1
|
Oses C, Francia MG, Verneri P, Vazquez Echegaray C, Guberman AS, Levi V. The dynamical organization of the core pluripotency transcription factors responds to differentiation cues in early S-phase. Front Cell Dev Biol 2023; 11:1125015. [PMID: 37215075 PMCID: PMC10192714 DOI: 10.3389/fcell.2023.1125015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
DNA replication in stem cells is a major challenge for pluripotency preservation and cell fate decisions. This process involves massive changes in the chromatin architecture and the reorganization of many transcription-related molecules in different spatial and temporal scales. Pluripotency is controlled by the master transcription factors (TFs) OCT4, SOX2 and NANOG that partition into condensates in the nucleus of embryonic stem cells. These condensates are proposed to play relevant roles in the regulation of gene expression and the maintenance of pluripotency. Here, we asked whether the dynamical distribution of the pluripotency TFs changes during the cell cycle, particularly during DNA replication. Since the S phase is considered to be a window of opportunity for cell fate decisions, we explored if differentiation cues in G1 phase trigger changes in the distribution of these TFs during the subsequent S phase. Our results show a spatial redistribution of TFs condensates during DNA replication which was not directly related to chromatin compaction. Additionally, fluorescence fluctuation spectroscopy revealed TF-specific, subtle changes in the landscape of TF-chromatin interactions, consistent with their particularities as key players of the pluripotency network. Moreover, we found that differentiation stimuli in the preceding G1 phase triggered a relatively fast and massive reorganization of pluripotency TFs in early-S phase. Particularly, OCT4 and SOX2 condensates dissolved whereas the lifetimes of TF-chromatin interactions increased suggesting that the reorganization of condensates is accompanied with a change in the landscape of TF-chromatin interactions. Notably, NANOG showed impaired interactions with chromatin in stimulated early-S cells in line with its role as naïve pluripotency TF. Together, these findings provide new insights into the regulation of the core pluripotency TFs during DNA replication of embryonic stem cells and highlight their different roles at early differentiation stages.
Collapse
Affiliation(s)
- Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcos Gabriel Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Sonia Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Smith MB, Sparks H, Almagro J, Chaigne A, Behrens A, Dunsby C, Salbreux G. Active mesh and neural network pipeline for cell aggregate segmentation. Biophys J 2023; 122:1586-1599. [PMID: 37002604 PMCID: PMC10183373 DOI: 10.1016/j.bpj.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Segmenting cells within cellular aggregates in 3D is a growing challenge in cell biology due to improvements in capacity and accuracy of microscopy techniques. Here, we describe a pipeline to segment images of cell aggregates in 3D. The pipeline combines neural network segmentations with active meshes. We apply our segmentation method to cultured mouse mammary gland organoids imaged over 24 h with oblique plane microscopy, a high-throughput light-sheet fluorescence microscopy technique. We show that our method can also be applied to images of mouse embryonic stem cells imaged with a spinning disc microscope. We segment individual cells based on nuclei and cell membrane fluorescent markers, and track cells over time. We describe metrics to quantify the quality of the automated segmentation. Our segmentation pipeline involves a Fiji plugin that implements active mesh deformation and allows a user to create training data, automatically obtain segmentation meshes from original image data or neural network prediction, and manually curate segmentation data to identify and correct mistakes. Our active meshes-based approach facilitates segmentation postprocessing, correction, and integration with neural network prediction.
Collapse
Affiliation(s)
| | - Hugh Sparks
- Photonics Group, Department of Physics, Imperial College London, London, United Kingdom
| | | | - Agathe Chaigne
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Axel Behrens
- Cancer Stem Cell Team, The Institute of Cancer Research, London, United Kingdom
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, London, United Kingdom
| | - Guillaume Salbreux
- The Francis Crick Institute, London, United Kingdom; Department of Genetics and Evolution, Geneva, Switzerland.
| |
Collapse
|
3
|
Perera M, Nissen SB, Proks M, Pozzi S, Monteiro RS, Trusina A, Brickman JM. Transcriptional heterogeneity and cell cycle regulation as central determinants of primitive endoderm priming. eLife 2022; 11:78967. [PMID: 35969041 PMCID: PMC9417417 DOI: 10.7554/elife.78967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
During embryonic development cells acquire identity as they proliferate, implying that an intrinsic facet of cell fate choice requires coupling lineage decisions to cell division. How is the cell cycle regulated to promote or suppress heterogeneity and differentiation? We explore this question combining time lapse imaging with single-cell RNA-seq in the contexts of self-renewal, priming, and differentiation of mouse embryonic stem cells (ESCs) towards the Primitive Endoderm (PrE) lineage. Since ESCs are derived from the inner cell mass (ICM) of the mammalian blastocyst, ESCs in standard culture conditions are transcriptionally heterogeneous containing dynamically interconverting subfractions primed for either of the two ICM lineages, Epiblast and PrE. Here, we find that differential regulation of cell cycle can tip the balance between these primed populations, such that naïve ESC culture promotes Epiblast-like expansion and PrE differentiation stimulates the selective survival and proliferation of PrE-primed cells. In endoderm differentiation, this change is accompanied by a counter-intuitive increase in G1 length, also observed in vivo. While fibroblast growth factor/extracellular signal-regulated kinase (FGF/ERK) signalling is a key regulator of ESC differentiation and PrE specification, we find it is not just responsible for ESCs heterogeneity, but also the inheritance of similar cell cycles between sisters and cousins. Taken together, our results indicate a tight relationship between transcriptional heterogeneity and cell cycle regulation in lineage specification, with primed cell populations providing a pool of flexible cell types that can be expanded in a lineage-specific fashion while allowing plasticity during early determination.
Collapse
Affiliation(s)
- Marta Perera
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Proks
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sara Pozzi
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rita Soares Monteiro
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joshua M Brickman
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Chaigne A, Smith MB, Lopez Cavestany R, Hannezo E, Chalut KJ, Paluch EK. Three-dimensional geometry controls division symmetry in stem cell colonies. J Cell Sci 2021; 134:jcs255018. [PMID: 34323278 PMCID: PMC8349555 DOI: 10.1242/jcs.255018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Abstract
Proper control of division orientation and symmetry, largely determined by spindle positioning, is essential to development and homeostasis. Spindle positioning has been extensively studied in cells dividing in two-dimensional (2D) environments and in epithelial tissues, where proteins such as NuMA (also known as NUMA1) orient division along the interphase long axis of the cell. However, little is known about how cells control spindle positioning in three-dimensional (3D) environments, such as early mammalian embryos and a variety of adult tissues. Here, we use mouse embryonic stem cells (ESCs), which grow in 3D colonies, as a model to investigate division in 3D. We observe that, at the periphery of 3D colonies, ESCs display high spindle mobility and divide asymmetrically. Our data suggest that enhanced spindle movements are due to unequal distribution of the cell-cell junction protein E-cadherin between future daughter cells. Interestingly, when cells progress towards differentiation, division becomes more symmetric, with more elongated shapes in metaphase and enhanced cortical NuMA recruitment in anaphase. Altogether, this study suggests that in 3D contexts, the geometry of the cell and its contacts with neighbors control division orientation and symmetry. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Agathe Chaigne
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Matthew B. Smith
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Rocio Lopez Cavestany
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | | - Kevin J. Chalut
- Wellcome/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Ewa K. Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Wellcome/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
5
|
Chaigne A, Labouesse C, White IJ, Agnew M, Hannezo E, Chalut KJ, Paluch EK. Abscission Couples Cell Division to Embryonic Stem Cell Fate. Dev Cell 2020; 55:195-208.e5. [PMID: 32979313 PMCID: PMC7594744 DOI: 10.1016/j.devcel.2020.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/22/2020] [Accepted: 08/30/2020] [Indexed: 12/30/2022]
Abstract
Cell fate transitions are key to development and homeostasis. It is thus essential to understand the cellular mechanisms controlling fate transitions. Cell division has been implicated in fate decisions in many stem cell types, including neuronal and epithelial progenitors. In other stem cells, such as embryonic stem (ES) cells, the role of division remains unclear. Here, we show that exit from naive pluripotency in mouse ES cells generally occurs after a division. We further show that exit timing is strongly correlated between sister cells, which remain connected by cytoplasmic bridges long after division, and that bridge abscission progressively accelerates as cells exit naive pluripotency. Finally, interfering with abscission impairs naive pluripotency exit, and artificially inducing abscission accelerates it. Altogether, our data indicate that a switch in the division machinery leading to faster abscission regulates pluripotency exit. Our study identifies abscission as a key cellular process coupling cell division to fate transitions. Mouse embryonic stem cells exit naive pluripotency after mitosis Naive embryonic stem cells display slow abscission and remain connected by bridges Cells exiting naive pluripotency display faster abscission Accelerating abscission facilitates exit from naive pluripotency
Collapse
Affiliation(s)
- Agathe Chaigne
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Céline Labouesse
- Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ian J White
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Meghan Agnew
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Kevin J Chalut
- Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
6
|
Alba G, Martínez R, Postigo-Corrales F, López S, Santa-María C, Jiménez J, Cahuana GM, Soria B, Bedoya FJ, Tejedo JR. AICAR Stimulates the Pluripotency Transcriptional Complex in Embryonic Stem Cells Mediated by PI3K, GSK3β, and β-Catenin. ACS OMEGA 2020; 5:20270-20282. [PMID: 32832780 PMCID: PMC7439381 DOI: 10.1021/acsomega.0c02137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/23/2020] [Indexed: 05/03/2023]
Abstract
Pluripotent stem cells maintain the property of self-renewal and differentiate into all cell types under clear environments. Though the gene regulatory mechanism for pluripotency has been investigated in recent years, it is still not completely understood. Here, we show several signaling pathways involved in the maintenance of pluripotency. To investigate whether AMPK is involved in maintaining the pluripotency in mouse embryonic stem cells (mESCs) and elucidating the possible molecular mechanisms, implicated D3 and R1/E mESC lines were used in this study. Cells were cultured in the absence or presence of LIF and treated with 1 mM and 0.5 mM 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), 2 mM metformin, compound C, and the PI3K inhibitor LY294002 for 24, 72, and 120 h. The levels of Nanog, Oct3/4, and REX1 and Brachyury, Notch2, and Gata4 mRNAs and Nanog or OCT3/4 protein levels were analyzed. Alkaline phosphatase and the cellular cycle were determined. The pGSK3β, GSK3β, p-β-catenin, and β-catenin protein levels were also investigated. We found that AMPK activators such as AICAR and metformin increase mRNA expression of pluripotency markers and decrease mRNA expression of differentiation markers in R1/E and D3 ES cells. AICAR increases phosphatase activity and arrests the cellular cycle in the G1 phase in these cells. We describe that AICAR effects were mediated by AMPK activation using a chemical inhibitor or by silencing this gene. AICAR effects were also mediated by PI3K, GSK3β, and β-catenin in R1/E ES cells. According to our findings, we provide a mechanism by which AICAR increases and maintains a pluripotency state through enhanced Nanog expression, involving AMPK/PI3K and p-GSK3β Ser21/9 pathways backing up the AICAR function as a potential target for this drug controlling pluripotency. The highlights of this study are that AICAR (5-aminoimidazole-4-carboxamied-1-b-riboside), an AMP protein kinase (AMPK) activator, blocks the ESC differentiation and AMPK is a key enzyme for pluripotency and shows valuable data to clarify the molecular pluripotency mechanism.
Collapse
Affiliation(s)
- Gonzalo Alba
- Department
of Medical Biochemistry and Molecular Biology, Universidad de Sevilla, Seville 41009, Spain
- . Telephone: +34-955421044. Fax: +34-954907048
| | - Raquel Martínez
- Department
of Regeneration and Cell Therapy, Andalusian Center for Molecular
Biology and Regenerative Medicine-CABIMER, Universidad Pablo de Olavide-University of Seville-CSIC, Seville 41013, Spain
| | - Fátima Postigo-Corrales
- Department
of Regeneration and Cell Therapy, Andalusian Center for Molecular
Biology and Regenerative Medicine-CABIMER, Universidad Pablo de Olavide-University of Seville-CSIC, Seville 41013, Spain
| | - Soledad López
- Department
of Medical Biochemistry and Molecular Biology, Universidad de Sevilla, Seville 41009, Spain
| | - Consuelo Santa-María
- Department
of Biochemistry and Molecular Biology, Universidad
de Sevilla, Seville 41009, Spain
| | - Juan Jiménez
- Department
of Medical Biochemistry and Molecular Biology, Universidad de Sevilla, Seville 41009, Spain
| | - Gladys M. Cahuana
- Department
of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville 41013, Spain
- Biomedical
Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM,
Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Bernat Soria
- Department
of Regeneration and Cell Therapy, Andalusian Center for Molecular
Biology and Regenerative Medicine-CABIMER, Universidad Pablo de Olavide-University of Seville-CSIC, Seville 41013, Spain
- Biomedical
Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM,
Instituto de Salud Carlos III, Madrid 28029, Spain
- Cell
Therapy
Network, Madrid (RED-TERCEL), Instituto
de Salud Carlos III, Madrid 28029, Spain
- Universidad
Miguel Hernández, Alicante 03550, Spain
| | - Francisco J. Bedoya
- Department
of Regeneration and Cell Therapy, Andalusian Center for Molecular
Biology and Regenerative Medicine-CABIMER, Universidad Pablo de Olavide-University of Seville-CSIC, Seville 41013, Spain
- Department
of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville 41013, Spain
- Biomedical
Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM,
Instituto de Salud Carlos III, Madrid 28029, Spain
- Cell
Therapy
Network, Madrid (RED-TERCEL), Instituto
de Salud Carlos III, Madrid 28029, Spain
| | - Juan R. Tejedo
- Department
of Regeneration and Cell Therapy, Andalusian Center for Molecular
Biology and Regenerative Medicine-CABIMER, Universidad Pablo de Olavide-University of Seville-CSIC, Seville 41013, Spain
- Department
of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville 41013, Spain
- Biomedical
Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM,
Instituto de Salud Carlos III, Madrid 28029, Spain
- Cell
Therapy
Network, Madrid (RED-TERCEL), Instituto
de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
7
|
Critical Role for P53 in Regulating the Cell Cycle of Ground State Embryonic Stem Cells. Stem Cell Reports 2020; 14:175-183. [PMID: 32004494 PMCID: PMC7013234 DOI: 10.1016/j.stemcr.2020.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) grown in serum-supplemented conditions are characterized by an extremely short G1 phase due to the lack of G1-phase control. Concordantly, the G1-phase-specific P53-P21 pathway is compromised in serum ESCs. Here, we provide evidence that P53 is activated upon transition of serum ESCs to their pluripotent ground state using serum-free 2i conditions and that is required for the elongated G1 phase characteristic of ground state ESCs. RNA sequencing and chromatin immunoprecipitation sequencing analyses reveal that P53 directly regulates the expression of the retinoblastoma (RB) protein and that the hypo-phosphorylated, active RB protein plays a key role in G1-phase control. Our findings suggest that the P53-P21 pathway is active in ground state 2i ESCs and that its role in the G1-checkpoint is abolished in serum ESCs. Taken together, the data reveal a mechanism by which inactivation of P53 can lead to loss of RB and uncontrolled cell proliferation. The P53-P21 pathway is activated upon adaptation of ESCs to their pluripotent ground state. P53 is required for the elongated G1-phase characteristic to 2i ESCs. P53 binds the promoter and activates Rb1 expression.
Collapse
|
8
|
Deathridge J, Antolović V, Parsons M, Chubb JR. Live imaging of ERK signalling dynamics in differentiating mouse embryonic stem cells. Development 2019; 146:dev172940. [PMID: 31064783 PMCID: PMC6602347 DOI: 10.1242/dev.172940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/29/2019] [Indexed: 12/18/2022]
Abstract
Stimulation of the ERK/MAPK pathway is required for the exit from pluripotency and onset of differentiation in mouse embryonic stem cells (ESCs). The dynamic behaviour of ERK activity in individual cells during this transition is unclear. Using a FRET-based biosensor, we monitored ERK signalling dynamics of single mouse ESCs during differentiation. ERK activity was highly heterogeneous, with considerable variability in ERK signalling between single cells within ESC colonies. Different triggers of differentiation induced distinct ERK activity profiles. Surprisingly, the dynamic features of ERK signalling were not strongly coupled to loss of pluripotency marker expression, regardless of the differentiation stimulus, suggesting the normal dynamic range of ERK signalling is not rate-limiting in single cells during differentiation. ERK signalling dynamics were sensitive to the degree of cell crowding and were similar in neighbouring cells. Sister cells from a mitotic division also showed more similar ERK activity, an effect that was apparent whether cells remained adjacent or moved apart after division. These data suggest a combination of cell lineage and niche contributes to the absolute level of ERK signalling in mouse ESCs.
Collapse
Affiliation(s)
- Julia Deathridge
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, London SE1 1UL, UK
| | - Vlatka Antolović
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, London SE1 1UL, UK
| | - Jonathan R Chubb
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
9
|
Waisman A, Sevlever F, Elías Costa M, Cosentino MS, Miriuka SG, Ventura AC, Guberman AS. Cell cycle dynamics of mouse embryonic stem cells in the ground state and during transition to formative pluripotency. Sci Rep 2019; 9:8051. [PMID: 31142785 PMCID: PMC6541595 DOI: 10.1038/s41598-019-44537-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) can be maintained as homogeneous populations in the ground state of pluripotency. Release from this state in minimal conditions allows to obtain cells that resemble those of the early post-implantation epiblast, providing an important developmental model to study cell identity transitions. However, the cell cycle dynamics of mESCs in the ground state and during its dissolution have not been extensively studied. By performing live imaging experiments of mESCs bearing cell cycle reporters, we show here that cells in the pluripotent ground state display a cell cycle structure comparable to the reported for mESCs in serum-based media. Upon release from self-renewal, the cell cycle is rapidly accelerated by a reduction in the length of the G1 phase and of the S/G2/M phases, causing an increased proliferation rate. Analysis of cell lineages indicates that cell cycle variables of sister cells are highly correlated, suggesting the existence of inherited cell cycle regulators from the parental cell. Together with a major morphological reconfiguration upon differentiation, our findings support a correlation between this in vitro model and early embryonic events.
Collapse
Affiliation(s)
- Ariel Waisman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Laboratorio de Regulación Génica en Células Madre, Buenos Aires, Argentina
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación de Aplicación a Neurociencias (LIAN), Buenos Aires, Argentina
| | - Federico Sevlever
- CONICET - Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | | | - María Soledad Cosentino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Laboratorio de Regulación Génica en Células Madre, Buenos Aires, Argentina
| | - Santiago G Miriuka
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación de Aplicación a Neurociencias (LIAN), Buenos Aires, Argentina
| | - Alejandra C Ventura
- CONICET - Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Alejandra S Guberman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Laboratorio de Regulación Génica en Células Madre, Buenos Aires, Argentina.
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Antolović V, Lenn T, Miermont A, Chubb JR. Transition state dynamics during a stochastic fate choice. Development 2019; 146:dev173740. [PMID: 30890571 PMCID: PMC6602359 DOI: 10.1242/dev.173740] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022]
Abstract
The generation of multiple fates from a uniform cell population via self-organisation is a recurring feature in development and regeneration. However, for most self-organising systems, we have little understanding of the processes that allow cells to become different. One of the clearest examples of developmental self-organisation is shown by Dictyostelium, with cells segregating into two major fates, stalk and spore, within multicellular aggregates. To characterise the gene expression decisions that underlie this cell fate bifurcation, we carried out single cell transcriptomics on Dictyostelium aggregates. Our data show the transition of progenitors into prespore and prestalk cells occurs via distinct developmental intermediates. Few cells were captured switching between states, with minimal overlap in fate marker expression between cell types, suggesting states are discrete and transitions rapid. Surprisingly, fate-specific transcript dynamics were a small proportion of overall gene expression changes, with transcript divergence coinciding precisely with large-scale remodelling of the transcriptome shared by prestalk and prespore cells. These observations suggest the stepwise separation of cell identity is temporally coupled to global expression transitions common to both fates.
Collapse
Affiliation(s)
- Vlatka Antolović
- Laboratory for Molecular Cell Biology and Division of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Tchern Lenn
- Laboratory for Molecular Cell Biology and Division of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Agnes Miermont
- Laboratory for Molecular Cell Biology and Division of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jonathan R Chubb
- Laboratory for Molecular Cell Biology and Division of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
11
|
Paschke P, Knecht DA, Silale A, Traynor D, Williams TD, Thomason PA, Insall RH, Chubb JR, Kay RR, Veltman DM. Rapid and efficient genetic engineering of both wild type and axenic strains of Dictyostelium discoideum. PLoS One 2018; 13:e0196809. [PMID: 29847546 PMCID: PMC5976153 DOI: 10.1371/journal.pone.0196809] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/15/2018] [Indexed: 02/03/2023] Open
Abstract
Dictyostelium has a mature technology for molecular-genetic manipulation based around transfection using several different selectable markers, marker re-cycling, homologous recombination and insertional mutagenesis, all supported by a well-annotated genome. However this technology is optimized for mutant, axenic cells that, unlike non-axenic wild type, can grow in liquid medium. There is a pressing need for methods to manipulate wild type cells and ones with defects in macropinocytosis, neither of which can grow in liquid media. Here we present a panel of molecular genetic techniques based on the selection of Dictyostelium transfectants by growth on bacteria rather than liquid media. As well as extending the range of strains that can be manipulated, these techniques are faster than conventional methods, often giving usable numbers of transfected cells within a few days. The methods and plasmids described here allow efficient transfection with extrachromosomal vectors, as well as chromosomal integration at a 'safe haven' for relatively uniform cell-to-cell expression, efficient gene knock-in and knock-out and an inducible expression system. We have thus created a complete new system for the genetic manipulation of Dictyostelium cells that no longer requires cell feeding on liquid media.
Collapse
Affiliation(s)
- Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - David A. Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | | | - David Traynor
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Peter A. Thomason
- Cancer Research UK Beatson Institute Glasgow, Glasgow, United Kingdom
| | - Robert H. Insall
- Cancer Research UK Beatson Institute Glasgow, Glasgow, United Kingdom
| | - Jonathan R. Chubb
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Robert R. Kay
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
12
|
Hastreiter S, Skylaki S, Loeffler D, Reimann A, Hilsenbeck O, Hoppe PS, Coutu DL, Kokkaliaris KD, Schwarzfischer M, Anastassiadis K, Theis FJ, Schroeder T. Inductive and Selective Effects of GSK3 and MEK Inhibition on Nanog Heterogeneity in Embryonic Stem Cells. Stem Cell Reports 2018; 11:58-69. [PMID: 29779897 PMCID: PMC6066909 DOI: 10.1016/j.stemcr.2018.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 11/30/2022] Open
Abstract
Embryonic stem cells (ESCs) display heterogeneous expression of pluripotency factors such as Nanog when cultured with serum and leukemia inhibitory factor (LIF). In contrast, dual inhibition of the signaling kinases GSK3 and MEK (2i) converts ESC cultures into a state with more uniform and high Nanog expression. However, it is so far unclear whether 2i acts through an inductive or selective mechanism. Here, we use continuous time-lapse imaging to quantify the dynamics of death, proliferation, and Nanog expression in mouse ESCs after 2i addition. We show that 2i has a dual effect: it both leads to increased cell death of Nanog low ESCs (selective effect) and induces and maintains high Nanog levels (inductive effect) in single ESCs. Genetic manipulation further showed that presence of NANOG protein is important for cell viability in 2i medium. This demonstrates complex Nanog-dependent effects of 2i treatment on ESC cultures. Continuous long-term single-cell quantification of 2i effects on murine ESCs 2i enriches for a Nanog high population through a selective cell death effect 2i also upregulates Nanog expression and prevents its downregulation The viability of Nanog−/− cells is compromised in 2i
Collapse
Affiliation(s)
- Simon Hastreiter
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; Research Unit Stem Cell Dynamics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Stavroula Skylaki
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; Research Unit Stem Cell Dynamics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; Research Unit Stem Cell Dynamics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Andreas Reimann
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Oliver Hilsenbeck
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; Research Unit Stem Cell Dynamics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Philipp S Hoppe
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; Research Unit Stem Cell Dynamics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Daniel L Coutu
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; Research Unit Stem Cell Dynamics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Konstantinos D Kokkaliaris
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; Research Unit Stem Cell Dynamics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Michael Schwarzfischer
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; Research Unit Stem Cell Dynamics, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| |
Collapse
|
13
|
Pijuan-Sala B, Guibentif C, Göttgens B. Single-cell transcriptional profiling: a window into embryonic cell-type specification. Nat Rev Mol Cell Biol 2018; 19:399-412. [DOI: 10.1038/s41580-018-0002-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Chubb JR. Symmetry breaking in development and stochastic gene expression. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [DOI: 10.1002/wdev.284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/11/2017] [Accepted: 06/05/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Jonathan R. Chubb
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology; University College London; London UK
| |
Collapse
|
15
|
Smith RCG, Stumpf PS, Ridden SJ, Sim A, Filippi S, Harrington HA, MacArthur BD. Nanog Fluctuations in Embryonic Stem Cells Highlight the Problem of Measurement in Cell Biology. Biophys J 2017; 112:2641-2652. [PMID: 28636920 PMCID: PMC5479053 DOI: 10.1016/j.bpj.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 11/18/2022] Open
Abstract
A number of important pluripotency regulators, including the transcription factor Nanog, are observed to fluctuate stochastically in individual embryonic stem cells. By transiently priming cells for commitment to different lineages, these fluctuations are thought to be important to the maintenance of, and exit from, pluripotency. However, because temporal changes in intracellular protein abundances cannot be measured directly in live cells, fluctuations are typically assessed using genetically engineered reporter cell lines that produce a fluorescent signal as a proxy for protein expression. Here, using a combination of mathematical modeling and experiment, we show that there are unforeseen ways in which widely used reporter strategies can systematically disturb the dynamics they are intended to monitor, sometimes giving profoundly misleading results. In the case of Nanog, we show how genetic reporters can compromise the behavior of important pluripotency-sustaining positive feedback loops, and induce a bifurcation in the underlying dynamics that gives rise to heterogeneous Nanog expression patterns in reporter cell lines that are not representative of the wild-type. These findings help explain the range of published observations of Nanog variability and highlight the problem of measurement in live cells.
Collapse
Affiliation(s)
- Rosanna C G Smith
- Centre for Human Development, Stem Cells, and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Patrick S Stumpf
- Centre for Human Development, Stem Cells, and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sonya J Ridden
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Aaron Sim
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sarah Filippi
- Department of Mathematics, Imperial College London, London, United Kingdom; Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | | | - Ben D MacArthur
- Centre for Human Development, Stem Cells, and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Mathematical Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
16
|
First steps to define murine amniotic fluid stem cell microenvironment. Sci Rep 2016; 6:37080. [PMID: 27845396 PMCID: PMC5109045 DOI: 10.1038/srep37080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022] Open
Abstract
Stem cell niche refers to the microenvironment where stem cells reside in living organisms. Several elements define the niche and regulate stem cell characteristics, such as stromal support cells, gap junctions, soluble factors, extracellular matrix proteins, blood vessels and neural inputs. In the last years, different studies demonstrated the presence of cKit+ cells in human and murine amniotic fluid, which have been defined as amniotic fluid stem (AFS) cells. Firstly, we characterized the murine cKit+ cells present both in the amniotic fluid and in the amnion. Secondly, to analyze the AFS cell microenvironment, we injected murine YFP+ embryonic stem cells (ESC) into the amniotic fluid of E13.5 wild type embryos. Four days after transplantation we found that YFP+ sorted cells maintained the expression of pluripotency markers and that ESC adherent to the amnion were more similar to original ESC in respect to those isolated from the amniotic fluid. Moreover, cytokines evaluation and oxygen concentration analysis revealed in this microenvironment the presence of factors that are considered key regulators in stem cell niches. This is the first indication that AFS cells reside in a microenvironment that possess specific characteristics able to maintain stemness of resident and exogenous stem cells.
Collapse
|
17
|
Single-cell gene expression profiling and cell state dynamics: collecting data, correlating data points and connecting the dots. Curr Opin Biotechnol 2016; 39:207-214. [PMID: 27152696 DOI: 10.1016/j.copbio.2016.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 01/28/2023]
Abstract
Single-cell analyses of transcript and protein expression profiles-more precisely, single-cell resolution analysis of molecular profiles of cell populations-have now entered the center stage with widespread applications of single-cell qPCR, single-cell RNA-Seq and CyTOF. These high-dimensional population snapshot techniques are complemented by low-dimensional time-resolved, microscopy-based monitoring methods. Both fronts of advance have exposed a rich heterogeneity of cell states within uniform cell populations in many biological contexts, producing a new kind of data that has triggered computational analysis methods for data visualization, dimensionality reduction, and cluster (subpopulation) identification. The next step is now to go beyond collecting data and correlating data points: to connect the dots, that is, to understand what actually underlies the identified data patterns. This entails interpreting the 'clouds of points' in state space as a manifestation of the underlying molecular regulatory network. In that way control of cell state dynamics can be formalized as a quasi-potential landscape, as first proposed by Waddington. We summarize key methods of data acquisition and computational analysis and explain the principles that link the single-cell resolution measurements to dynamical systems theory.
Collapse
|
18
|
|