1
|
Tang Y, Chen Y, Liu R, Li W, Hua B, Bao Y. Wnt Signaling Pathways: A Role in Pain Processing. Neuromolecular Med 2022; 24:233-249. [PMID: 35067780 PMCID: PMC9402773 DOI: 10.1007/s12017-021-08700-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/30/2021] [Indexed: 10/25/2022]
Abstract
The wingless-related integration site (Wnt) signaling pathway plays an essential role in embryonic development and nervous system regulation. It is critically involved in multiple types of neuropathic pain (NP), such as HIV-related NP, cancer pain, diabetic neuralgia, multiple sclerosis-related NP, endometriosis pain, and other painful diseases. Wnt signaling is also implicated in the pain induced by sciatic nerve compression injury and selective spinal nerve ligation. Thus, the Wnt signaling pathway may be a potential therapeutic target for NP.
Collapse
Affiliation(s)
- Yiting Tang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing North Third Ring Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Yupeng Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing North Third Ring Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Weidong Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
2
|
Fu JL, Yu Q, Li MD, Hu CM, Shi G. Deleterious cardiovascular effect of exosome in digitalis-treated decompensated congestive heart failure. J Biochem Mol Toxicol 2020; 34:e22462. [PMID: 32045083 DOI: 10.1002/jbt.22462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/16/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Heart failure (HF) is a medical condition inability of the heart to pump sufficient blood to meet the metabolic demand of the body to take place. The number of hospitalized patients with cardiovascular diseases is estimated to be more than 1 million each year, of which 80% to 90% of patients ultimately progress to decompensated HF. Digitalis glycosides exert modest inotropic actions when administered to patients with decompensated HF. Although its efficacy in patients with HF and atrial fibrillation is clear, its value in patients with HF and sinus rhythm has often been questioned. A series of recent studies have cast serious doubt on the benefit of digoxin when added to contemporary HF treatment. We are hypothesizing the role and mechanism of exosome and its biological constituents responsible for worsening the disease state and mortality in decompensated HF patients on digitalis.
Collapse
Affiliation(s)
- Jin-Ling Fu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiong Yu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Meng-Di Li
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Chun-Mei Hu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guang Shi
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Gap junction-dependent coordination of intercellular calcium signalling in the developing appendicularian tunicate Oikopleura dioica. Dev Biol 2019; 450:9-22. [PMID: 30905687 DOI: 10.1016/j.ydbio.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 01/03/2023]
Abstract
We characterized spontaneous Ca2+ signals in Oikopleura dioica embryos from pre-fertilization to gastrula stages following injection of GCaMP6 mRNA into unfertilized eggs. The unfertilized egg exhibited regular, transient elevations in intracellular Ca2+ concentration with an average duration of 4-6 s and an average frequency of about 1 every 2.5 min. Fertilization was accompanied by a longer Ca2+ transient that lasted several minutes. Thereafter, regular Ca2+ transients were reinstated that spread within seconds among blastomeres and gradually increased in duration (by about 50%) and decreased in frequency (by about 20%) by gastrulation. Peak amplitudes also exhibited a dynamic, with a transitory drop occurring at about the 4-cell stage and a subsequent rise. Each peak was preceded by about 15 s by a smaller and shorter Ca2+ increase (about 5% of the main peak amplitude, average duration 3 s), which we term the "minipeak". By gastrulation, Ca2+ transients exhibited a stereotyped initiation site on either side of the 32-64-cell embryo, likely in the nascent muscle precursor cells, and spread thereafter symmetrically in a stereotyped spatial pattern that engaged blastomeres giving rise to all the major tissue lineages. The rapid spread of the transients relative to the intertransient interval created a coordinated wave that, on a coarse time scale, could be considered an approximate synchronization. Treatment with the divalent cations Ni2+ or Cd2+ gradually diminished peak amplitudes, had only moderate effects on wave frequency, but markedly disrupted wave synchronization and normal development. The T-type Ca2+ channel blocker mibefradil similarly disrupted normal development, and eliminated the minipeaks, but did not affect wave synchronization. To assess the role of gap junctions in calcium wave spread and coordination, we first characterized the expression of two Oikopleura connexins, Od-CxA and Od-CxB, both of which are expressed during pre-gastrulation and gastrula stages, and then co-injected double-stranded inhibitory RNAs together with CGaMP6 to suppress connexin expression. Connexin mRNA knockdown led to a gradual increase in Ca2+ transient peak width, a decrease of interpeak interval and a marked disruption of wave synchronization. As seen with divalent cations and mibefradil, this desynchronization was accompanied by a disruption of normal development.
Collapse
|
4
|
Meyer IS, Leuschner F. The role of Wnt signaling in the healing myocardium: a focus on cell specificity. Basic Res Cardiol 2018; 113:44. [PMID: 30327885 DOI: 10.1007/s00395-018-0705-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Various cell types are involved in the healing process after myocardial infarction (MI). Besides cardiac resident cells (such as cardiomyocytes, fibroblasts and endothelial cells) already present at the lesion site, a massive influx of leukocytes (mainly monocytes and neutrophils) is observed within hours after the ischemic event. So far, little is known about modes of interaction of these cells. Wnt signaling is an evolutionary conserved signaling cassette known to play an important role in cell-cell communication. While the overall reactivation of Wnt signaling upon ischemic injury is well described, the precise expression pattern of Wnt proteins, however, is far from understood. We here describe known Wnt components that partake in MI healing and differentiate cell-specific aspects. The secretion of Wnt proteins and their antagonists in the context of cardiac inflammation after MI appear to be tightly regulated in a spatial-temporal manner. Overall, we aim to stress the importance of elucidating not only Wnt component-specific aspects, but also their sometimes contradicting effects in different target cells. A better understanding of Wnt signaling in MI healing may eventually lead to the development of successful therapeutic approaches in an often considered "un-druggable" pathway.
Collapse
Affiliation(s)
- Ingmar Sören Meyer
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Florian Leuschner
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
5
|
Koopmans T, Anaparti V, Castro-Piedras I, Yarova P, Irechukwu N, Nelson C, Perez-Zoghbi J, Tan X, Ward JPT, Wright DB. Ca2+ handling and sensitivity in airway smooth muscle: emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther 2014; 29:108-20. [PMID: 24831539 DOI: 10.1016/j.pupt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/28/2014] [Accepted: 05/01/2014] [Indexed: 02/01/2023]
Abstract
Free calcium ions within the cytosol serve as a key secondary messenger system for a diverse range of cellular processes. Dysregulation of cytosolic Ca(2+) handling in airway smooth muscle (ASM) has been implicated in asthma, and it has been hypothesised that this leads, at least in part, to associated changes in both the architecture and function of the lung. Significant research is therefore directed towards furthering our understanding of the mechanisms which control ASM cytosolic calcium, in addition to those regulating the sensitivity of its downstream effector targets to calcium. Key aspects of the recent developments in this field were discussed at the 8th Young Investigators' Symposium on Smooth Muscle (2013, Groningen, The Netherlands), and are outlined in this review.
Collapse
Affiliation(s)
- T Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - V Anaparti
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - I Castro-Piedras
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - P Yarova
- Cardiff School of Biosciences, Cardiff University, UK
| | - N Irechukwu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - C Nelson
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - J Perez-Zoghbi
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - X Tan
- Lung Inflammation & Infection Lab, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - J P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - D B Wright
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Division of Asthma, Allergy and Lung Biology, King's College London, UK.
| |
Collapse
|
6
|
Cho A, Tang Y, Davila J, Deng S, Chen L, Miller E, Wernig M, Graef IA. Calcineurin signaling regulates neural induction through antagonizing the BMP pathway. Neuron 2014; 82:109-124. [PMID: 24698271 PMCID: PMC4011666 DOI: 10.1016/j.neuron.2014.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2014] [Indexed: 12/28/2022]
Abstract
Development of the nervous system begins with neural induction, which is controlled by complex signaling networks functioning in concert with one another. Fine-tuning of the bone morphogenetic protein (BMP) pathway is essential for neural induction in the developing embryo. However, the molecular mechanisms by which cells integrate the signaling pathways that contribute to neural induction have remained unclear. We find that neural induction is dependent on the Ca(2+)-activated phosphatase calcineurin (CaN). Fibroblast growth factor (FGF)-regulated Ca(2+) entry activates CaN, which directly and specifically dephosphorylates BMP-regulated Smad1/5 proteins. Genetic and biochemical analyses revealed that CaN adjusts the strength and transcriptional output of BMP signaling and that a reduction of CaN activity leads to an increase of Smad1/5-regulated transcription. As a result, FGF-activated CaN signaling opposes BMP signaling during gastrulation, thereby promoting neural induction and the development of anterior structures.
Collapse
Affiliation(s)
- Ahryon Cho
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Yitai Tang
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Jonathan Davila
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Suhua Deng
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Lei Chen
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Erik Miller
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Isabella A Graef
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| |
Collapse
|
7
|
Mikoshiba K. Role of IP3 receptor in development. Cell Calcium 2011; 49:331-40. [DOI: 10.1016/j.ceca.2010.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/21/2010] [Indexed: 12/01/2022]
|
8
|
Soto X, Mayor R, Torrejón M, Montecino M, Hinrichs MV, Olate J. Gαq negatively regulates the Wnt-β-catenin pathway and dorsal embryonicXenopus laevis development. J Cell Physiol 2007; 214:483-90. [PMID: 17654482 DOI: 10.1002/jcp.21228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The non-canonical Wnt/Ca2+ signaling pathway has been implicated in the regulation of axis formation and gastrulation movements during early Xenopus laevis embryo development, by antagonizing the canonical Wnt/beta-catenin dorsalizing pathway and specifying ventral cell fate. However, the molecular mechanisms involved in this antagonist crosstalk are not known. Since Galphaq is the main regulator of Ca2+ signaling in vertebrates and from this perspective probably involved in the events elicited by the non-canonical Wnt/Ca2+ pathway, we decided to study the effect of wild-type Xenopus Gq (xGalphaq) in dorso-ventral axis embryo patterning. Overexpression of xGalphaq or its endogenous activation at the dorsal animal region of Xenopus embryo both induced a strong ventralized phenotype and inhibited the expression of dorsal-specific mesoderm markers goosecoid and chordin. Dorsal expression of an xGalphaq dominant-negative mutant reverted the xGalphaq-induced ventralized phenotype. Finally, we observed that the Wnt8-induced secondary axis formation is reverted by endogenous xGalphaq activation, indicating that it is negatively regulating the Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- Ximena Soto
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Casilla 160-C, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Fertilization calcium waves are introduced, and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypotheses put forward to explain the generation of the fertilization calcium wave are set out, and it is concluded that initiation of the fertilization calcium wave can be most generally explained in invertebrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control, and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signaling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signaling during resumption of meiosis. Changes to the calcium signaling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed, and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signaling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog, and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed. Evidence that the Wingless/calcium signaling pathway is a strong ventralizing signal in Xenopus, mediated by phosphoinositide signaling, is adumbrated. The central role that calcium channels play in morphogenetic movements during gastrulation and in ectodermal and mesodermal gene expression during late gastrulation is demonstrated. Experiments in zebrafish provide a strong indication that calcium signals are essential for pattern formation and organogenesis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell & Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
10
|
Abstract
All processes that occur before the activation of the zygotic genome at the midblastula transition are driven by maternal products, which are produced during oogenesis and stored in the mature oocyte. Upon egg activation and fertilization, these maternal factors initiate developmental cascades that carry out the embryonic developmental program. Even after the initiation of zygotic gene expression, perduring maternal products continue performing essential functions, either together with other maternal factors or through interactions with newly expressed zygotic products. Advances in zebrafish research have placed this organism in a unique position to contribute to a detailed understanding of the role of maternal factors in early vertebrate development. This review summarizes our knowledge on the processes involved in the production and redistribution of maternal factors during zebrafish oogenesis and early development, as well as our understanding of the function of these factors in axis formation, germ layer and germ cell specification, and other early embryonic processes.
Collapse
Affiliation(s)
- Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
11
|
Woodard GE, Rosado JA. G-Protein Coupled Receptors and Calcium Signaling in Development. Curr Top Dev Biol 2004; 65:189-210. [PMID: 15642384 DOI: 10.1016/s0070-2153(04)65007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Geoffrey E Woodard
- Metabolic Diseases Branch, National Institute of Diabetes Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
12
|
Affiliation(s)
- Patrice J Morin
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
13
|
Abstract
Consider a hypothetical design specification for an integrated communication-control system within an embryo. It would require short-range (subcellular) and long-range (pan-embryonic) abilities, it would have to be flexible and, at the same time, robust enough to operate in a dynamically changing environment without information being lost or misinterpreted. Although many signalling elements appear, disappear and sometimes reappear during development, it is becoming clear that embryos also depend on a ubiquitous, persistent and highly versatile signalling system that is based around a single messenger, Ca2+.
Collapse
Affiliation(s)
- Sarah E Webb
- Department of Biology, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PRC
| | | |
Collapse
|
14
|
Li G, Iyengar R. Calpain as an effector of the Gq signaling pathway for inhibition of Wnt/beta -catenin-regulated cell proliferation. Proc Natl Acad Sci U S A 2002; 99:13254-9. [PMID: 12239346 PMCID: PMC130620 DOI: 10.1073/pnas.202355799] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Signaling pathways interact to integrate and regulate information flow in evoking complex cellular responses. We have studied the mechanisms and consequences of interactions between the Gq and Wnt/beta-catenin pathways. In human colon carcinoma SW480 cells, activation of the Gq pathway inhibits beta-catenin signaling as determined by transcriptional reporter and cell proliferation assays. Ca(2+) release from internal stores results in nuclear export and calpain-mediated degradation of beta-catenin in the cytoplasm. Galphaq does not inhibit the effects of constitutively activated DeltaN-XTCF3-VP16 chimera in SW480 cells. Similarly, in HEK293 cells the Gq pathway suppresses beta-catenin-T cell factor/lymphocyte enhancer factor-1 transcriptional activity induced by Wnt/Frizzled interaction or glycogen synthase kinase-3beta-resistant beta-catenin, but not DeltaN-XTCF3-VP16. We conclude that Gq signaling promotes nuclear export and calpain-mediated degradation of beta-catenin, which therefore contributes to the inhibition of Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- Guangnan Li
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
15
|
Abstract
Wnt proteins form a family of secreted glycoproteins that are involved in different developmental processes such as differentiation, proliferation, cell migration and cell polarity. To exert its function, Wnt proteins activate different intracellular signaling cascades. Whereas the canonical, Wnt/beta-catenin pathway is well characterized, less is known about the function of non-canonical Wnt pathways in vertebrates. I here summarize recent findings implicating important roles for Wnt/Ca(2+) and Wnt/JNK signaling during different aspects of early Xenopus laevis development, namely axis formation and gastrulation movements.
Collapse
Affiliation(s)
- Michael Kühl
- Abt. Biochemie, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.
| |
Collapse
|
16
|
Saneyoshi T, Kume S, Amasaki Y, Mikoshiba K. The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature 2002; 417:295-9. [PMID: 12015605 DOI: 10.1038/417295a] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is thought that inositol-1,4,5-trisphosphate (Ins(1,4,5)P(3))-Ca(2+) signalling has a function in dorsoventral axis formation in Xenopus embryos; however, the immediate target of free Ca(2+) is unclear. The secreted Wnt protein family comprises two functional groups, the canonical Wnt and Wnt/Ca(2+) pathways. The Wnt/Ca(2+) pathway interferes with the canonical Wnt pathway, but the underlying molecular mechanism is poorly understood. Here, we cloned the complementary DNA coding for the Xenopus homologue of nuclear factor of activated T cells (XNF-AT). A gain-of-function, calcineurin-independent active XNF-AT mutation (CA XNF-AT) inhibited anterior development of the primary axis, as well as Xwnt-8-induced ectopic dorsal axis development in embryos. A loss-of-function, dominant negative XNF-AT mutation (DN XNF-AT) induced ectopic dorsal axis formation and expression of the canonical Wnt signalling target molecules siamois and Xnr3 (ref. 4). Xwnt-5A induced translocation of XNF-AT from the cytosol to the nucleus. These data indicate that XNF-AT functions as a downstream target of the Wnt/Ca(2+) and Ins(1,4,5)P(3)-Ca(2+) pathways, and has an essential role in mediating ventral signals in the Xenopus embryo through suppression of the canonical Wnt pathway.
Collapse
Affiliation(s)
- Takeo Saneyoshi
- Department of Molecular Neurobiology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
17
|
Perera IY, Heilmann I, Chang SC, Boss WF, Kaufman PB. A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. PLANT PHYSIOLOGY 2001; 125:1499-507. [PMID: 11244128 PMCID: PMC65627 DOI: 10.1104/pp.125.3.1499] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2000] [Revised: 10/25/2000] [Accepted: 11/20/2000] [Indexed: 05/18/2023]
Abstract
Plants sense positional changes relative to the gravity vector. To date, the signaling processes by which the perception of a gravistimulus is linked to the initiation of differential growth are poorly defined. We have investigated the role of inositol 1,4,5-trisphosphate (InsP(3)) in the gravitropic response of oat (Avena sativa) shoot pulvini. Within 15 s of gravistimulation, InsP(3) levels increased 3-fold over vertical controls in upper and lower pulvinus halves and fluctuated in both pulvinus halves over the first minutes. Between 10 and 30 min of gravistimulation, InsP(3) levels in the lower pulvinus half increased 3-fold over the upper. Changes in InsP(3) were confined to the pulvinus and were not detected in internodal tissue, highlighting the importance of the pulvinus for both graviperception and response. Inhibition of phospholipase C blocked the long-term increase in InsP(3), and reduced gravitropic bending by 65%. Short-term changes in InsP(3) were unimpaired by the inhibitor. Gravitropic bending of oat plants is inhibited at 4 degrees C; however, the plants retain the information of a positional change and respond at room temperature. Both short- and long-term changes in InsP(3) were present at 4 degrees C. We propose a role for InsP(3) in the establishment of tissue polarity during the gravitropic response of oat pulvini. InsP(3) may be involved in the retention of cold-perceived gravistimulation by providing positional information in the pulvini prior to the redistribution of auxin.
Collapse
Affiliation(s)
- I Y Perera
- North Carolina State University, Raleigh, NC, USA.
| | | | | | | | | |
Collapse
|
18
|
Abstract
The members of the Smad protein family are intracellular mediators of transforming growth factor beta (TGF-beta) signaling. Smad1 transduces bone morphogenetic protein signals, inducing formation of ventral mesoderm in Xenopus embryos, whereas Smad2 transduces activin/TGF-beta signals, generating dorsal mesoderm. Calmodulin directly binds to many Smads and was shown to down-regulate Smad2 activity in a cell culture system (Zimmerman, C. M., Kariapper, M. S. T., and Mathews, L. S. (1997) J. Biol. Chem. 273, 677-680). Here, we extend those data and demonstrate that calmodulin alters Smad signaling in living embryos, increasing Smad1 activity while inhibiting Smad2 function. To characterize this regulation, we undertook a structure-function analysis and found that calmodulin binds to two distinct and conserved regions in both Smad1 and Smad2. Receptor tyrosine kinase signaling also modifies Smad activity (Kretzschmar, M., Doody, J., and Massagué, J. (1997) Nature 389, 618-622; Kretzschmar, M., Doody, J., Timokhina, I., and Massagué, J. (1999) Genes Dev. 13, 804-816; de Caestecker, M. P., Parks, W. T., Frank, C. J., Castagnino, P., Bottaro, D. P., Roberts, A. B., and Lechleider, R. J. (1998) Genes Dev. 12, 1587-1592). We show that calmodulin binding to Smads inhibits subsequent Erk2-dependent phosphorylation of Smads and vice versa. These observations suggest the presence of a cross-talk between three major signaling cascades as follows: Ca(2+)/calmodulin, receptor tyrosine kinase, and TGF-beta pathways.
Collapse
Affiliation(s)
- A Scherer
- Center for Developmental Biology, Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, USA
| | | |
Collapse
|
19
|
Abstract
Formation of the three germ layers requires a series of inductive events during early embryogenesis. Studies in zebrafish indicate that the source of these inductive signals may be the extra-embryonic yolk syncytial layer (YSL). The characterization of genes encoding the nodal-related factor, Squint, and homeodomain protein, Bozozok, both of which are expressed in the YSL, suggested that the YSL has a role in mesendoderm induction. However, these genes, and a second nodal-related factor, cyclops, are also expressed in the overlying marginal blastomeres, raising the possibility that the marginal blastomeres can induce mesendodermal genes independently of the YSL. We have developed a novel technique to study signaling from the YSL in which we specifically eliminate RNAs in the YSL, thus addressing the in vivo requirement of RNA-derived signals from this region in mesendoderm induction. We show that injection of RNase into the yolk cell after the 1K cell stage (3 hours) effectively eliminates YSL transcripts without affecting ubiquitously expressed genes in the blastoderm. We also present data that indicate the stability of existing proteins in the YSL is unaffected by RNase injection. Using this technique, we show that RNA in the YSL is required for the formation of ventrolateral mesendoderm and induction of the nodal-related genes in the ventrolateral marginal blastomeres, revealing the presence of an unidentified inducing signal released from the YSL. We also demonstrate that the dorsal mesoderm can be induced independently of signals from the YSL and present evidence that this is due to the stabilization of (β)-catenin in the dorsal marginal blastomeres. Our results demonstrate that germ layer formation and patterning in zebrafish uses a combination of YSL-dependent and -independent inductive events.
Collapse
Affiliation(s)
- S Chen
- Department of Biochemistry and Center for Developmental Biology, Box 357350, University of Washington, Seattle, WA 98195-7350, USA
| | | |
Collapse
|
20
|
Kume S, Inoue T, Mikoshiba K. Galphas family G proteins activate IP(3)-Ca(2+) signaling via gbetagamma and transduce ventralizing signals in Xenopus. Dev Biol 2000; 226:88-103. [PMID: 10993676 DOI: 10.1006/dbio.2000.9849] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During early embryonic development, IP(3)-Ca(2+) signaling transduces ventral signaling at the time of dorsoventral axis formation. To identify molecules functioning upstream in this signal pathway, we examined effects of a panel of inhibitory antibodies against Galphaq/11, Galphas/olf, or Galphai/o/t/z. While all these antibodies showed direct inhibition of their targets, their effects on redirection of the ventral mesoderm to a dorsal fate varied. Anti-Galphas/olf antibody showed strong induction of dorsal fate, anti-Galphai/o/t/z antibody did so weakly, and anti-Galphaq/11 antibody was without effect. Injection of betaARK, a Gbetagamma inhibitor, mimicked the dorsalizing effect of anti-Galphas/olf antibody, whereas injection of adenylyl cyclase inhibitors at a concentration which inhibited Galphas-coupled cAMP increase did not do so. The activation of Galphas-coupled receptor gave rise to Ca(2+) transients. All these results suggest that activation of the Galphas-coupled receptor relays dorsoventral signal to Gbetagamma, which then stimulates PLCbeta and then the IP(3)-Ca(2+) system. This signaling pathway may play a crucial role in transducing ventral signals.
Collapse
Affiliation(s)
- S Kume
- Mikoshiba Calciosignal Net Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, 2-28-8 Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | | | | |
Collapse
|
21
|
Kume S, Saneyoshi T, Mikoshiba K. Desensitization of IP3-induced Ca2+ release by overexpression of a constitutively active Gqalpha protein converts ventral to dorsal fate in Xenopus early embryos. Dev Growth Differ 2000; 42:327-35. [PMID: 10969732 DOI: 10.1046/j.1440-169x.2000.00519.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The constitutively active Gqalpha mutant construct (GqalphaQ-L) in Xenopus early embryos was overexpressed and the effects on dorsoventral patterning examined. It was found that prolonged stimulation of inositol 1,4,5-trisphosphate (IP3)-Ca2+ signaling by overexpression of GqalphaQ-L led to desensitization of IP3-induced Ca2+ release (IICR). Desensitization of IICR on the ventral side specifically induced an ectopic dorsal axis due to the conversion of ventral marginal mesoderm to adopt a dorsal fate. This effect of desensitization resembles that of inhibitory antibodies against the IP3 receptor, as reported previously. These results strengthen the earlier finding that active IP3-Ca2+ signaling functions in ventral signaling during the early embryonic development of Xenopus. Furthermore, the nature of downregulation of the Xenopus IP3 receptor through continuous stimulation of IP3-Ca2+ signaling might play a role in regulating endogenous IP3-Ca2+ signaling in Xenopus early development.
Collapse
Affiliation(s)
- S Kume
- Mikoshiba Calciosignal Net Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation, Tokyo.
| | | | | |
Collapse
|
22
|
Kühl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000; 16:279-83. [PMID: 10858654 DOI: 10.1016/s0168-9525(00)02028-x] [Citation(s) in RCA: 639] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Members of the vertebrate Wnt family have been subdivided into two functional classes according to their biological activities. Some Wnts signal through the canonical Wnt-1/wingless pathway by stabilizing cytoplasmic beta-catenin. By contrast other Wnts stimulate intracellular Ca2+ release and activate two kinases, CamKII and PKC, in a G-protein-dependent manner. Moreover, putative Wnt receptors belonging to the Frizzled gene family have been identified that preferentially couple to the two prospective pathways in the absence of ectopic Wnt ligand and that might account for the signaling specificity of the Wnt pathways. As Ca2+ release was the first described feature of the noncanonical pathway, and as Ca2+ probably plays a key role in the activation of CamKII and PKC, we have named this Wnt pathway the Wnt/Ca2+ pathway.
Collapse
Affiliation(s)
- M Kühl
- Abt. Entwicklungsbiochemie, Universität Göttingen, Germany.
| | | | | | | | | |
Collapse
|
23
|
Kühl M, Sheldahl LC, Malbon CC, Moon RT. Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem 2000; 275:12701-11. [PMID: 10777564 DOI: 10.1074/jbc.275.17.12701] [Citation(s) in RCA: 366] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt ligands working through Frizzled receptors have a differential ability to stimulate release of intracellular calcium (Ca(2+)) and activation of protein kinase C (PKC). Since targets of this Ca(2+) release could play a role in Wnt signaling, we first tested the hypothesis that Ca(2+)/calmodulin-dependent protein kinase II (CamKII) is activated by some Wnt and Frizzled homologs. We report that Wnt and Frizzled homologs that activate Ca(2+) release and PKC also activate CamKII activity in Xenopus embryos, while Wnt and Frizzled homologs that activate beta-catenin function do not. This activation occurs within 10 min after receptor activation in a pertussis toxin-sensitive manner, concomitant with autophosphorylation of endogenous CamKII. Based on data that Wnt-5A and Wnt-11 are present maternally in Xenopus eggs, and activate CamKII, we then tested the hypothesis that CamKII participates in axis formation in the early embryo. Measurements of endogenous CamKII activity from dorsal and ventral regions of embryos revealed elevated activity on the prospective ventral side, which was suppressed by a dominant negative Xwnt-11. If this spatial bias in CamKII activity were involved in promoting ventral cell fate one might predict that elevating CamKII activity on the dorsal side would inhibit dorsal cell fates, while reducing CamKII activity on the ventral side would promote dorsal cell fates. Results obtained by expression of CamKII mutants were consistent with this prediction, revealing that CamKII contributes to a ventral cell fate.
Collapse
Affiliation(s)
- M Kühl
- Howard Hughes Medical Institute, Department of Pharmacology and Center for Developmental Biology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
24
|
Abstract
The cAMP signaling system has been postulated to be involved in embryogenesis of many animal species, however, little is known about its role in embryonic axis formation in vertebrates. In this study, the role of the cAMP signaling pathway in patterning the body plan of the Xenopus embryo was investigated by expressing and activating the exogenous human 5-hydroxytryptamine type 1a receptor (5-HT(1a)R) which inhibits adenylyl cyclase through inhibitory G-protein in embryos in a spatially- and temporally-controlled manner. In embryos, ventral, but not dorsal expression and stimulation of this receptor during blastula and gastrula stages induced secondary axes but were lacking anterior structures. At the molecular level, 5-HT(1a)R stimulation induced expression of the dorsal mesoderm marker genes, and downregulated expression of the ventral markers but had no effect on expression of the pan mesodermal marker gene in ventral marginal zone explants. In addition, ventral expression and stimulation of the receptor partially restored dorsal axis of UV-irradiated axis deficient embryo. Finally, the total mass of cAMP differs between dorsal and ventral regions of blastula and gastrula embryos and this is regulated in a temporally-specific manner. These results suggest that the cAMP signaling system may be involved in the transduction of ventral signals in patterning early embryos.
Collapse
Affiliation(s)
- M J Kim
- Department of Life Science, Pohang University of Science and Technology, San 31 Hyoja-Dong, Pohang, Kyungbuk, South Korea
| | | |
Collapse
|
25
|
Aanstad P, Whitaker M. Predictability of dorso-ventral asymmetry in the cleavage stage zebrafish embryo: an analysis using lithium sensitivity as a dorso-ventral marker. Mech Dev 1999; 88:33-41. [PMID: 10525186 DOI: 10.1016/s0925-4773(99)00171-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The dorso-ventral axis in zebrafish first becomes apparent at gastrulation, when the future ventral side appears thinner than the dorsal side. The exact time of establishment of the dorso-ventral axis is not known. We show here that the dorso-ventral axis is specified as early as the 32 cell stage. Using lithium as a marker for dorso-ventral asymmetry, we show that lithium-sensitivity is a characteristic of future ventral cell, but not future dorsal cells, and that there is an asymmetric lithium-sensitivity along the long axis of the 32 cell stage embryo. Consequently, the dorso-ventral axis corresponds to the long axis of the embryo. Because the effect of lithium treatment is short-lived, the dorso-ventral axis must be specified in zebrafish already at the 32 cell stage.
Collapse
Affiliation(s)
- P Aanstad
- Department of Physiological Sciences, The Medical School, University of Newcastle-upon-Tyne, UK.
| | | |
Collapse
|
26
|
Abstract
What we understand about signalling pathways depends very much on the ways we can measure them. I review ways of measuring calcium and explore how changes in methods have led to new ways of thinking about calcium signals. I also suggest how the ways we have of looking at calcium will influence the analysis of other signalling pathways that, until now, have not been studied with the spatiotemporal precision available to those studying calcium signalling.
Collapse
Affiliation(s)
- M Whitaker
- Department of Physiological Sciences, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
27
|
Affiliation(s)
- D Gradl
- Department of Biochemistry, University of Ulm, Albert Einstein Allee 11, D-89081, Ulm, Germany
| | | | | |
Collapse
|
28
|
Perera IY, Heilmann I, Boss WF. Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc Natl Acad Sci U S A 1999; 96:5838-43. [PMID: 10318971 PMCID: PMC21947 DOI: 10.1073/pnas.96.10.5838] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The internodal maize pulvinus responds to gravistimulation with differential cell elongation on the lower side. As the site of both graviperception and response, the pulvinus is an ideal system to study how organisms sense changes in orientation. We observed a transient 5-fold increase in inositol 1,4,5-trisphosphate (IP3) within 10 s of gravistimulation in the lower half of the pulvinus, indicating that the positional change was sensed immediately. Over the first 30 min, rapid IP3 fluctuations were observed between the upper and lower halves. Maize plants require a presentation time of between 2 and 4 h before the cells on the lower side of the pulvinus are committed to elongation. After 2 h of gravistimulation, the lower half consistently had higher IP3, and IP3 levels on the lower side continued to increase up to approximately 5-fold over basal levels before visible growth. As bending became visible after 8-10 h, IP3 levels returned to basal values. Additionally, phosphatidylinositol 4-phosphate 5-kinase activity in the lower pulvinus half increased transiently within 10 min of gravistimulation, suggesting that the increased IP3 production was accompanied by an up-regulation of phosphatidylinositol 4, 5-bisphosphate biosynthesis. Neither IP3 levels nor phosphatidylinositol 4-phosphate 5-kinase activity changed in pulvini halves from vertical control plants. Our data indicate the involvement of IP3 and inositol phospholipids in both short- and long-term responses to gravistimulation. As a diffusible second messenger, IP3 provides a mechanism to transmit and amplify the signal from the perceiving to the responding cells in the pulvinus, coordinating a synchronized growth response.
Collapse
Affiliation(s)
- I Y Perera
- Department of Botany, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
29
|
Gilland E, Miller AL, Karplus E, Baker R, Webb SE. Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation. Proc Natl Acad Sci U S A 1999; 96:157-61. [PMID: 9874788 PMCID: PMC15109 DOI: 10.1073/pnas.96.1.157] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oscillations of cytosolic free calcium levels have been shown to influence gene regulation and cell differentiation in a variety of model systems. Intercellular calcium waves thus present a plausible mechanism for coordinating cellular processes during embryogenesis. Herein we report use of aequorin and a photon imaging microscope to directly observe a rhythmic series of intercellular calcium waves that circumnavigate zebrafish embryos over a 10-h period during gastrulation and axial segmentation. These waves first appeared at about 65% epiboly and continued to arise every 5-10 min up to at least the 16-somite stage. The waves originated from loci of high calcium activity bordering the blastoderm margin. Several initiating loci were active early in the wave series, whereas later a dorsal marginal midline locus predominated. On completion of epiboly, the dorsal locus was incorporated into the developing tail bud and continued to generate calcium waves. The locations and timing at which calcium dynamics are most active appear to correspond closely to embryonic cellular and syncytial sites of known morphogenetic importance. The observations suggest that a panembryonic calcium signaling system operating in a clock-like fashion might play a role during vertebrate axial patterning.
Collapse
Affiliation(s)
- E Gilland
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | | | | | |
Collapse
|
30
|
Moon RT, Kimelman D. From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. Bioessays 1998; 20:536-45. [PMID: 9723002 DOI: 10.1002/(sici)1521-1878(199807)20:7<536::aid-bies4>3.0.co;2-i] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
After fertilization of Xenopus eggs, the cortex rotates relative to the cytoplasm, resulting in the formation of a cytoplasmic and transplantable dorsal-determining activity opposite the sperm entry point. This activity induces the dorsal expression of regulatory genes, which in turn establishes the Spemann organizer at the start of gastrulation. There has been considerable debate as to whether Vg1, or components of the Wnt-1 signaling pathway, normally function as this early dorsal determinant. Experiments now support the hypothesis that beta-catenin, a component of the Wnt pathway, provides the initial dorsoventral polarity to the embryo, and that Vg1 functions at a subsequent step in development. Specifically, beta-catenin is required for formation of the endogenous axes, and it is expressed at greater levels in dorsal cells during the early cleavage stages. Moreover, on the dorsal side of the embryo, complexes of beta-catenin and Tcf-3 directly bind the promoter of the dorsal regulatory genes siamois and twin and facilitate their expression, thereby contributing to the subsequent formation of the Spemann organizer. On the ventral side of the embryo, Tcf-3 likely works in the absence of beta-catenin as a transcriptional repressor of siamois. These and other data are considered in the context of how the initial polarization of the fertilized egg by the localized accumulation of beta-catenin establishes a range of subsequent dorsoventral asymmetries in the embryo.
Collapse
Affiliation(s)
- R T Moon
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle 98195, USA.
| | | |
Collapse
|
31
|
Créton R, Speksnijder JE, Jaffe LF. Patterns of free calcium in zebrafish embryos. J Cell Sci 1998; 111 ( Pt 12):1613-22. [PMID: 9601092 DOI: 10.1242/jcs.111.12.1613] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Direct knowledge of Ca2+ patterns in vertebrate development is largely restricted to early stages, in which they control fertilization, ooplasmic segregation and cleavage. To explore new roles of Ca2+ in vertebrate development, we injected the Ca2+ indicator aequorin into zebrafish eggs and imaged Ca2+ throughout the first day of development. During early cleavages, a high Ca2+ zone is seen in the cleavage furrows. The high Ca2+ zone during first cleavage spreads as a slow wave (0.5 microm/second) and is preceded by three Ca2+ pulses within the animal pole region of the egg. When Ca2+ concentrations are clamped at the resting level by BAPTA buffer injection into the zygote, all signs of development are blocked. In later development, Ca2+ patterns are associated with cell movements during gastrulation, with neural induction, with brain regionalization, with formation of the somites and neural keel, with otic placode formation, with muscle movements and with formation of the heart. Particularly remarkable is a sharp boundary between high Ca2+ in the presumptive forebrain and midbrain versus low Ca2+ in the presumptive hindbrain starting at 10 hours of development. When Ca2+ changes are damped by injection of low concentrations of BAPTA, fish form with greatly reduced eyes and hearts. The present study provides a first overview of Ca2+ patterns during prolonged periods of vertebrate development and points to new roles of Ca2+ in cellular differentiation and pattern formation.
Collapse
Affiliation(s)
- R Créton
- Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | | | |
Collapse
|
32
|
Rose L, Busa WB. Crosstalk between the phosphatidylinositol cycle and MAP kinase signaling pathways in Xenopus mesoderm induction. Dev Growth Differ 1998; 40:231-41. [PMID: 9572365 DOI: 10.1046/j.1440-169x.1998.00012.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have established a role for the phosphoinositide (PI) cycle in the early patterning of Xenopus mesoderm. In explants, stimulation of this pathway in the absence of growth factors does not induce mesoderm, but when accompanied by growth factor treatment, simultaneous PI cycle stimulation results in profound morphological and molecular changes in the mesoderm induced by the growth factor. This suggests the possibility that the PI cycle exerts its influence via crosstalk, by modulating some primary mesoderm-inducing pathway. Given recent identification of mitogen-activated protein kinase (MAPK) as an intracellular mediator of some mesoderm-inducing signals, the present study explores MAPK as a potential site of PI cycle-mediated crosstalk. We report that MAPK activity, like PI cycle activity, increases in intact embryos during mesoderm induction. Phosphoinositide cycle stimulation during treatment of explants with basic fibroblast growth factor (bFGF) synergistically increases late-phase MAPK activity and potentiates bFGF-induced expression of Xbra, a MAPK-dependent mesodermal marker.
Collapse
Affiliation(s)
- L Rose
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
33
|
Kume S, Muto A, Inoue T, Suga K, Okano H, Mikoshiba K. Role of inositol 1,4,5-trisphosphate receptor in ventral signaling in Xenopus embryos. Science 1997; 278:1940-3. [PMID: 9395395 DOI: 10.1126/science.278.5345.1940] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor is a calcium ion channel involved in the release of free Ca2+ from intracellular stores. For analysis of the role of IP3-induced Ca2+ release (IICR) on patterning of the embryonic body, monoclonal antibodies that inhibit IICR were produced. Injection of these blocking antibodies into the ventral part of early Xenopus embryos induced modest dorsal differentiation. A close correlation between IICR blocking potencies and ectopic dorsal axis induction frequency suggests that an active IP3-Ca2+ signal may participate in the modulation of ventral differentiation.
Collapse
MESH Headings
- Activins
- Animals
- Antibodies, Blocking
- Antibodies, Monoclonal
- Body Patterning
- Calcium/metabolism
- Calcium Channels/immunology
- Calcium Channels/metabolism
- Cell Differentiation
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Embryonic Induction
- Fibroblast Growth Factor 2/pharmacology
- Gastrula/metabolism
- Gene Expression Regulation, Developmental
- Inhibins/pharmacology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Receptors, Cytoplasmic and Nuclear/immunology
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction
- Xenopus
Collapse
Affiliation(s)
- S Kume
- Mikoshiba Calciosignal Net Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), 2-9-3 Shimo-Meguro, Meguro-ku, Tokyo 153, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Slusarski DC, Corces VG, Moon RT. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 1997; 390:410-3. [PMID: 9389482 DOI: 10.1038/37138] [Citation(s) in RCA: 498] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Drosophila, members of the frizzled family of tissue-polarity genes encode proteins that are likely to function as cell-surface receptors of the type known as Wnt receptors, and to initiate signal transduction across the cell membrane, although how they do this is unclear. We show here that the rat protein Frizzled-2 causes an increase in the release of intracellular calcium which is enhanced by Xwnt-5a, a member of the Wnt family. This release of intracellular calcium is suppressed by an inhibitor of the enzyme inositol monophosphatase and hence of the phosphatidylinositol signalling pathway; this suppression can be rescued by injection of the compound myo-inositol, which overcomes the decrease in this intermediate caused by the inhibitor. Agents that inhibit specific G-protein subunits, pertussis toxin, GDP-beta-S and alpha-transducin also inhibit the calcium release triggered by Xwnt-5a and rat Frizzled-2. Our results indicate that some Wnt proteins work through specific Frizzled homologues to stimulate the phosphatidylinositol signalling pathway via heterotrimeric G-protein subunits.
Collapse
Affiliation(s)
- D C Slusarski
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
35
|
Abstract
This review starts from the classical standpoint that there are at least two separable processes acting with respect to axis formation and tissue specification in the early Xenopus embryo: a UV-insensitive event establishing a postgastrula embryo consisting of three concentric germ layers, ectoderm, mesoderm and endoderm, all of a ventral character; and a UV-sensitive event producing tissue of a dorsal type, including somites, notochord and neural tissue, and concomitantly establishing the dorsoventral and anteroposterior axes. The experimental evidence suggesting the molecular basis of the dorsal and ventral pathways is reviewed.
Collapse
Affiliation(s)
- J Heasman
- Institute of Human Genetics and Department of Cell Biology and Neuroanatomy, University of Minnesota School of Medicine, Minneapolis 55455, USA.
| |
Collapse
|
36
|
Kume S, Muto A, Okano H, Mikoshiba K. Developmental expression of the inositol 1,4,5-trisphosphate receptor and localization of inositol 1,4,5-trisphosphate during early embryogenesis in Xenopus laevis. Mech Dev 1997; 66:157-68. [PMID: 9376319 DOI: 10.1016/s0925-4773(97)00101-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To study the role of inositol 1,4,5-trisphosphate (IP3) receptors during early embryogenesis in Xenopus, we examined the temporal-spatial localization of Xenopus IP3 receptor (XIP3R). XIP3R protein is enriched in the animal hemisphere of early cleavage stage embryos and becomes localized in the ectoderm and involuted mesoderm in gastrula stage embryos. Up to tailbud stages, expression of XIP3R is observed in the mesodermal tissues and in most subregions of the central nervous system. A quantitative analysis of endogenous IP3 mass during normal early embryogenesis revealed an increase in IP3 mass first observed at early gastrula stage of 10.5 with an enrichment in the ectoderm throughout the gastrula stages, implying a potential role during gastrulation.
Collapse
Affiliation(s)
- S Kume
- Mikoshiba Calciosignal Net Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Tokyo.
| | | | | | | |
Collapse
|
37
|
Venkatesh K, Hasan G. Disruption of the IP3 receptor gene of Drosophila affects larval metamorphosis and ecdysone release. Curr Biol 1997; 7:500-9. [PMID: 9273145 DOI: 10.1016/s0960-9822(06)00221-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The inositol 1,4,5-trisphosphate (IP3) receptor is an intracellular calcium channel that couples cell membrane receptors, via the second messenger IP3, to calcium signal transduction pathways within many types of cells. IP3 receptor function has been implicated in development, but the physiological processes affected by its function have yet to be elucidated. In order to identify these processes, we generated mutants in the IP3 receptor gene (itpr) of Drosophila and studied their phenotype during development. RESULTS All itpr mutant alleles were lethal. Lethality occurred primarily during the larval stages and was preceded by delayed moulting. Insect moulting occurs in response to the periodic release of the steroid hormone ecdysone which, in Drosophila, is synthesized and secreted by the ring gland. The observation of delayed moulting in the mutants, coupled with the expression of the IP3 receptor in the larval ring gland led us to examine the effect of the itpr alleles on ecdysone levels. On feeding ecdysone to mutant larvae, a partial rescue of the itpr phenotype was observed. In order to assess ecdysone levels at all larval stages, we examined transcripts of an ecdysone-inducible gene, E74; these transcripts were downregulated in larvae expressing each of the itpr alleles. CONCLUSIONS Our data show that disruption of the Drosophila IP3 receptor gene leads to lowered levels of ecdysone. Synthesis and release of ecdysone from the ring gland is thought to occur in response to a neurosecretory peptide hormone secreted by the brain. We propose that this peptide hormone requires an IP3 signalling pathway for ecdysone synthesis and release in Drosophila and other insects. This signal transduction mechanism which links neuropeptide hormones to steroid hormone secretion might be evolutionarily conserved.
Collapse
Affiliation(s)
- K Venkatesh
- National Centre for Biological Sciences, TIFR Centre, IISc Campus, P.O. 1234, Bangalore 560012, India
| | | |
Collapse
|
38
|
Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol 1997; 185:82-91. [PMID: 9169052 DOI: 10.1006/dbio.1997.8552] [Citation(s) in RCA: 490] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glycogen synthase kinase-3 beta (GSK-3 beta/zeste-white-3/shaggy) is a negative regulator of the wnt signaling pathway which plays a central role in the development of invertebrates and vertebrates; loss of function and dominant negative mutations in GSK-3 beta lead to activation of the wnt pathway in Drosophila and Xenopus. We now provide evidence that lithium activates downstream components of the wnt signaling pathway in vivo, leading to accumulation of beta-catenin protein. Our data indicate that this activation of the wnt pathway is a consequence of inhibition of GSK-3 beta by lithium. Using a novel assay for GSK-3 beta in oocytes, we show that lithium inhibits GSK-3 beta from species as diverse as Dictyostelium discoideum and Xenopus laevis, providing a biochemical mechanism for the action of lithium on the development of these organisms. Lithium treatment also leads to activation of an AP-1-luciferase reporter in Xenopus embryos, consistent with previous observations that GSK-3 beta inhibits c-jun activity. Activation of the wnt pathway with a dominant negative form of GSK-3 beta is inhibited by myo-inositol, similar to the previously described effect of coinjecting myo-inositol with lithium. The mechanism by which myo-inositol inhibits both dominant negative GSK-3 beta and lithium remains uncertain.
Collapse
Affiliation(s)
- C M Hedgepeth
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | | | | | | | |
Collapse
|
39
|
Slusarski DC, Yang-Snyder J, Busa WB, Moon RT. Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev Biol 1997; 182:114-20. [PMID: 9073455 DOI: 10.1006/dbio.1996.8463] [Citation(s) in RCA: 294] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Wnt genes encode secreted proteins which are implicated in receptor-mediated cell-cell signaling events important in embryogenesis, but the second messenger systems modulated by Wnts have not been identified. We report that ectopic expression of Xwnt-5A in zebrafish embryos enhances the frequency of intracellular Ca2+ transients in the enveloping layer of the blastodisc, whereas Xwnt-8 does not. These transients are independent of extracellular Ca2+. Consistent with the observed Ca2+ transients playing a role in responses of embryos to Xwnt-5A, we report that the ligand-activated serotonin type 1C receptor, which stimulates PI cycle activity and Ca2+ signaling independent of Wnts, phenocopies embryonic responses to Xwnt-5A. These results suggest that intercellular signaling by a subset of vertebrate Wnts involves modulation of a intracellular Ca2+ signaling pathway, which may arise from phosphatidylinositol cycle activity.
Collapse
Affiliation(s)
- D C Slusarski
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | |
Collapse
|
40
|
Yang-Snyder J, Miller JR, Brown JD, Lai CJ, Moon RT. A frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr Biol 1996; 6:1302-6. [PMID: 8939578 DOI: 10.1016/s0960-9822(02)70716-1] [Citation(s) in RCA: 358] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Wnts are secreted proteins implicated in cell-cell interactions during embryogenesis and tumorigenesis, but receptors involved in transducing Wnt signals have not yet been definitively identified. Members of a large family of putative transmembrane receptors homologous to the frizzled protein in Drosophila have been identified recently in both vertebrates and invertebrates, raising the question of whether they are involved in transducing signals for any known signaling factors. RESULTS To test the potential involvement of frizzled homologs in Wnt signaling, we examined the effects of overexpressing rat frizzled-1 (Rfz-1) on the subcellular distribution of Wnts and of dishevelled, a cytoplasmic component of the Wnt signalling pathway. We demonstrate that ectopic expression of Rfz-1 recruits the dishevelled proten-as well as Xenopus Wnt-8 (Xwnt-8), but not the functionally distinct Xwnt-5A-to the plasma membrane. Moreover, Rfz-1 is sufficient to induce the expression of two Xwnt-8-responsive genes, siamois and Xnr-3, in Xenopus explants in a manner which is antagonized by glycogen synthase kinase-3, which also antagonizes Wnt signaling. When Rfz-1 and Xwnt-8 are expressed together in this assay, we observe greater induction of these genes, indicating that Rfz-1 can synergize with a Wnt. CONCLUSIONS The results demonstrate that a vertebrate frizzled homolog is involved in Wnt signaling in a manner which discriminates between functionally distinct Wnts, which involves translocation of the dishevelled protein to the plasma membrane, and which works in a synergistic manner with Wnts to induce gene expression. These data support the likely function of frizzled homologs as Wnt receptors, or as components of a receptor complex.
Collapse
Affiliation(s)
- J Yang-Snyder
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | | | |
Collapse
|