 2021; 36:2597-2611. [PMID: 34089056 PMCID: PMC8373475 DOI: 10.1093/humrep/deab099] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION What are the causative genetic variants in patients with male infertility due to severe sperm motility disorders? SUMMARY ANSWER We identified high confidence disease-causing variants in multiple genes previously associated with severe sperm motility disorders in 10 out of 21 patients (48%) and variants in novel candidate genes in seven additional patients (33%). WHAT IS KNOWN ALREADY Severe sperm motility disorders are a form of male infertility characterised by immotile sperm often in combination with a spectrum of structural abnormalities of the sperm flagellum that do not affect viability. Currently, depending on the clinical sub-categorisation, up to 50% of causality in patients with severe sperm motility disorders can be explained by pathogenic variants in at least 22 genes. STUDY DESIGN, SIZE, DURATION We performed exome sequencing in 21 patients with severe sperm motility disorders from two different clinics. PARTICIPANTS/MATERIALS, SETTING, METHOD Two groups of infertile men, one from Argentina (n = 9) and one from Australia (n = 12), with clinically defined severe sperm motility disorders (motility <5%) and normal morphology values of 0-4%, were included. All patients in the Argentine cohort were diagnosed with DFS-MMAF, based on light and transmission electron microscopy. Sperm ultrastructural information was not available for the Australian cohort. Exome sequencing was performed in all 21 patients and variants with an allele frequency of <1% in the gnomAD population were prioritised and interpreted. MAIN RESULTS AND ROLE OF CHANCE In 10 of 21 patients (48%), we identified pathogenic variants in known sperm assembly genes: CFAP43 (3 patients); CFAP44 (2 patients), CFAP58 (1 patient), QRICH2 (2 patients), DNAH1 (1 patient) and DNAH6 (1 patient). The diagnostic rate did not differ markedly between the Argentinian and the Australian cohort (55% and 42%, respectively). Furthermore, we identified patients with variants in the novel human candidate sperm motility genes: DNAH12, DRC1, MDC1, PACRG, SSPL2C and TPTE2. One patient presented with variants in four candidate genes and it remains unclear which variants were responsible for the severe sperm motility defect in this patient. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In this study, we described patients with either a homozygous or two heterozygous candidate pathogenic variants in genes linked to sperm motility disorders. Due to unavailability of parental DNA, we have not assessed the frequency of de novo or maternally inherited dominant variants and could not determine the parental origin of the mutations to establish in all cases that the mutations are present on both alleles. WIDER IMPLICATIONS OF THE FINDINGS Our results confirm the likely causal role of variants in six known genes for sperm motility and we demonstrate that exome sequencing is an effective method to diagnose patients with severe sperm motility disorders (10/21 diagnosed; 48%). Furthermore, our analysis revealed six novel candidate genes for severe sperm motility disorders. Genome-wide sequencing of additional patient cohorts and re-analysis of exome data of currently unsolved cases may reveal additional variants in these novel candidate genes. STUDY FUNDING/COMPETING INTEREST(S) This project was supported in part by funding from the Australian National Health and Medical Research Council (APP1120356) to M.K.O.B., J.A.V. and R.I.M.L., The Netherlands Organisation for Scientific Research (918-15-667) to J.A.V., the Royal Society and Wolfson Foundation (WM160091) to J.A.V., as well as an Investigator Award in Science from the Wellcome Trust (209451) to J.A.V. and Grants from the National Research Council of Argentina (PIP 0900 and 4584) and ANPCyT (PICT 9591) to H.E.C. and a UUKi Rutherford Fund Fellowship awarded to B.J.H.
Collapse
Affiliation(s)
- M S Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B J Houston
- School of Biological Sciences, Monash University, Monash, Australia
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - L Volozonoka
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - F K Mastrorosa
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - G S Holt
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - B K S Alobaidi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - P F deVries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G Astuti
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Ramos
- Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R I Mclachlan
- Hudson Institute of Medical Research, Monash University, Clayton, Melbourne, Australia
| | - M K O’Bryan
- School of Biological Sciences, Monash University, Monash, Australia
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - J A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - H E Chemes
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” CEDIE-CONICET-FEI, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - H Sheth
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Foundation for Research in Genetics and Endocrinology, Institute of Human Genetics, Ahmedabad, India
| |
Collapse
|
26
|
Khan N, Pelletier D, McAlear TS, Croteau N, Veyron S, Bayne AN, Black C, Ichikawa M, Khalifa AAZ, Chaaban S, Kurinov I, Brouhard G, Bechstedt S, Bui KH, Trempe JF. Crystal structure of human PACRG in complex with MEIG1 reveals roles in axoneme formation and tubulin binding. Structure 2021; 29:572-586.e6. [PMID: 33529594 DOI: 10.1016/j.str.2021.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
The Parkin co-regulated gene protein (PACRG) binds at the inner junction between doublet microtubules of the axoneme, a structure found in flagella and cilia. PACRG binds to the adaptor protein meiosis expressed gene 1 (MEIG1), but how they bind to microtubules is unknown. Here, we report the crystal structure of human PACRG in complex with MEIG1. PACRG adopts a helical repeat fold with a loop that interacts with MEIG1. Using the structure of the axonemal doublet microtubule from the protozoan Chlamydomonas reinhardtii and single-molecule fluorescence microscopy, we propose that PACRG binds to microtubules while simultaneously recruiting free tubulin to catalyze formation of the inner junction. We show that the homologous PACRG-like protein also mediates dual tubulin interactions but does not bind MEIG1. Our findings establish a framework to assess the function of the PACRG family of proteins and MEIG1 in regulating axoneme assembly.
Collapse
Affiliation(s)
- Nimra Khan
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Dylan Pelletier
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Thomas S McAlear
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Nathalie Croteau
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Simon Veyron
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Andrew N Bayne
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Corbin Black
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Muneyoshi Ichikawa
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada
| | - Ahmad Abdelzaher Zaki Khalifa
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Sami Chaaban
- Department of Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Igor Kurinov
- NECAT, Cornell University, Department of Chemistry and Chemical Biology, Argonne, IL, USA
| | - Gary Brouhard
- Department of Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Susanne Bechstedt
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Khanh Huy Bui
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada; Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montreal, QC, Canada.
| |
Collapse
|
27
|
Berruti G. Destruction or Reconstruction: A Subtle Liaison between the Proteolytic and Signaling Role of Protein Ubiquitination in Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:215-240. [PMID: 34453739 DOI: 10.1007/978-3-030-77779-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ubiquitination is one of the most diverse forms of protein post-translational modification that changes the function of the landscape of substrate proteins in response to stimuli, without the need for "de novo" protein synthesis. Ubiquitination is involved in almost all aspects of eukaryotic cell biology, from the best-studied role in promoting the removal of faulty or unnecessary proteins by the way of the ubiquitin proteasome system and autophagy-lysosome pathway to the recruitment of proteins in specific non-proteolytic signaling pathways, as emerged by the more recent discoveries about the protein signature with peculiar types of ubiquitin chains. Spermatogenesis, on its own, is a complex cellular developmental process in which mitosis, meiosis, and cell differentiation coexist so to result in the continuous formation of haploid spermatozoa. Successful spermatogenesis is thus at the same time a mixed result of the precise expression and correct intracellular destination of structural proteins and enzymes, from one hand, and the fine removal by targeted degradation of unfolded or damaged proteins as well as of obsolete, outlived proteins, from the other hand. In this minireview, I will focus on the importance of the ubiquitin system all over the spermatogenic process, discussing both proteolytic and non-proteolytic functions of protein ubiquitination. Alterations in the ubiquitin system have been in fact implicated in pathologies leading to male infertility. Notwithstanding several aspects of the multifaceted world of the ubiquitin system have been clarified, the physiological meaning of the so-called ubiquitin code remains still partially elusive. The studies reviewed in this chapter provide information that could aid the investigators to pursue new promising discoveries in the understanding of human and animal reproductive potential.
Collapse
|
28
|
Pleuger C, Lehti MS, Dunleavy JE, Fietz D, O'Bryan MK. Haploid male germ cells-the Grand Central Station of protein transport. Hum Reprod Update 2020; 26:474-500. [PMID: 32318721 DOI: 10.1093/humupd/dmaa004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The precise movement of proteins and vesicles is an essential ability for all eukaryotic cells. Nowhere is this more evident than during the remarkable transformation that occurs in spermiogenesis-the transformation of haploid round spermatids into sperm. These transformations are critically dependent upon both the microtubule and the actin cytoskeleton, and defects in these processes are thought to underpin a significant percentage of human male infertility. OBJECTIVE AND RATIONALE This review is aimed at summarising and synthesising the current state of knowledge around protein/vesicle transport during haploid male germ cell development and identifying knowledge gaps and challenges for future research. To achieve this, we summarise the key discoveries related to protein transport using the mouse as a model system. Where relevant, we anchored these insights to knowledge in the field of human spermiogenesis and the causality of human male infertility. SEARCH METHODS Relevant studies published in English were identified using PubMed using a range of search terms related to the core focus of the review-protein/vesicle transport, intra-flagellar transport, intra-manchette transport, Golgi, acrosome, manchette, axoneme, outer dense fibres and fibrous sheath. Searches were not restricted to a particular time frame or species although the emphasis within the review is on mammalian spermiogenesis. OUTCOMES Spermiogenesis is the final phase of sperm development. It results in the transformation of a round cell into a highly polarised sperm with the capacity for fertility. It is critically dependent on the cytoskeleton and its ability to transport protein complexes and vesicles over long distances and often between distinct cytoplasmic compartments. The development of the acrosome covering the sperm head, the sperm tail within the ciliary lobe, the manchette and its role in sperm head shaping and protein transport into the tail, and the assembly of mitochondria into the mid-piece of sperm, may all be viewed as a series of overlapping and interconnected train tracks. Defects in this redistribution network lead to male infertility characterised by abnormal sperm morphology (teratozoospermia) and/or abnormal sperm motility (asthenozoospermia) and are likely to be causal of, or contribute to, a significant percentage of human male infertility. WIDER IMPLICATIONS A greater understanding of the mechanisms of protein transport in spermiogenesis offers the potential to precisely diagnose cases of male infertility and to forecast implications for children conceived using gametes containing these mutations. The manipulation of these processes will offer opportunities for male-based contraceptive development. Further, as increasingly evidenced in the literature, we believe that the continuous and spatiotemporally restrained nature of spermiogenesis provides an outstanding model system to identify, and de-code, cytoskeletal elements and transport mechanisms of relevance to multiple tissues.
Collapse
Affiliation(s)
- Christiane Pleuger
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Mari S Lehti
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | | | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| |
Collapse
|
29
|
Abstract
Olfactory sensory neurons (OSNs) are bipolar neurons, unusual because they turn over continuously and have a multiciliated dendrite. The extensive changes in gene expression accompanying OSN differentiation in mice are largely known, especially the transcriptional regulators responsible for altering gene expression, revealing much about how differentiation proceeds. Basal progenitor cells of the olfactory epithelium transition into nascent OSNs marked by Cxcr4 expression and the initial extension of basal and apical neurites. Nascent OSNs become immature OSNs within 24-48 h. Immature OSN differentiation requires about a week and at least 2 stages. Early-stage immature OSNs initiate expression of genes encoding key transcriptional regulators and structural proteins necessary for further neuritogenesis. Late-stage immature OSNs begin expressing genes encoding proteins important for energy production and neuronal homeostasis that carry over into mature OSNs. The transition to maturity depends on massive expression of one allele of one odorant receptor gene, and this results in expression of the last 8% of genes expressed by mature OSNs. Many of these genes encode proteins necessary for mature function of axons and synapses or for completing the elaboration of non-motile cilia, which began extending from the newly formed dendritic knobs of immature OSNs. The cilia from adjoining OSNs form a meshwork in the olfactory mucus and are the site of olfactory transduction. Immature OSNs also have a primary cilium, but its role is unknown, unlike the critical role in proliferation and differentiation played by the primary cilium of the olfactory epithelium's horizontal basal cell.
Collapse
Affiliation(s)
- Timothy S McClintock
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Correspondence to be sent to: Timothy S. McClintock, Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA. e-mail:
| | - Naazneen Khan
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
30
|
Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2020; 78:769-797. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.
Collapse
Affiliation(s)
- Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| | - Lawrence E Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Center and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Teves ME, Roldan ERS, Krapf D, Strauss III JF, Bhagat V, Sapao P. Sperm Differentiation: The Role of Trafficking of Proteins. Int J Mol Sci 2020; 21:E3702. [PMID: 32456358 PMCID: PMC7279445 DOI: 10.3390/ijms21103702] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites. This review integrates recent findings regarding the role of protein trafficking in sperm differentiation. Although a complete characterization of the interactome of proteins involved in these temporal and spatial processes is not yet known, we propose a model based on the current literature as a framework for future investigations.
Collapse
Affiliation(s)
- Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006-Madrid, Spain
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Jerome F. Strauss III
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Virali Bhagat
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Paulene Sapao
- Department of Chemistry, Virginia Commonwealth University, Richmond VA, 23298, USA;
| |
Collapse
|
32
|
Qu W, Yuan S, Quan C, Huang Q, Zhou Q, Yap Y, Shi L, Zhang D, Guest T, Li W, Yee SP, Zhang L, Cazin C, Hess RA, Ray PF, Kherraf ZE, Zhang Z. The essential role of intraflagellar transport protein IFT81 in male mice spermiogenesis and fertility. Am J Physiol Cell Physiol 2020; 318:C1092-C1106. [PMID: 32233951 DOI: 10.1152/ajpcell.00450.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intraflagellar transport (IFT) is an evolutionarily conserved mechanism that is indispensable for the formation and maintenance of cilia and flagella; however, the implications and functions of IFT81 remain unknown. In this study, we disrupted IFT81 expression in male germ cells starting from the spermatocyte stage. As a result, homozygous mutant males were completely infertile and displayed abnormal sperm parameters. In addition to oligozoospermia, spermatozoa presented dysmorphic and nonfunctional flagella. Histological examination of testes from homozygous mutant mice revealed abnormal spermiogenesis associated with sloughing of germ cells and the presence of numerous multinucleated giant germ cells (symblasts) in the lumen of seminiferous tubules and epididymis. Moreover, only few elongated spermatids and spermatozoa were seen in analyzed cross sections. Transmission electron microscopy showed a complete disorganization of the axoneme and para-axonemal structures such as the mitochondrial sheath, fibrous sheath, and outer dense fibers. In addition, numerous vesicles that contain unassembled microtubules were observed within developing spermatids. Acrosome structure analysis showed normal appearance, thus excluding a crucial role of IFT81 in acrosome biogenesis. These observations showed that IFT81 is an important member of the IFT process during spermatogenesis and that its absence is associated with abnormal flagellum formation leading to male infertility. The expression levels of several IFT components in testes, including IFT20, IFT25, IFT27, IFT57, IFT74, and IFT88, but not IFT140, were significantly reduced in homozygous mutant mice. Overall, our study demonstrates that IFT81 plays an essential role during spermatogenesis by modulating the assembly and elongation of the sperm flagella.
Collapse
Affiliation(s)
- Wei Qu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Shuo Yuan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Chao Quan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qian Huang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Qi Zhou
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Yitian Yap
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Lin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - David Zhang
- College of William & Mary, Williamsburg, Virginia
| | - Tamia Guest
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Caroline Cazin
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Pierre F Ray
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Zine-Eddine Kherraf
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan.,Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|
33
|
Crapster JA, Rack PG, Hellmann ZJ, Le AD, Adams CM, Leib RD, Elias JE, Perrino J, Behr B, Li Y, Lin J, Zeng H, Chen JK. HIPK4 is essential for murine spermiogenesis. eLife 2020; 9:e50209. [PMID: 32163033 PMCID: PMC7067585 DOI: 10.7554/elife.50209] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/23/2020] [Indexed: 12/19/2022] Open
Abstract
Mammalian spermiogenesis is a remarkable cellular transformation, during which round spermatids elongate into chromatin-condensed spermatozoa. The signaling pathways that coordinate this process are not well understood, and we demonstrate here that homeodomain-interacting protein kinase 4 (HIPK4) is essential for spermiogenesis and male fertility in mice. HIPK4 is predominantly expressed in round and early elongating spermatids, and Hipk4 knockout males are sterile, exhibiting phenotypes consistent with oligoasthenoteratozoospermia. Hipk4 mutant sperm have reduced oocyte binding and are incompetent for in vitro fertilization, but they can still produce viable offspring via intracytoplasmic sperm injection. Optical and electron microscopy of HIPK4-null male germ cells reveals defects in the filamentous actin (F-actin)-scaffolded acroplaxome during spermatid elongation and abnormal head morphologies in mature spermatozoa. We further observe that HIPK4 overexpression induces branched F-actin structures in cultured fibroblasts and that HIPK4 deficiency alters the subcellular distribution of an F-actin capping protein in the testis, supporting a role for this kinase in cytoskeleton remodeling. Our findings establish HIPK4 as an essential regulator of sperm head shaping and potential target for male contraception.
Collapse
Affiliation(s)
- J Aaron Crapster
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Paul G Rack
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Zane J Hellmann
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Austen D Le
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Christopher M Adams
- Stanford University Mass Spectrometry, Stanford UniversityStanfordUnited States
| | - Ryan D Leib
- Stanford University Mass Spectrometry, Stanford UniversityStanfordUnited States
| | - Joshua E Elias
- Chan Zuckerberg Biohub, Stanford UniversityStanfordUnited States
| | - John Perrino
- Cell Science Imaging Facility, Stanford University School of MedicineStanfordUnited States
| | - Barry Behr
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Stanford University School of MedicineStanfordUnited States
| | - Yanfeng Li
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - Jennifer Lin
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - Hong Zeng
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
- Department of Chemistry, Stanford UniversityStanfordUnited States
| |
Collapse
|
34
|
Gao Q, Khan R, Yu C, Alsheimer M, Jiang X, Ma H, Shi Q. The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis. J Biol Chem 2020; 295:6289-6298. [PMID: 32156700 DOI: 10.1074/jbc.ra119.012375] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Indexed: 01/16/2023] Open
Abstract
Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome-manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain-containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype.
Collapse
Affiliation(s)
- Qian Gao
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Ranjha Khan
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Changping Yu
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Xiaohua Jiang
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Hui Ma
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
35
|
Meschede J, Šadić M, Furthmann N, Miedema T, Sehr DA, Müller-Rischart AK, Bader V, Berlemann LA, Pilsl A, Schlierf A, Barkovits K, Kachholz B, Rittinger K, Ikeda F, Marcus K, Schaefer L, Tatzelt J, Winklhofer KF. The parkin-coregulated gene product PACRG promotes TNF signaling by stabilizing LUBAC. Sci Signal 2020; 13:13/617/eaav1256. [PMID: 32019898 DOI: 10.1126/scisignal.aav1256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Parkin-coregulated gene (PACRG), which encodes a protein of unknown function, shares a bidirectional promoter with Parkin (PRKN), which encodes an E3 ubiquitin ligase. Because PRKN is important in mitochondrial quality control and protection against stress, we tested whether PACRG also affected these pathways in various cultured human cell lines and in mouse embryonic fibroblasts. PACRG did not play a role in mitophagy but did play a role in tumor necrosis factor (TNF) signaling. Similarly to Parkin, PACRG promoted nuclear factor κB (NF-κB) activation in response to TNF. TNF-induced nuclear translocation of the NF-κB subunit p65 and NF-κB-dependent transcription were decreased in PACRG-deficient cells. Defective canonical NF-κB activation in the absence of PACRG was accompanied by a decrease in linear ubiquitylation mediated by the linear ubiquitin chain assembly complex (LUBAC), which is composed of the two E3 ubiquitin ligases HOIP and HOIL-1L and the adaptor protein SHARPIN. Upon TNF stimulation, PACRG was recruited to the activated TNF receptor complex and interacted with LUBAC components. PACRG functionally replaced SHARPIN in this context. In SHARPIN-deficient cells, PACRG prevented LUBAC destabilization, restored HOIP-dependent linear ubiquitylation, and protected cells from TNF-induced apoptosis. This function of PACRG in positively regulating TNF signaling may help to explain the association of PACRG and PRKN polymorphisms with an increased susceptibility to intracellular pathogens.
Collapse
Affiliation(s)
- Jens Meschede
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Maria Šadić
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, 80336 Munich, Germany
| | - Nikolas Furthmann
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Tim Miedema
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Dominik A Sehr
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Verian Bader
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lena A Berlemann
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Anna Pilsl
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, 80336 Munich, Germany
| | - Anita Schlierf
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, 80336 Munich, Germany
| | - Katalin Barkovits
- Medizinisches Proteom-Center, Ruhr University Bochum, 44801 Bochum, Germany
| | - Barbara Kachholz
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Fumiyo Ikeda
- Institute of Molecular Biotechnology (IMBA), 1030 Vienna, Austria
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr University Bochum, 44801 Bochum, Germany
| | - Liliana Schaefer
- Pharmacenter Frankfurt/ZAFES, Institute for General Pharmacology and Toxicology, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jörg Tatzelt
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, 80336 Munich, Germany.,Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Konstanze F Winklhofer
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany. .,Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, 80336 Munich, Germany
| |
Collapse
|
36
|
Moye AR, Bedoni N, Cunningham JG, Sanzhaeva U, Tucker ES, Mathers P, Peter VG, Quinodoz M, Paris LP, Coutinho-Santos L, Camacho P, Purcell MG, Winkelmann AC, Foster JA, Pugacheva EN, Rivolta C, Ramamurthy V. Mutations in ARL2BP, a protein required for ciliary microtubule structure, cause syndromic male infertility in humans and mice. PLoS Genet 2019; 15:e1008315. [PMID: 31425546 PMCID: PMC6715254 DOI: 10.1371/journal.pgen.1008315] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/29/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Cilia are evolutionarily conserved hair-like structures with a wide spectrum of key biological roles, and their dysfunction has been linked to a growing class of genetic disorders, known collectively as ciliopathies. Many strides have been made towards deciphering the molecular causes for these diseases, which have in turn expanded the understanding of cilia and their functional roles. One recently-identified ciliary gene is ARL2BP, encoding the ADP-Ribosylation Factor Like 2 Binding Protein. In this study, we have identified multiple ciliopathy phenotypes associated with mutations in ARL2BP in human patients and in a mouse knockout model. Our research demonstrates that spermiogenesis is impaired, resulting in abnormally shaped heads, shortened and mis-assembled sperm tails, as well as in loss of axonemal doublets. Additional phenotypes in the mouse included enlarged ventricles of the brain and situs inversus. Mouse embryonic fibroblasts derived from knockout animals revealed delayed depolymerization of primary cilia. Our results suggest that ARL2BP is required for the structural maintenance of cilia as well as of the sperm flagellum, and that its deficiency leads to syndromic ciliopathy. The flagellated tails of sperm cells require a stringent developmental process that is essential for motility and fertility. The components that comprise the sperm tail assemble in regulated steps with protein processing, transport, and structural assembly dependent on each other for sperm tail maturity. In this work, we have identified ARL2BP, a previously retinal-associated protein, to be essential for sperm tail development and assembly. We show that without functional ARL2BP in humans or mice, sperm tails fail to develop, starting with the assembly of the core microtubular structure within the tail. Loss of ARL2BP also effects other ciliated cells, indicating a unique role for ARL2BP in ciliary microtubule formation. This research on ARL2BP provides further understanding on the links between vision and fertility. This work also demonstrates how genomic studies for human patients and murine models can coincide to provide greater insight into disease.
Collapse
Affiliation(s)
- Abigail R. Moye
- Department of Ophthalmology, West Virginia University, Morgantown, United States of America
- Department of Biochemistry, West Virginia University, Morgantown, United States of America
| | - Nicola Bedoni
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Jessica G. Cunningham
- Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States of America
| | - Urikhan Sanzhaeva
- Department of Biochemistry, West Virginia University, Morgantown, United States of America
| | - Eric S. Tucker
- Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States of America
| | - Peter Mathers
- Department of Ophthalmology, West Virginia University, Morgantown, United States of America
- Department of Biochemistry, West Virginia University, Morgantown, United States of America
- Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States of America
| | - Virginie G. Peter
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Mathieu Quinodoz
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Liliana P. Paris
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto, Lisbon, Portugal
| | - Luísa Coutinho-Santos
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto, Lisbon, Portugal
| | - Pedro Camacho
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto, Lisbon, Portugal
| | - Madeleine G. Purcell
- Department of Biology, Randolph-Macon College, Ashland, VA, United States of America
| | - Abbie C. Winkelmann
- Department of Biology, Randolph-Macon College, Ashland, VA, United States of America
| | - James A. Foster
- Department of Biology, Randolph-Macon College, Ashland, VA, United States of America
| | - Elena N. Pugacheva
- Department of Biochemistry, West Virginia University, Morgantown, United States of America
| | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, Switzerland
- * E-mail: (CR); (VR)
| | - Visvanathan Ramamurthy
- Department of Ophthalmology, West Virginia University, Morgantown, United States of America
- Department of Biochemistry, West Virginia University, Morgantown, United States of America
- Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States of America
- * E-mail: (CR); (VR)
| |
Collapse
|
37
|
Liu Y, Zhang L, Li W, Li Y, Liu J, Zhang S, Pin G, Song S, Ray PF, Arnoult C, Cho C, Garcia-Reyes B, Knippschild U, Strauss JF, Zhang Z. The sperm-associated antigen 6 interactome and its role in spermatogenesis. Reproduction 2019; 158:181-197. [PMID: 31146259 PMCID: PMC7368494 DOI: 10.1530/rep-18-0522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/30/2019] [Indexed: 12/18/2022]
Abstract
Mammalian SPAG6, the orthologue of Chlamydomonas reinhardtii PF16, is a component of the central apparatus of the '9 + 2' axoneme that controls ciliary/flagellar motility, including sperm motility. Recent studies revealed that SPAG6 has functions beyond its role in the central apparatus. Hence, we reexamined the role of SPAG6 in male fertility. In wild-type mice, SPAG6 was present in cytoplasmic vesicles in spermatocytes, the acrosome of round and elongating spermatids and the manchette of elongating spermatids. Spag6-deficient testes showed abnormal spermatogenesis, with abnormalities in male germ cell morphology consistent with the multi-compartment pattern of SPAG6 localization. The armadillo repeat domain of mouse SPAG6 was used as a bait in a yeast two-hybrid screen, and several proteins with diverse functions appeared multiple times, including Snapin, SPINK2 and COPS5. Snapin has a similar localization to SPAG6 in male germ cells, and SPINK2, a key protein in acrosome biogenesis, was dramatically reduced in Spag6-deficient mice which have defective acrosomes. SPAG16L, another SPAG6-binding partner, lost its localization to the manchette in Spag6-deficient mice. Our findings demonstrate that SPAG6 is a multi-functional protein that not only regulates sperm motility, but also plays roles in spermatogenesis in multiple cellular compartments involving multiple protein partners.
Collapse
Affiliation(s)
- Yunhao Liu
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, MI, 48201
| | - Yuhong Li
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Junpin Liu
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Shiyang Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Guanglun Pin
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Shizhen Song
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Pierre F Ray
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Christophe Arnoult
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Balbina Garcia-Reyes
- Department of General and Visceral Surgery, Ulm University, Albert-Einstein-Allee 23, D-89081, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University, Albert-Einstein-Allee 23, D-89081, Ulm, Germany
| | - Jerome F. Strauss
- Department of Obstetrics/Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI, 48201
- Department of Obstetrics/Gynecology, Wayne State University, Detroit, MI, 48201
| |
Collapse
|
38
|
Bizkarguenaga M, Gomez-Santos L, Madrid JF, Sáez FJ, Alonso E. Increase of germ cell nuclear factor expression in globozoospermic Gopc -/- knockout mice. Andrology 2019; 7:319-328. [PMID: 30786176 DOI: 10.1111/andr.12594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC) is a Golgi protein that plays a role in vesicular transport and intracellular protein trafficking and degradation. Mice deficient in GOPC protein have globozoospermia and are infertile. The germ cell nuclear factor (GCNF) is a member of the nuclear receptor superfamily which is expressed in male germ cells, from spermatocytes and spermatids, both in the nucleus and the acrosomal region. It is not known if its expression could be altered in Gopc-/- mice with defective acrosomes. OBJECTIVES The aim of the present work was to analyze the distribution of GCNF protein in spermatids of Gopc-/- knockout mice. MATERIALS AND METHODS We have analyzed the expression and distribution during spermatogenesis of GCNF and its deregulation in Gopc-/- mutant mice by RT-qPCR, Western blot, immunohistochemistry and immunogold. RESULTS Germ cell nuclear factor was localized in the nucleus of all the cell types in the seminiferous tubules. Despite being a nuclear protein, it was also located in the acrosome and in the manchette of elongating spermatids. We have found that in the absence of GOPC, the expression of GCNF was increased in the nucleus of spermatocytes, mainly in leptotene, and in the nucleus and the manchette during the spermatid elongation. DISCUSSION AND CONCLUSION Gopc-/- mice have defective acrosome and manchette. The manchette is involved in the transport of proteins through the cytoplasm and the nucleus. Considering that the GCNF protein is normally transported to the acrosome and the nucleus, it can be thought that transport deficiencies in Gopc-/- mice are responsible for the increased expression of this protein.
Collapse
Affiliation(s)
- M Bizkarguenaga
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - L Gomez-Santos
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - J F Madrid
- Department of Cell Biology and Histology, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - F J Sáez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - E Alonso
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
39
|
Ali A, Mistry BV, Ahmed HA, Abdulla R, Amer HA, Prince A, Alazami AM, Alkuraya FS, Assiri A. Deletion of DDB1- and CUL4- associated factor-17 (Dcaf17) gene causes spermatogenesis defects and male infertility in mice. Sci Rep 2018; 8:9202. [PMID: 29907856 PMCID: PMC6003934 DOI: 10.1038/s41598-018-27379-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/31/2018] [Indexed: 01/26/2023] Open
Abstract
DDB1– and CUL4–associated factor 17 (Dcaf17) is a member of DCAF family genes that encode substrate receptor proteins for Cullin-RING E3 ubiquitin ligases, which play critical roles in many cellular processes. To unravel the function of DCAF17, we performed expression profiling of Dcaf17 in different tissues of wild type mouse by qRT-PCR and generated Dcaf17 knockout mice by gene targeting. Expression profiling of Dcaf17 showed highest expression in testis. Analyses of Dcaf17 transcripts during post-natal development of testis at different ages displayed gradual increase in Dcaf17 mRNA levels with the age. Although Dcaf17 disruption did not have any effect on female fertility, Dcaf17 deletion led to male infertility due to abnormal sperm development. The Dcaf17−/− mice produced low number of sperm with abnormal shape and significantly low motility. Histological examination of the Dcaf17−/− testis revealed impaired spermatogenesis with presence of vacuoles and sloughed cells in the seminiferous tubules. Disruption of Dcaf17 caused asymmetric acrosome capping, impaired nuclear compaction and abnormal round spermatid to elongated spermatid transition. For the first time, these data indicate that DCAF17 is essential for spermiogenesis.
Collapse
Affiliation(s)
- Asmaa Ali
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Bhavesh V Mistry
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Hala A Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Razan Abdulla
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Hassan A Amer
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Abdelbary Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Abdullah Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia. .,College of Medicine, AlFaisal University, Riyadh, Saudi Arabia. .,Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
40
|
Li W, Miner AS, Zhang L, Ratz PH, Zhang Z. Mouse meiosis expressed gene 1 is not phosphorylated in vivo. Mol Reprod Dev 2018; 85:288-289. [PMID: 29393537 DOI: 10.1002/mrd.22960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/13/2018] [Accepted: 01/29/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Li
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Amy S Miner
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei
| | - Paul H Ratz
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia.,Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
41
|
Wang Y, Jin L, Ma J, Chen L, Fu Y, Long K, Hu S, Song Y, Shang D, Tang Q, Wang X, Li X, Li M. Hemicastration induced spermatogenesis-related DNA methylation and gene expression changes in mice testis. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:189-197. [PMID: 29059727 PMCID: PMC5767500 DOI: 10.5713/ajas.17.0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/06/2017] [Accepted: 09/21/2017] [Indexed: 11/27/2022]
Abstract
Objective Hemicastration is a unilateral orchiectomy to remove an injured testis, which can induce hormonal changes and compensatory hypertrophy of the remaining testis, and may influence spermatogenesis. However, the underlying molecular mechanisms are poorly understood. Here, we investigated the impact of hemicastration on remaining testicular function. Methods Prepubertal mice (age 24 days) were hemicastrated, and their growth was monitored until they reached physical maturity (age 72 days). Subsequently, we determined testis DNA methylation patterns using reduced representation bisulfite sequencing of normal and hemicastrated mice. Moreover, we profiled the testicular gene expression patterns by RNA sequencing (RNA-seq) to examine whether methylation changes affected gene expression in hemicastrated mice. Results Hemicastration did not significantly affect growth or testosterone (p>0.05) compared with control. The genome-wide DNA methylation pattern of remaining testis suggested that substantial genes harbored differentially methylated regions (1,139) in gene bodies, which were enriched in process of protein binding and cell adhesion. Moreover, RNA-seq results indicated that 46 differentially expressed genes (DEGs) involved in meiotic cell cycle, synaptonemal complex assembly and spermatogenesis were upregulated in the hemicastration group, while 197 DEGs were downregulated, which were related to arachidonic acid metabolism. Integrative analysis revealed that proteasome 26S subunit ATPase 3 interacting protein gene, which encodes a protein crucial for homologous recombination in spermatocytes, exhibited promoter hypomethylation and higher expression level in hemicastrated mice. Conclusion Global profiling of DNA methylation and gene expression demonstrated that hemicastration-induced compensatory response maintained normal growth and testicular morphological structure in mice.
Collapse
Affiliation(s)
- Yixin Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Chen
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhua Fu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Song
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dazhi Shang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
42
|
Lehti MS, Sironen A. Formation and function of sperm tail structures in association with sperm motility defects†. Biol Reprod 2017; 97:522-536. [DOI: 10.1093/biolre/iox096] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022] Open
|
43
|
Teves ME, Nagarkatti-Gude DR, Zhang Z, Strauss JF. Mammalian axoneme central pair complex proteins: Broader roles revealed by gene knockout phenotypes. Cytoskeleton (Hoboken) 2016; 73:3-22. [PMID: 26785425 DOI: 10.1002/cm.21271] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/22/2015] [Accepted: 12/24/2015] [Indexed: 01/09/2023]
Abstract
The axoneme genes, their encoded proteins, their functions and the structures they form are largely conserved across species. Much of our knowledge of the function and structure of axoneme proteins in cilia and flagella is derived from studies on model organisms like the green algae, Chlamydomonas reinhardtii. The core structure of cilia and flagella is the axoneme, which in most motile cilia and flagella contains a 9 + 2 configuration of microtubules. The two central microtubules are the scaffold of the central pair complex (CPC). Mutations that disrupt CPC genes in Chlamydomonas and other model organisms result in defects in assembly, stability and function of the axoneme, leading to flagellar motility defects. However, targeted mutations generated in mice in the orthologous CPC genes have revealed significant differences in phenotypes of mutants compared to Chlamydomonas. Here we review observations that support the concept of cell-type specific roles for the CPC genes in mice, and an expanded repertoire of functions for the products of these genes in cilia, including non-motile cilia, and other microtubule-associated cellular functions.
Collapse
Affiliation(s)
- Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - David R Nagarkatti-Gude
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
44
|
Zhang Z, Li W, Zhang Y, Zhang L, Teves ME, Liu H, Strauss JF, Pazour GJ, Foster JA, Hess RA, Zhang Z. Intraflagellar transport protein IFT20 is essential for male fertility and spermiogenesis in mice. Mol Biol Cell 2016; 27:mbc.E16-05-0318. [PMID: 27682589 PMCID: PMC5170554 DOI: 10.1091/mbc.e16-05-0318] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022] Open
Abstract
Intraflagellar transport (IFT) is a conserved mechanism thought to be essential for the assembly and maintenance of cilia and flagella. However, little is known about its role in mammalian sperm flagella formation. To fill this gap, we disrupted the Ift20 gene in male germ cells. Homozygous mutant mice were infertile with significantly reduced sperm counts and motility. In addition, abnormally shaped elongating spermatid heads and bulbous round spermatids were found in the lumen of the seminiferous tubules. Electron microscopy revealed increased cytoplasmic vesicles, fiber-like structures, abnormal accumulation of mitochondria and a decrease in mature lysosomes. The few developed sperm had disrupted axonemes and some retained cytoplasmic lobe components on the flagella. ODF2 and SPAG16L, two sperm flagella proteins failed to be incorporated into sperm tails of the mutant mice, and in the germ cells, both were assembled into complexes with lighter density in the absence of IFT20. Disrupting IFT20 did not significantly change expression levels of IFT88, a component of IFT-B complex, and IFT140, a component of IFT-A complex. Even though the expression level of an autophagy core protein that associates with IFT20, ATG16, was reduced in the testis of the Ift20 mutant mice, expression levels of other major autophagy markers, including LC3 and ubiquitin were not changed. Our studies suggest that IFT20 is essential for male fertility and spermiogenesis in mice, and its major function is to transport cargo proteins for sperm flagella formation. It also appears to be involved in removing excess cytoplasmic components.
Collapse
Affiliation(s)
- Zhengang Zhang
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430030 Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Wei Li
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Yong Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298 Department of Dermatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430030
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298 School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Hong Liu
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298 School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - James A Foster
- Department of Biology, Randolph-Macon College, Ashland, VA 23005
| | - Rex A Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln, Urbana, IL 61802-6199
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| |
Collapse
|
45
|
Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction 2016; 151:R43-54. [DOI: 10.1530/rep-15-0310] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/20/2016] [Indexed: 12/19/2022]
Abstract
The last phase of spermatogenesis involves spermatid elongation (spermiogenesis), where the nucleus is remodeled by chromatin condensation, the excess cytoplasm is removed and the acrosome and sperm tail are formed. Protein transport during spermatid elongation is required for correct formation of the sperm tail and acrosome and shaping of the head. Two microtubular-based protein delivery platforms transport proteins to the developing head and tail: the manchette and the sperm tail axoneme. The manchette is a transient skirt-like structure surrounding the elongating spermatid head and is only present during spermatid elongation. In this review, we consider current understanding of the assembly, disassembly and function of the manchette and the roles of these processes in spermatid head shaping and sperm tail formation. Recent studies have shown that at least some of the structural proteins of the sperm tail are transported through the intra-manchette transport to the basal body at the base of the developing sperm tail and through the intra-flagellar transport to the construction site in the flagellum. This review focuses on the microtubule-based mechanisms involved and the consequences of their disruption in spermatid elongation.
Collapse
|
46
|
Dissecting the structural basis of MEIG1 interaction with PACRG. Sci Rep 2016; 6:18278. [PMID: 26726850 PMCID: PMC4698733 DOI: 10.1038/srep18278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/16/2015] [Indexed: 11/21/2022] Open
Abstract
The product of the meiosis-expressed gene 1 (MEIG1) is found in the cell bodies of spermatocytes and recruited to the manchette, a structure unique to elongating spermatids, by Parkin co-regulated gene (PACRG). This complex is essential for targeting cargo to the manchette during sperm flagellum assembly. Here we show that MEIG1 adopts a unique fold that provides a large surface for interacting with other proteins. We mutated 12 exposed and conserved amino acids and show that four of these mutations (W50A, K57E, F66A, Y68A) dramatically reduce binding to PACRG. These four amino acids form a contiguous hydrophobic patch on one end of the protein. Furthermore, each of these four mutations diminishes the ability of MEIG1 to stabilize PACRG when expressed in bacteria. Together these studies establish the unique structure and key interaction surface of MEIG1 and provide a framework to explore how MEIG1 recruits proteins to build the sperm tail.
Collapse
|
47
|
Abstract
Sperm motility is driven by motile cytoskeletal elements in the tail, called axonemes. The structure of axonemes consists of 9 + 2 microtubules, molecular motors (dyneins), and their regulatory structures. Axonemes are well conserved in motile cilia and flagella through eukaryotic evolution. Deficiency in the axonemal structure causes defects in sperm motility, and often leads to male infertility. It has been known since the 1970s that, in some cases, male infertility is linked with other symptoms or diseases such as Kartagener syndrome. Given that these links are mostly caused by deficiencies in the common components of cilia and flagella, they are called "immotile cilia syndrome" or "primary ciliary dyskinesia," or more recently, "ciliopathy," which includes deficiencies in primary and sensory cilia. Here, we review the structure of the sperm flagellum and epithelial cilia in the human body, and discuss how male fertility is linked to ciliopathy.
Collapse
|