1
|
Scholl A, Ndoja I, Dhakal N, Morante D, Ivan A, Newman D, Mossington T, Clemans C, Surapaneni S, Powers M, Jiang L. The Osiris family genes function as novel regulators of the tube maturation process in the Drosophila trachea. PLoS Genet 2023; 19:e1010571. [PMID: 36689473 PMCID: PMC9870157 DOI: 10.1371/journal.pgen.1010571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023] Open
Abstract
Drosophila trachea is a premier model to study tube morphogenesis. After the formation of continuous tubes, tube maturation follows. Tracheal tube maturation starts with an apical secretion pulse that deposits extracellular matrix components to form a chitin-based apical luminal matrix (aECM). This aECM is then cleared and followed by the maturation of taenidial folds. Finally, air fills the tubes. Meanwhile, the cellular junctions are maintained to ensure tube integrity. Previous research has identified several key components (ER, Golgi, several endosomes) of protein trafficking pathways that regulate the secretion and clearance of aECM, and the maintenance of cellular junctions. The Osiris (Osi) gene family is located at the Triplo-lethal (Tpl) locus on chromosome 3R 83D4-E3 and exhibits dosage sensitivity. Here, we show that three Osi genes (Osi9, Osi15, Osi19), function redundantly to regulate adherens junction (AJ) maintenance, luminal clearance, taenidial fold formation, tube morphology, and air filling during tube maturation. The localization of Osi proteins in endosomes (Rab7-containing late endosomes, Rab11-containing recycling endosomes, Lamp-containing lysosomes) and the reduction of these endosomes in Osi mutants suggest the possible role of Osi genes in tube maturation through endosome-mediated trafficking. We analyzed tube maturation in zygotic rab11 and rab7 mutants, respectively, to determine whether endosome-mediated trafficking is required. Interestingly, similar tube maturation defects were observed in rab11 but not in rab7 mutants, suggesting the involvement of Rab11-mediated trafficking, but not Rab7-mediated trafficking, in this process. To investigate whether Osi genes regulate tube maturation primarily through the maintenance of Rab11-containing endosomes, we overexpressed rab11 in Osi mutant trachea. Surprisingly, no obvious rescue was observed. Thus, increasing endosome numbers is not sufficient to rescue tube maturation defects in Osi mutants. These results suggest that Osi genes regulate other aspects of endosome-mediated trafficking, or regulate an unknown mechanism that converges or acts in parallel with Rab11-mediated trafficking during tube maturation.
Collapse
Affiliation(s)
- Aaron Scholl
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Istri Ndoja
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Niraj Dhakal
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Doria Morante
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Abigail Ivan
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Darren Newman
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Thomas Mossington
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Christian Clemans
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Sruthi Surapaneni
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Michael Powers
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| |
Collapse
|
2
|
Yao L, Wang S, Westholm JO, Dai Q, Matsuda R, Hosono C, Bray S, Lai EC, Samakovlis C. Genome-wide identification of Grainy head targets in Drosophila reveals regulatory interactions with the POU domain transcription factor Vvl. Development 2017; 144:3145-3155. [PMID: 28760809 DOI: 10.1242/dev.143297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Abstract
Grainy head (Grh) is a conserved transcription factor (TF) controlling epithelial differentiation and regeneration. To elucidate Grh functions we identified embryonic Grh targets by ChIP-seq and gene expression analysis. We show that Grh controls hundreds of target genes. Repression or activation correlates with the distance of Grh-binding sites to the transcription start sites of its targets. Analysis of 54 Grh-responsive enhancers during development and upon wounding suggests cooperation with distinct TFs in different contexts. In the airways, Grh-repressed genes encode key TFs involved in branching and cell differentiation. Reduction of the POU domain TF Ventral veins lacking (Vvl) largely ameliorates the airway morphogenesis defects of grh mutants. Vvl and Grh proteins additionally interact with each other and regulate a set of common enhancers during epithelial morphogenesis. We conclude that Grh and Vvl participate in a regulatory network controlling epithelial maturation.
Collapse
Affiliation(s)
- Liqun Yao
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, S10691, Stockholm, Sweden
| | - Shenqiu Wang
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, S10691, Stockholm, Sweden.,Cancer Biology & Genetics Program, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Jakub O Westholm
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA.,Science for Life Laboratory, Tomtebodavägen 232, 171 21 Solna, Sweden
| | - Qi Dai
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, S10691, Stockholm, Sweden.,Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Ryo Matsuda
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, S10691, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, S10691, Stockholm, Sweden
| | - Sarah Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Christos Samakovlis
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, S10691, Stockholm, Sweden .,Science for Life Laboratory, Tomtebodavägen 232, 171 21 Solna, Sweden.,Molecular Pneumology, UGMLC, Aulweg 130, 35392 Giessen, Germany
| |
Collapse
|
3
|
Olivares-Castiñeira I, Llimargas M. EGFR controls Drosophila tracheal tube elongation by intracellular trafficking regulation. PLoS Genet 2017; 13:e1006882. [PMID: 28678789 PMCID: PMC5517075 DOI: 10.1371/journal.pgen.1006882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/19/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
Development is governed by a few conserved signalling pathways. Amongst them, the EGFR pathway is used reiteratively for organ and tissue formation, and when dysregulated can lead to cancer and metastasis. Given its relevance, identifying its downstream molecular machinery and understanding how it instructs cellular changes is crucial. Here we approach this issue in the respiratory system of Drosophila. We identify a new role for EGFR restricting the elongation of the tracheal Dorsal Trunk. We find that EGFR regulates the apical determinant Crb and the extracellular matrix regulator Serp, two factors previously known to control tube length. EGFR regulates the organisation of endosomes in which Crb and Serp proteins are loaded. Our results are consistent with a role of EGFR in regulating Retromer/WASH recycling routes. Furthermore, we provide new insights into Crb trafficking and recycling during organ formation. Our work connects cell signalling, trafficking mechanisms and morphogenesis and suggests that the regulation of cargo trafficking can be a general outcome of EGFR activation. The control of organ size and shape is a critical aspect of morphogenesis, as miss-regulation can lead to pathologies and malformations. The tracheal system of Drosophila is a good model to investigate this issue as tube size is strictly regulated. In addition, tracheal system development represents also an excellent system to study the molecular mechanisms employed by signalling pathways to instruct cells to form tubular structures. Here we describe that EGFR, which triggers one of the principal conserved pathways acting reiteratively during development and homeostasis, is required to restrict tube elongation. We find that EGFR regulates the accumulation and subcellular localisation of Crumbs and Serpentine, two factors previously known to regulate tube length. We show that Crumbs and Serpentine are loaded in common endosomes, which require EGFR for proper organisation, ensuring delivery of both cargoes to their final destination. We also report that during tracheal development the apical determinant Crumbs undergoes a complex pattern of recycling, which involves internalisation and different sorting pathways. Our analysis identifies EGFR as a hub to coordinate both cell intrinsic properties, namely Crumbs-dependant apical membrane growth, and extrinsic mechanisms, Serpentine-mediated extracellular matrix modifications, which regulate tube elongation. We suggest that the regulation of the endocytic traffic of specific cargoes could be one of the molecular mechanisms downstream of the EGFR, and therefore could regulate different morphogenetic and pathological EGFR-mediated events.
Collapse
Affiliation(s)
- Ivette Olivares-Castiñeira
- Developmental Biology Department, Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | - Marta Llimargas
- Developmental Biology Department, Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
4
|
Matsuda R, Hosono C, Samakovlis C, Saigo K. Multipotent versus differentiated cell fate selection in the developing Drosophila airways. eLife 2015; 4. [PMID: 26633813 PMCID: PMC4775228 DOI: 10.7554/elife.09646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/02/2015] [Indexed: 12/03/2022] Open
Abstract
Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI:http://dx.doi.org/10.7554/eLife.09646.001 Many organs are composed of tubes of different sizes, shapes and patterns that transport vital substances from one site to another. In the fruit fly species Drosophila melanogaster, oxygen is transported by a tubular network, which divides into finer tubes that allow the oxygen to reach every part of the body. Different parts of the fruit fly’s airways develop from different groups of tracheal precursor cells. P-fate cells form the most 'proximal' tubes (which are found next to the outer layer of the fly). These cells are 'multipotent' stem cells, and have the ability to specialize into many different types of cells during metamorphosis. The more 'distal' branches that emerge from the proximal tubes develop from D-fate cells. These are cells that generally acquire a narrower range of cell identities. By performing a genetic analysis of fruit fly embryos, Matsuda et al. have now identified several proteins and signaling molecules that control whether tracheal precursor cells become D-fate or P-fate cells. For example, several signaling pathways work with a protein called Ventral veinless to cause D-fate cells to develop instead of P-fate cells. However, molecules that prevent signaling occurring via these pathways help P-fate cells to form. Different amounts of the molecules that either promote or hinder these signaling processes are present in different parts of the fly embryo; this helps the airways of the fly to develop in the correct pattern. This work provides a comprehensive view of how cell types with different developmental potentials are positioned in a complex tubular network. This sets a basis for future studies addressing how the respiratory organs – and indeed the entire organism – are sustained. DOI:http://dx.doi.org/10.7554/eLife.09646.002
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden.,ECCPS, Justus Liebig University of Giessen, Giessen, Germany
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Araújo SJ. The Hedgehog Signalling Pathway in Cell Migration and Guidance: What We Have Learned from Drosophila melanogaster. Cancers (Basel) 2015; 7:2012-22. [PMID: 26445062 PMCID: PMC4695873 DOI: 10.3390/cancers7040873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 01/20/2023] Open
Abstract
Cell migration and guidance are complex processes required for morphogenesis, the formation of tumor metastases, and the progression of human cancer. During migration, guidance molecules induce cell directionality and movement through complex intracellular mechanisms. Expression of these molecules has to be tightly regulated and their signals properly interpreted by the receiving cells so as to ensure correct navigation. This molecular control is fundamental for both normal morphogenesis and human disease. The Hedgehog (Hh) signaling pathway is evolutionarily conserved and known to be crucial for normal cellular growth and differentiation throughout the animal kingdom. The relevance of Hh signaling for human disease is emphasized by its activation in many cancers. Here, I review the current knowledge regarding the involvement of the Hh pathway in cell migration and guidance during Drosophila development and discuss its implications for human cancer origin and progression.
Collapse
Affiliation(s)
- Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, C. Baldiri Reixac 10,08028 Barcelona, Spain.
| |
Collapse
|
6
|
Lavore A, Pascual A, Salinas FM, Esponda-Behrens N, Martinez-Barnetche J, Rodriguez M, Rivera-Pomar R. Comparative analysis of zygotic developmental genes in Rhodnius prolixus genome shows conserved features on the tracheal developmental pathway. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:32-43. [PMID: 26187251 DOI: 10.1016/j.ibmb.2015.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/13/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
Most of the in-depth studies on insect developmental genetic have been carried out in the fruit fly Drosophila melanogaster, an holometabolous insect, so much more still remains to be studied in hemimetabolous insects. Having Rhodnius prolixus sequenced genome available, we search for orthologue genes of zygotic signaling pathways, segmentation, and tracheogenesis in the R. prolixus genome and in three species of Triatoma genus transcriptomes, concluding that there is a high level of gene conservation. We also study the function of two genes required for tracheal system development in D. melanogaster - R. prolixus orthologues: trachealess (Rp-trh) and empty spiracles (Rp-ems). From that we see that Rp-trh is required for early tracheal development since Rp-trh RNAi shows that the primary tracheal branches fail to form. On the other hand, Rp-ems is implied in the proper formation of the posterior tracheal branches, in a similar way to D. melanogaster. These results represent the initial characterization of the genes involved in the tracheal development of an hemimetabolous insect building a bridge between the current genomic era and V. Wigglesworth's classical studies on insects' respiratory system physiology.
Collapse
Affiliation(s)
- A Lavore
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina.
| | - A Pascual
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina; Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| | - F M Salinas
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina.
| | - N Esponda-Behrens
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| | - J Martinez-Barnetche
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Sta. María Ahuacatitlán, Cuernavaca, Mexico.
| | - M Rodriguez
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Sta. María Ahuacatitlán, Cuernavaca, Mexico.
| | - R Rivera-Pomar
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina; Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Beich-Frandsen M, Aragón E, Llimargas M, Benach J, Riera A, Pous J, Macias MJ. Structure of the N-terminal domain of the protein Expansion: an 'Expansion' to the Smad MH2 fold. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:844-53. [PMID: 25849395 PMCID: PMC4388265 DOI: 10.1107/s1399004715001443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/22/2015] [Indexed: 01/11/2023]
Abstract
Gene-expression changes observed in Drosophila embryos after inducing the transcription factor Tramtrack led to the identification of the protein Expansion. Expansion contains an N-terminal domain similar in sequence to the MH2 domain characteristic of Smad proteins, which are the central mediators of the effects of the TGF-β signalling pathway. Apart from Smads and Expansion, no other type of protein belonging to the known kingdoms of life contains MH2 domains. To compare the Expansion and Smad MH2 domains, the crystal structure of the Expansion domain was determined at 1.6 Å resolution, the first structure of a non-Smad MH2 domain to be characterized to date. The structure displays the main features of the canonical MH2 fold with two main differences: the addition of an α-helical region and the remodelling of a protein-interaction site that is conserved in the MH2 domain of Smads. Owing to these differences, to the new domain was referred to as Nα-MH2. Despite the presence of the Nα-MH2 domain, Expansion does not participate in TGF-β signalling; instead, it is required for other activities specific to the protostome phyla. Based on the structural similarities to the MH2 fold, it is proposed that the Nα-MH2 domain should be classified as a new member of the Smad/FHA superfamily.
Collapse
Affiliation(s)
- Mads Beich-Frandsen
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Eric Aragón
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Marta Llimargas
- Institut de Biologia Molecular de Barcelona, IBMB–CSIC, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jordi Benach
- ALBA Synchrotron, BP 1413, km 3.3, Cerdanyola del Vallès, Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Química Orgànica, Universitat de Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Joan Pous
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
- Platform of Crystallography IBMB–CSIC, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Maria J. Macias
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
8
|
Matsuda R, Hosono C, Saigo K, Samakovlis C. The intersection of the extrinsic hedgehog and WNT/wingless signals with the intrinsic Hox code underpins branching pattern and tube shape diversity in the drosophila airways. PLoS Genet 2015; 11:e1004929. [PMID: 25615601 PMCID: PMC4304712 DOI: 10.1371/journal.pgen.1004929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/28/2014] [Indexed: 01/04/2023] Open
Abstract
The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors. Tubes are common structural elements of many internal organs,
facilitating fluid flow and material exchange. To meet the local needs of diverse tissues, the branching patterns and tube shapes vary regionally. Diametric tapering and specialized branch targeting to the brain represent two common examples of variations with organismal benefits in the Drosophila airways and our vascular system. Several extrinsic signals instruct tube diversifications but the impact of intrinsic factors remains underexplored. Here, we show that the local, tube-intrinsic Hox code instructs the pattern and shape of the dorsal trunk (DT), the main Drosophila airway. In the cephalic part (DT1), where Bithorax Complex (BX-C) Hox genes are not expressed, the extrinsic Hedgehog signal is epistatic to WNT/Wingless signals. Hedgehog instructs anterior DT1 cells to take a long and narrow tube fate targeting the brain. In more posterior metameres, BX-C genes make the extrinsic WNT/Wingless signals epistatic over Hedgehog. There, WNT/Wingless instruct all DT cells to take the thick and short tube fate. Moreover, BX-C genes modulate the outputs of WNT/wingless signaling, making the DT tubes thicker in more posterior metameres. We provide a model for how intrinsic factors modify extrinsic signaling to control regional tube morphologies in a network.
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- ECCPS, University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
9
|
Chandran RR, Iordanou E, Ajja C, Wille M, Jiang L. Gene expression profiling of Drosophila tracheal fusion cells. Gene Expr Patterns 2014; 15:112-23. [PMID: 24928808 DOI: 10.1016/j.gep.2014.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
The Drosophila trachea is a premier genetic system to investigate the fundamental mechanisms of tubular organ formation. Tracheal fusion cells lead the branch fusion process to form an interconnected tubular network. Therefore, fusion cells in the Drosophila trachea will be an excellent model to study branch fusion in mammalian tubular organs, such as kidneys and blood vessels. The fusion process is a dynamic cellular process involving cell migration, adhesion, vesicle trafficking, cytoskeleton rearrangement, and membrane fusion. To understand how these cellular events are coordinated, we initiated the critical step to assemble a gene expression profile of fusion cells. For this study, we analyzed the expression of 234 potential tracheal-expressed genes in fusion cells during fusion cell development. 143 Tracheal genes were found to encode transcription factors, signal proteins, cytoskeleton and matrix proteins, transporters, and proteins with unknown function. These genes were divided into four subgroups based on their levels of expression in fusion cells compared to neighboring non-fusion cells revealed by in situ hybridization: (1) genes that have relative high abundance in fusion cells, (2) genes that are dynamically expressed in fusion cells, (3) genes that have relative low abundance in fusion cells, and (4) genes that are expressed at similar levels in fusion cells and non-fusion tracheal cells. This study identifies the expression profile of fusion cells and hypothetically suggests genes which are necessary for the fusion process and which play roles in distinct stages of fusion, as indicated by the location and timing of expression. These data will provide the basis for a comprehensive understanding of the molecular and cellular mechanisms of branch fusion.
Collapse
Affiliation(s)
- Rachana R Chandran
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Ekaterini Iordanou
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Crystal Ajja
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Michael Wille
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States.
| |
Collapse
|
10
|
Butchar JP, Cain D, Manivannan SN, McCue AD, Bonanno L, Halula S, Truesdell S, Austin CL, Jacobsen TL, Simcox A. New negative feedback regulators of Egfr signaling in Drosophila. Genetics 2012; 191:1213-26. [PMID: 22595244 PMCID: PMC3416002 DOI: 10.1534/genetics.112.141093] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/07/2012] [Indexed: 12/18/2022] Open
Abstract
The highly conserved epidermal growth factor receptor (Egfr) pathway is required in all animals for normal development and homeostasis; consequently, aberrant Egfr signaling is implicated in a number of diseases. Genetic analysis of Drosophila melanogaster Egfr has contributed significantly to understanding this conserved pathway and led to the discovery of new components and targets. Here we used microarray analysis of third instar wing discs, in which Egfr signaling was perturbed, to identify new Egfr-responsive genes. Upregulated transcripts included five known targets, suggesting the approach was valid. We investigated the function of 29 previously uncharacterized genes, which had pronounced responses. The Egfr pathway is important for wing-vein patterning and using reverse genetic analysis we identified five genes that showed venation defects. Three of these genes are expressed in vein primordia and all showed transcriptional changes in response to altered Egfr activity consistent with being targets of the pathway. Genetic interactions with Egfr further linked two of the genes, Sulfated (Sulf1), an endosulfatase gene, and CG4096, an A Disintegrin And Metalloproteinase with ThromboSpondin motifs (ADAMTS) gene, to the pathway. Sulf1 showed a strong genetic interaction with the neuregulin-like ligand vein (vn) and may influence binding of Vn to heparan-sulfated proteoglycans (HSPGs). How Drosophila Egfr activity is modulated by CG4096 is unknown, but interestingly vertebrate EGF ligands are regulated by a related ADAMTS protein. We suggest Sulf1 and CG4096 are negative feedback regulators of Egfr signaling that function in the extracellular space to influence ligand activity.
Collapse
Affiliation(s)
- Jonathan P. Butchar
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | - Donna Cain
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | | | - Andrea D. McCue
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | - Liana Bonanno
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | - Sarah Halula
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | - Sharon Truesdell
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | - Christina L. Austin
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | - Thomas L. Jacobsen
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | - Amanda Simcox
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
11
|
Trachealess (Trh) regulates all tracheal genes during Drosophila embryogenesis. Dev Biol 2011; 360:160-72. [PMID: 21963537 DOI: 10.1016/j.ydbio.2011.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 08/08/2011] [Accepted: 09/14/2011] [Indexed: 02/03/2023]
Abstract
The Drosophila trachea is a branched tubular epithelia that transports oxygen and other gases. trachealess (trh), which encodes a bHLH-PAS transcription factor, is among the first genes to be expressed in the cells that will form the trachea. In the absence of trh, tracheal cells fail to invaginate to form tubes and remain on the embryo surface. Expression of many tracheal-specific genes depends on trh, but all of the known targets have relatively minor phenotypes compared to loss of trh, suggesting that there are additional targets. To identify uncharacterized transcriptional targets of Trh and to further understand the role of Trh in embryonic tracheal formation, we performed an in situ hybridization screen using a library of ~100 tracheal-expressed genes identified by the Berkeley Drosophila Genome Project (BDGP). Surprisingly, expression of every tracheal gene we tested was dependent on Trh, suggesting a major role for Trh in activation and maintenance of tracheal gene expression. A re-examination of the interdependence of the known early-expressed transcription factors, including trh, ventral veinless (vvl) and knirps/knirps-related (kni/knrl), suggests a new model for how gene expression is controlled in the trachea, with trh regulating expression of vvl and kni, but not vice versa. A pilot screen for the targets of Vvl and Kni/Knrl revealed that Vvl and Kni have only minor roles compared to Trh. Finally, genome-wide microarray experiments identified additional Trh targets and revealed that a variety of biological processes are affected by the loss of trh.
Collapse
|
12
|
Hasegawa E, Kitada Y, Kaido M, Takayama R, Awasaki T, Tabata T, Sato M. Concentric zones, cell migration and neuronal circuits in the Drosophila visual center. Development 2011; 138:983-93. [DOI: 10.1242/dev.058370] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila optic lobe comprises a wide variety of neurons, which form laminar neuropiles with columnar units and topographic projections from the retina. The Drosophila optic lobe shares many structural characteristics with mammalian visual systems. However, little is known about the developmental mechanisms that produce neuronal diversity and organize the circuits in the primary region of the optic lobe, the medulla. Here, we describe the key features of the developing medulla and report novel phenomena that could accelerate our understanding of the Drosophila visual system. The identities of medulla neurons are pre-determined in the larval medulla primordium, which is subdivided into concentric zones characterized by the expression of four transcription factors: Drifter, Runt, Homothorax and Brain-specific homeobox (Bsh). The expression pattern of these factors correlates with the order of neuron production. Once the concentric zones are specified, the distribution of medulla neurons changes rapidly. Each type of medulla neuron exhibits an extensive but defined pattern of migration during pupal development. The results of clonal analysis suggest homothorax is required to specify the neuronal type by regulating various targets including Bsh and cell-adhesion molecules such as N-cadherin, while drifter regulates a subset of morphological features of Drifter-positive neurons. Thus, genes that show the concentric zones may form a genetic hierarchy to establish neuronal circuits in the medulla.
Collapse
Affiliation(s)
- Eri Hasegawa
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
| | - Yusuke Kitada
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masako Kaido
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
| | - Rie Takayama
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
| | - Takeshi Awasaki
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tetsuya Tabata
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Makoto Sato
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
- PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
13
|
Morozova T, Hackett J, Sedaghat Y, Sonnenfeld M. The Drosophila jing gene is a downstream target in the Trachealess/Tango tracheal pathway. Dev Genes Evol 2010; 220:191-206. [PMID: 21061019 DOI: 10.1007/s00427-010-0339-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 10/08/2010] [Indexed: 11/28/2022]
Abstract
Primary branching in the Drosophila trachea is regulated by the Trachealess (Trh) and Tango (Tgo) basic helix-loop-helix-PAS (bHLH-PAS) heterodimers, the POU protein Drifter (Dfr)/Ventral Veinless (Vvl), and the Pointed (Pnt) ETS transcription factor. The jing gene encodes a zinc finger protein also required for tracheal development. Three Trh/Tgo DNA-binding sites, known as CNS midline elements, in 1.5 kb of jing 5′ cis-regulatory sequence (jing1.5) previously suggested a downstream role for jing in the pathway. Here, we show that jing is a direct downstream target of Trh/Tgo and that Vvl and Pnt are also involved in jing tracheal activation. In vivo lacZ enhancer detection assays were used to identify cis-regulatory elements mediating embryonic expression patterns of jing. A 2.8-kb jing enhancer (jing2.8) drove lacZ expression in all tracheal cell lineages, the CNS midline and Engrailed-positive segmental stripes, mimicking endogenous jing expression. A 1.3-kb element within jing2.8 drove expression that was restricted to Engrailed-positive CNS midline cells and segmental ectodermal stripes. Surprisingly, jing1.5-lacZ expression was restricted to tracheal fusion cells despite the presence of consensus DNA-binding sites for bHLH-PAS, ETS, and POU domain transcription factors. Given the absence of Trh/Tgo DNA-binding sites in the jing1.3 enhancer, these results are consistent with previous observations suggesting a combinatorial basis to Trh-/Tgo-mediated transcriptional regulation in the trachea.
Collapse
Affiliation(s)
- Tatiana Morozova
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
14
|
Sonnenfeld M, Morozova T, Hackett J, Sun X. Drosophila Jing is part of the breathless fibroblast growth factor receptor positive feedback loop. Dev Genes Evol 2010; 220:207-20. [PMID: 21061018 DOI: 10.1007/s00427-010-0342-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 10/19/2010] [Indexed: 11/28/2022]
Abstract
In the developing Drosophila trachea, extensive cell migration lays the foundation for an elaborate network of tubules to form. This process is controlled by the Drosophila fibroblast growth factor receptor, known as Breathless (Btl), whose expression is activated by the Trachealess (Trh) and Tango (Tgo) basic helix-loop-helix (bHLH)-PAS transcription factors. We previously identified the jing zinc finger transcription factor as a gene sensitive to the dosage of bHLH-PAS transcriptional activity and showed that its mutations interact genetically with those of trh and btl. Here, we demonstrate that jing is required for btl expression in the branching trachea and dominantly interacts with known regulators of btl expression, including the ETS and POU transcription factors, pointed, and drifter/ventral veinless, respectively. Furthermore, the zinc finger-containing C-terminus of Jing associates with a btl tracheal enhancer in a Trh/Tgo-dependent manner in chromatin immunoprecipitation assays in vitro and interferes with btl in vitro and in vivo. Together, our results support a model by which Jing/Trh/Tgo complexes regulate btl transcript levels during primary tracheal branching.
Collapse
Affiliation(s)
- Margaret Sonnenfeld
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
15
|
Junell A, Uvell H, Davis MM, Edlundh-Rose E, Antonsson Å, Pick L, Engström Y. The POU transcription factor Drifter/Ventral veinless regulates expression of Drosophila immune defense genes. Mol Cell Biol 2010; 30:3672-84. [PMID: 20457811 PMCID: PMC2897550 DOI: 10.1128/mcb.00223-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/13/2010] [Accepted: 05/02/2010] [Indexed: 01/02/2023] Open
Abstract
Innate immunity operates as a first line of defense in multicellular organisms against infections caused by different classes of microorganisms. Antimicrobial peptides (AMPs) are synthesized constitutively in barrier epithelia to protect against microbial attack and are also upregulated in response to infection. Here, we implicate Drifter/Ventral veinless (Dfr/Vvl), a class III POU domain transcription factor, in tissue-specific regulation of the innate immune defense of Drosophila. We show that Dfr/Vvl is highly expressed in a range of immunocompetent tissues, including the male ejaculatory duct, where its presence overlaps with and drives the expression of cecropin, a potent broad-spectrum AMP. Dfr/Vvl overexpression activates transcription of several AMP genes in uninfected flies in a Toll pathway- and Imd pathway-independent manner. Dfr/Vvl activates a CecA1 reporter gene both in vitro and in vivo by binding to an upstream enhancer specific for the male ejaculatory duct. Further, Dfr/Vvl and the homeodomain protein Caudal (Cad) activate transcription synergistically via this enhancer. We propose that the POU protein Dfr/Vvl acts together with other regulators in a combinatorial manner to control constitutive AMP gene expression in a gene-, tissue-, and sex-specific manner, thus promoting a first-line defense against infection in tissues that are readily exposed to pathogens.
Collapse
Affiliation(s)
- Anna Junell
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Hanna Uvell
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Monica M. Davis
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Esther Edlundh-Rose
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Åsa Antonsson
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Leslie Pick
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Ylva Engström
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| |
Collapse
|
16
|
Jiang L, Pearson JC, Crews ST. Diverse modes of Drosophila tracheal fusion cell transcriptional regulation. Mech Dev 2010; 127:265-80. [PMID: 20347970 DOI: 10.1016/j.mod.2010.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 03/18/2010] [Accepted: 03/21/2010] [Indexed: 10/19/2022]
Abstract
Drosophila tracheal fusion cells play multiple important roles in guiding and facilitating tracheal branch fusion. Mechanistic understanding of how fusion cells function during development requires deciphering their transcriptional circuitry. In this paper, three genes with distinct patterns of fusion cell expression were dissected by transgenic analysis to identify the cis-regulatory modules that mediate their transcription. Bioinformatic analysis involving phylogenetic comparisons coupled with mutational experiments were employed. The dysfusion bHLH-PAS gene was shown to have two fusion cell cis-regulatory modules; one driving initial expression and another autoregulatory module to enhance later transcription. Mutational dissection of the early module identified at least four distinct inputs, and included putative binding sites for ETS and POU-homeodomain proteins. The ETS transcription factor Pointed mediates the transcriptional output of the branchless/breathless signaling pathway, suggesting that this pathway directly controls dysfusion expression. Fusion cell cis-regulatory modules of CG13196 and CG15252 require two Dysfusion:Tango binding sites, but additional sequences modulate the breadth of activation in different fusion cell classes. These results begin to decode the regulatory circuitry that guides transcriptional activation of genes required for fusion cell morphogenesis.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | |
Collapse
|
17
|
Terriente-Félix A, de Celis JF. Osa, a subunit of the BAP chromatin-remodelling complex, participates in the regulation of gene expression in response to EGFR signalling in the Drosophila wing. Dev Biol 2009; 329:350-61. [PMID: 19306864 DOI: 10.1016/j.ydbio.2009.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 03/05/2009] [Accepted: 03/12/2009] [Indexed: 01/27/2023]
Abstract
Gene expression is regulated in part by protein complexes containing ATP-dependent chromatin-remodelling factors of the SWI/SNF family. In Drosophila there is only one SWI/SNF protein, named Brahma, which forms the catalytic subunit of two complexes composed of different proteins. The protein Osa defines the BAP complex, and the proteins Polybromo and Bap170 are only present in the complex named PBAP. In this work we have analysed the functional requirements of Osa during Drosophila wing development, and found that osa is needed for cell growth and survival in the wing imaginal disc, and for the correct patterning of sensory organs, veins and the wing margin. Other members of the BAP complex, such as Snr1, Bap55, Mor and Brm, also share these functions of Osa. We focused on the requirement of Osa during the formation of the wing veins. Genetic interactions between osa alleles and mutations affecting the activity of the EGFR pathway suggest that one aspect of Osa is intimately related to the response to EGFR activity. Thus, loss of osa and EGFR signalling results in similar wing vein phenotypes, and osa alleles enhance the loss of veins caused by reduced EGFR activity. In addition, Osa is required for the expression of several targets of EGFR signalling, such as Delta, rhomboid and argos. We suggest that one role of Osa and Brm in the wing is to establish a chromatin environment in the regulatory regions of EGFR target genes, making them available for both activators and repressors and facilitating transcription in response to EGFR signalling.
Collapse
Affiliation(s)
- Ana Terriente-Félix
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | |
Collapse
|
18
|
Mortimer NT, Moberg KH. Regulation of Drosophila embryonic tracheogenesis by dVHL and hypoxia. Dev Biol 2009; 329:294-305. [PMID: 19285057 DOI: 10.1016/j.ydbio.2009.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 01/27/2009] [Accepted: 03/03/2009] [Indexed: 01/01/2023]
Abstract
The tracheal system of Drosophila melanogaster is an interconnected network of gas-filled epithelial tubes that develops during embryogenesis and functions as the main gas-exchange organ in the larva. Larval tracheal cells respond to hypoxia by activating a program of branching and growth driven by HIF-1alpha/sima-dependent expression of the breathless (btl) FGF receptor. By contrast, the ability of the developing embryonic tracheal system to respond to hypoxia and integrate hard-wired branching programs with sima-driven tracheal remodeling is not well understood. Here we show that embryonic tracheal cells utilize the conserved ubiquitin ligase dVHL to control the HIF-1 alpha/sima hypoxia response pathway, and identify two distinct phases of tracheal development with differing hypoxia sensitivities and outcomes: a relatively hypoxia-resistant 'early' phase during which sima activity conflicts with normal branching and stunts migration, and a relatively hypoxia-sensitive 'late' phase during which the tracheal system uses the dVHL/sima/btl pathway to drive increased branching and growth. Mutations in the archipelago (ago) gene, which antagonizes btl transcription, re-sensitize early embryos to hypoxia, indicating that their relative resistance can be reversed by elevating activity of the btl promoter. These findings reveal a second type of tracheal hypoxic response in which Sima activation conflicts with developmental tracheogenesis, and identify the dVHL and ago ubiquitin ligases as key determinants of hypoxia sensitivity in tracheal cells. The identification of an early stage of tracheal development that is vulnerable to hypoxia is an important addition to models of the invertebrate hypoxic response.
Collapse
Affiliation(s)
- Nathan T Mortimer
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
19
|
Casanova J. The emergence of shape: notions from the study of the Drosophila tracheal system. EMBO Rep 2007; 8:335-9. [PMID: 17401407 PMCID: PMC1852757 DOI: 10.1038/sj.embor.7400942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 02/05/2007] [Indexed: 11/09/2022] Open
Abstract
The generation of bodies and body parts with specific shapes and sizes has been a longstanding issue in biology. Morphogenesis in general and organogenesis in particular are complex events that involve global changes in cell populations in terms of their proliferation, migration, differentiation and shape. Recent studies have begun to address how these synchronized changes are controlled by the genes that specify cell fate and by the ability of cells to respond to extracellular cues. In particular, a notable shift in this research has occurred owing to the ability to address these issues in the context of the whole organism. For such studies, the Drosophila tracheal system has proven to be a particularly appropriate model. Here, my aim is to highlight some ideas that have arisen through our studies, and those from other groups, of Drosophila tracheal development. Rather than providing an objective review of the features of tracheal development, I intend to discuss some selected notions that I think are relevant to the question of shape generation.
Collapse
Affiliation(s)
- Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Institut de Recerca Biomèdica, Carrer Josep Samitier 1-5, 08028, Barcelona, Spain.
| |
Collapse
|
20
|
Lilja T, Aihara H, Stabell M, Nibu Y, Mannervik M. The acetyltransferase activity of Drosophila CBP is dispensable for regulation of the Dpp pathway in the early embryo. Dev Biol 2007; 305:650-8. [PMID: 17336283 DOI: 10.1016/j.ydbio.2007.01.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 01/26/2007] [Accepted: 01/31/2007] [Indexed: 11/16/2022]
Abstract
The CBP protein is a transcriptional co-activator and histone acetyltransferase. Reduced expression of Drosophila CBP (dCBP) in the early embryo specifically impairs signaling by the TGF-beta molecules Dpp and Screw (Scw). This occurs by a failure to activate transcription of the tolloid (tld) gene, which codes for a protease that generates active Dpp and Scw ligands. We show that dCBP directly regulates this gene by binding to the tld enhancer, and that tld expression can be partially rescued with a dCBP transgene. At a slightly later stage of development, Dpp/Scw signaling recovers in mutant embryos, but is unable to turn on expression of the Dpp/Scw-target gene rhomboid (rho). Interestingly, an acetyltransferase (AT)-defective dCBP transgene rescued tld and rho gene expression to an extent comparable to the wild-type transgene, whereas a transgene containing a 130 amino acid deletion rescued tld but not late rho expression. A tracheal phenotype caused by the reduced dCBP levels was also rescued more efficiently with the wild-type dCBP transgene than with this mutant transgene. Our results indicate that separate parts of the dCBP protein are required on different promoters, and that the AT activity of dCBP is dispensable for certain aspects of Dpp signaling. We discuss the similarity of these results to the role of p300/CBP in TGF-beta signaling in the mouse.
Collapse
Affiliation(s)
- Tobias Lilja
- Department of Developmental Biology, Wenner-Gren Institute, Arrheniuslaboratories E3, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Brodu V, Casanova J. The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. Genes Dev 2006; 20:1817-28. [PMID: 16818611 PMCID: PMC1522077 DOI: 10.1101/gad.375706] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A major issue in morphogenesis is to understand how the activity of genes specifying cell fate affects cytoskeletal components that modify cell shape and induce cell movements. Here, we approach this question by investigating how a group of cells from an epithelial sheet initiate invagination to ultimately form the Drosophila tracheal tubes. We describe tracheal cell behavior at invagination and show that it is associated with, and requires, a distinct recruitment of Myosin II to the apical surface of cells at the invaginating edge. We show that this process is achieved by the activity of crossveinless-c, a gene coding for a RhoGAP and whose specific transcriptional activation in the tracheal cells is triggered by both the trachealess patterning gene and the EGF Receptor (EGFR) signaling pathway. Our results identify a developmental pathway linking cell fate genes and cell signaling pathways to intracellular modifications during tracheal cell invagination.
Collapse
Affiliation(s)
- Véronique Brodu
- Institut de Biologia Molecular de Barcelona (CSIC) and Institut de Recerca Biomèdica, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
23
|
Molnar C, de Celis JF. Independent roles of Drosophila Moesin in imaginal disc morphogenesis and hedgehog signalling. Mech Dev 2006; 123:337-51. [PMID: 16682173 DOI: 10.1016/j.mod.2006.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 02/17/2006] [Accepted: 02/20/2006] [Indexed: 12/31/2022]
Abstract
The three ERM proteins (Ezrin, Radixin and Moesin) form a conserved family required in many developmental processes involving regulation of the cytoskeleton. In general, the molecular function of ERM proteins is to link specific membrane proteins to the actin cytoskeleton. In Drosophila, loss of moesin (moe) activity causes incorrect localisation of maternal determinants during oogenesis, failures in rhabdomere differentiation in the eye and alterations of epithelial integrity in the wing imaginal disc. Some aspects of Drosophila Moe are related to the activity of the small GTPase RhoA, because the reduction of RhoA activity corrects many phenotypes of moe mutant embryos and imaginal discs. We have analysed the phenotype of moesin loss-of-function alleles in the wing disc and adult wing, and studied the effects of reduced Moesin activity on signalling mediated by the Notch, Decapentaplegic, Wingless and Hedgehog pathways. We found that reductions in Moesin levels in the wing disc cause the formation of wing-tissue vesicles and large thickenings of the vein L3, corresponding to breakdowns of epithelial continuity in the wing base and modifications of Hedgehog signalling in the wing blade, respectively. We did not observe any effect on signalling pathways other than Hedgehog, indicating that the moe defects in epithelial integrity have not generalised effects on cell signalling. The effects of moe mutants on Hedgehog signalling depend on the correct gene-dose of rhoA, suggesting that the requirements for Moesin in disc morphogenesis and Hh signalling in the wing disc are mediated by its regulation of RhoA activity. The mechanism linking Moesin activity with RhoA function and Hedgehog signalling remains to be elucidated.
Collapse
Affiliation(s)
- Cristina Molnar
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | |
Collapse
|
24
|
Arquier N, Vigne P, Duplan E, Hsu T, Therond P, Frelin C, D'Angelo G. Analysis of the hypoxia-sensing pathway in Drosophila melanogaster. Biochem J 2006; 393:471-80. [PMID: 16176182 PMCID: PMC1360697 DOI: 10.1042/bj20050675] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The mechanism by which hypoxia induces gene transcription involves the inhibition of HIF-1alpha (hypoxia-inducible factor-1 alpha subunit) PHD (prolyl hydroxylase) activity, which prevents the VHL (von Hippel-Lindau)-dependent targeting of HIF-1alpha to the ubiquitin/proteasome pathway. HIF-1alpha thus accumulates and promotes gene transcription. In the present study, first we provide direct biochemical evidence for the presence of a conserved hypoxic signalling pathway in Drosophila melanogaster. An assay for 2-oxoglutarate-dependent dioxygenases was developed using Drosophila embryonic and larval homogenates as a source of enzyme. Drosophila PHD has a low substrate specificity and hydroxylates key proline residues in the ODD (oxygen-dependent degradation) domains of human HIF-1alpha and Similar, the Drosophila homologue of HIF-1alpha. The enzyme promotes human and Drosophila [(35)S]VHL binding to GST (glutathione S-transferase)-ODD-domain fusion protein. Hydroxylation is enhanced by proteasomal inhibitors and was ascertained using an anti-hydroxyproline antibody. Secondly, by using transgenic flies expressing a fusion protein that combined an ODD domain and the green fluorescent protein (ODD-GFP), we analysed the hypoxic cascade in different embryonic and larval tissues. Hypoxic accumulation of the reporter protein was observed in the whole tracheal tree, but not in the ectoderm. Hypoxic stabilization of ODD-GFP in the ectoderm was restored by inducing VHL expression in these cells. These results show that Drosophila tissues exhibit different sensitivities to hypoxia.
Collapse
Affiliation(s)
- Nathalie Arquier
- *Neurobiologie Vasculaire, INSERM U615, Université de Nice Sophia-Antipolis, Parc Valrose, Nice 06108, Nice Cedex 02, France
| | - Paul Vigne
- *Neurobiologie Vasculaire, INSERM U615, Université de Nice Sophia-Antipolis, Parc Valrose, Nice 06108, Nice Cedex 02, France
| | - Eric Duplan
- *Neurobiologie Vasculaire, INSERM U615, Université de Nice Sophia-Antipolis, Parc Valrose, Nice 06108, Nice Cedex 02, France
| | - Tien Hsu
- †Department of Pathology and Laboratory Medicine, and Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Rm 330, Charleston, SC 29425, U.S.A
| | - Pascal P. Therond
- ‡Institut de Signalisation, Biologie du Développement et Cancer, CNRS UMR 6543, Université de Nice Sophia-Antipolis, Parc Valrose, Nice 06108, Nice Cedex 02, France
| | - Christian Frelin
- *Neurobiologie Vasculaire, INSERM U615, Université de Nice Sophia-Antipolis, Parc Valrose, Nice 06108, Nice Cedex 02, France
| | - Gisela D'Angelo
- *Neurobiologie Vasculaire, INSERM U615, Université de Nice Sophia-Antipolis, Parc Valrose, Nice 06108, Nice Cedex 02, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
25
|
Araújo SJ, Aslam H, Tear G, Casanova J. mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development--analysis of its role in Drosophila tracheal morphogenesis. Dev Biol 2005; 288:179-93. [PMID: 16277981 DOI: 10.1016/j.ydbio.2005.09.031] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/09/2005] [Accepted: 09/11/2005] [Indexed: 11/24/2022]
Abstract
Tracheal and nervous system development are two model systems for the study of organogenesis in Drosophila. In two independent screens, we identified three alleles of a gene involved in tracheal, cuticle and CNS development. Here, we show that these alleles, and the previously identified cystic and mummy, all belong to the same complementation group. These are mutants of a gene encoding the UDP-N-acetylglucosamine diphosphorylase, an enzyme responsible for the production of UDP-N-acetylglucosamine, an important intermediate in chitin and glycan biosynthesis. cyst was originally singled out as a gene required for the regulation of tracheal tube diameter. We characterized the cyst/mmy tracheal phenotype and upon histological examination concluded that mmy mutant embryos lack chitin-containing structures, such as the procuticle at the epidermis and the taenidial folds in the tracheal lumen. While most of their tracheal morphogenesis defects can be attributed to the lack of chitin, when compared to krotzkopf verkehrt (kkv) chitin-synthase mutants, mmy mutants showed a stronger phenotype, suggesting that some of the mmy phenotypes, like the axon guidance defects, are chitin-independent. We discuss the implications of these new data in the mechanism of size control in the Drosophila trachea.
Collapse
Affiliation(s)
- Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Carrer Josep Samitier 1-5, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
26
|
Myat MM, Lightfoot H, Wang P, Andrew DJ. A molecular link between FGF and Dpp signaling in branch-specific migration of the Drosophila trachea. Dev Biol 2005; 281:38-52. [PMID: 15848387 PMCID: PMC2827869 DOI: 10.1016/j.ydbio.2005.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 01/27/2005] [Accepted: 02/07/2005] [Indexed: 11/18/2022]
Abstract
The tracheal system of Drosophila embryos achieves its archetypal branching pattern through a series of cell migration events requiring the FGF, Dpp, and Wg/WNT signaling pathways. To gain insight into tracheal cell migration, we performed an F4 EMS mutagenesis screen to generate and characterize new mutations resulting in tracheal defects. From 2591 mutagenized third chromosome lines, we identified 33 mutations with defects in tracheal development, corresponding to 12 distinct complementation groups. The new mutations included novel hypomorphic alleles of the FGF receptor gene, breathless, and the ETS-domain transcription factor gene, pointed. We show that reduced function of either breathless or pointed specifically affects migration of the dorsal and ventral tracheal branches, more specific functions than previously described for these genes. Our analysis reveals that breathless and pointed control dorsal branch migration through transcriptional regulation of the Dpp pathway effectors, Knirps and Knirps-related, which are necessary for migration of this branch. We further show that expression of knirps or knirps-related rescues dorsal but not ventral branch migration in the breathless hypomorph. These studies support a model in which both the Dpp- and the FGF-signaling pathways control expression of knirps and knirps-related, thereby regulating cell migration during dorsal branch formation.
Collapse
Affiliation(s)
- Monn Monn Myat
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
27
|
Sotillos S, De Celis JF. Interactions between the Notch, EGFR, and decapentaplegic signaling pathways regulate vein differentiation duringDrosophila pupal wing development. Dev Dyn 2005; 232:738-52. [PMID: 15704120 DOI: 10.1002/dvdy.20270] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of longitudinal veins in the Drosophila wing involves cell interactions mediated by the conserved signaling pathways Decapentaplegic (Dpp), Notch, and epidermal growth factor receptor (EGFR). Interactions between Notch and EGFR taking place in the wing disc divide each vein into a central domain, where EGFR is active, and two boundary domains where Notch is active. The expression of decapentaplegic (dpp) is activated in the veins during pupal development, and we have generated Gal4 drivers using the regulatory region that drives dpp expression at this stage. By using these drivers, we studied the relationships between the Notch, EGFR, and Dpp signaling pathways that occur during pupal development. Our results indicate that the interactions between EGFR and Notch initiated in the imaginal disc are maintained throughout pupal development and contribute to determine the places where dpp is expressed. Once dpp expression is initiated, Dpp and EGFR activities in the provein maintain each other and, in cooperation, determine vein cell differentiation.
Collapse
Affiliation(s)
- Sol Sotillos
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
28
|
Abstract
Many organs including the mammalian lung and vascular system consist of branched tubular networks that transport essential gases or fluids, but the genetic programs that control the development of these complex three-dimensional structures are not well understood. The Drosophila melanogaster tracheal (respiratory) system is a network of interconnected epithelial tubes that transports oxygen and other gases in the body and provides a paradigm of branching morphogenesis. It develops by sequential sprouting of primary, secondary, and terminal branches from an epithelial sac of approximately 80 cells in each body segment of the embryo. Mapping of the cell movements and shape changes during the sprouting process has revealed that distinct mechanisms of epithelial migration and tube formation are used at each stage of branching. Genetic dissection of the process has identified a general program in which a fibroblast growth factor (FGF) and fibroblast growth factor receptor (FGFR) are used repeatedly to control branch budding and outgrowth. At each stage of branching, the mechanisms controlling FGF expression and the downstream signal transduction pathway change, altering the pattern and structure of the branches that form. During terminal branching, FGF expression is regulated by hypoxia, ensuring that tracheal structure matches cellular oxygen need. A branch diversification program operates in parallel to the general budding program: Regional signals locally modify the general program, conferring specific structural features and other properties on individual branches, such as their substrate outgrowth preferences, differences in tube size and shape, and the ability to fuse to other branches to interconnect the network.
Collapse
Affiliation(s)
- Amin Ghabrial
- Howard Hughes Medical Institute, Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | | | | | | |
Collapse
|
29
|
Franch-Marro X, Casanova J. spalt-Induced Specification of Distinct Dorsal and Ventral Domains Is Required for Drosophila Tracheal Patterning. Dev Biol 2002. [DOI: 10.1006/dbio.2002.0799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Takaesu NT, Johnson AN, Sultani OH, Newfeld SJ. Combinatorial signaling by an unconventional Wg pathway and the Dpp pathway requires Nejire (CBP/p300) to regulate dpp expression in posterior tracheal branches. Dev Biol 2002; 247:225-36. [PMID: 12086463 DOI: 10.1006/dbio.2002.0693] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The decapentaplegic (dpp) gene influences many developmental events in Drosophila melanogaster. We have been analyzing dpp expression in two groups of dorsal ectoderm cells at the posterior end of the embryo, in abdominal segment 8 and the telson. These dpp-expressing cells become tracheal cells in the posterior-most branches of the tracheal system (Dorsal Branch10, Spiracular Branch10, and the Posterior Spiracle). These branches are not identified by reagents typically used in analyses of tracheal development, suggesting that dpp expression confers a distinct identity upon posterior tracheal cells. We have determined that dpp posterior ectoderm expression begins during germ band extension and continues throughout development. We have isolated the sequences responsible for these aspects of dpp expression in a reporter gene. We have determined that an unconventional form of Wingless (Wg) signaling, Dpp signaling, and the transcriptional coactivator Nejire (CBP/p300) are required for the initiation and maintenance of dpp expression in the posterior-most branches of the tracheal system. Our data suggest a model for the integration of Wg and Dpp signals that may be applicable to branching morphogenesis in other developmental systems.
Collapse
Affiliation(s)
- N T Takaesu
- Department of Biology, Arizona State University, Tempe, Arizona, 85287-1501, USA
| | | | | | | |
Collapse
|
31
|
Ribeiro C, Ebner A, Affolter M. In vivo imaging reveals different cellular functions for FGF and Dpp signaling in tracheal branching morphogenesis. Dev Cell 2002; 2:677-83. [PMID: 12015974 DOI: 10.1016/s1534-5807(02)00171-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the developing tracheal system of Drosophila melanogaster, six major branches arise by guided cell migration from a sac-like structure. The chemoattractant Branchless/FGF (Bnl) appears to guide cell migration and is essential for the formation of all tracheal branches, while Decapentaplegic (Dpp) signaling is strictly required for the formation of a subset of branches, the dorsal and ventral branches. Using in vivo confocal video microscopy, we find that the two signaling systems affect different cellular functions required for branching morphogenesis. Bnl/FGF signaling affects the formation of dynamic filopodia, possibly controlling cytoskeletal activity and motility as such, and Dpp controls cellular functions allowing branch morphogenesis and outgrowth.
Collapse
Affiliation(s)
- Carlos Ribeiro
- Abteilung Zellbiologie, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
32
|
Ebner A, Kiefer FN, Ribeiro C, Petit V, Nussbaumer U, Affolter M. Tracheal development in Drosophila melanogaster as a model system for studying the development of a branched organ. Gene 2002; 287:55-66. [PMID: 11992723 DOI: 10.1016/s0378-1119(01)00895-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development of the tracheal system of Drosophila melanogaster represents a paradigm for studying the molecular mechanisms involved in the formation of a branched tubular network. Tracheogenesis has been characterized at the morphological, cellular and genetic level and a series of successive, but linked events have been described as the basis for the formation of the complex network of tubules which extend over the entire organism. Tracheal cells stop to divide early in the process of tracheogenesis and the formation of the interconnected network requires highly controlled cell migration events and cell shape changes. A number of genes involved in these two processes have been identified but in order to obtain a more complete view of branching morphogenesis, many more genes carrying essential functions have to be isolated and characterized. Here, we provide a progress report on our attempts to identify further genes expressed in the tracheal system. We show that empty spiracles (ems), a head gap gene, is required for the formation of a specific tracheal branch, the visceral branch. We also identified a Sulfotransferase and a Multiple Inositol Polyphosphate phosphatase that are strongly upregulated in tracheal cells and discuss their possible involvement in tracheal development.
Collapse
Affiliation(s)
- Andreas Ebner
- Abteilung Zellbiologie, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Boube M, Martin-Bermudo MD, Brown NH, Casanova J. Specific tracheal migration is mediated by complementary expression of cell surface proteins. Genes Dev 2001; 15:1554-62. [PMID: 11410535 PMCID: PMC312719 DOI: 10.1101/gad.195501] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Migration of the Drosophila tracheal cells relies on cues provided by nearby cells; however, little is known about how these signals specify a migratory path. Here we investigate the role of cell surface proteins in the definition of such a pathway. We have found that the PS1 integrin is required in the tracheal cells of the visceral branch, whereas the PS2 integrin is required in the visceral mesoderm; both integrins are necessary for the spreading of the visceral branch over its substratum. This is the first identification of a cell surface molecule with expression restricted to a subset of tracheal cells that all migrate in a given direction. We have also found that expression of PS1 in the visceral branch is regulated by the genes that direct tracheal cell migration, showing that integrin expression is part of the cell-fate program that they specify. These results support a model in which signal transduction determines the tracheal migratory pathways by regulating the expression of cell surface proteins, which in turn interact with surface molecules on the surrounding cell population.
Collapse
Affiliation(s)
- M Boube
- Institut de Biologia de Biologia Molecular de Barcelona (CSIC), 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
34
|
Abstract
The elaborate branching pattern of the Drosophila tracheal system originates from ten tracheal placodes on both sides of the embryo, each consisting of about 80 cells. Simultaneous cell migration from each tracheal pit in six different directions gives rise to the stereotyped branching pattern. Each branch contains a fixed number of cells. Previous work has shown that in the dorsoventral axis, localized activation of the Dpp, Wnt and EGF receptor (DER) pathways, subdivides the tracheal pit into distinct domains. We present the role of the Hedgehog (Hh) signaling system in patterning the tracheal branches. Hh is expressed in segmental stripes abutting the anterior border of the tracheal placodes. Induction of patched expression, which results from activation by Hh, demonstrates that cells in the anterior half of the tracheal pit are activated. In hh-mutant embryos migration of all tracheal branches is absent or stalled. These defects arise from a direct effect of Hh on tracheal cells, rather than by indirect effects on patterning of the ectoderm. Tracheal cell migration could be rescued by expressing Hh only in the tracheal cells, without rescuing the ectodermal defects. Signaling by several pathways, including the Hh pathway, thus serves to subdivide the uniform population of tracheal cells into distinct cell types that will subsequently be recruited into the different branches.
Collapse
Affiliation(s)
- L Glazer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
35
|
Affolter M, Shilo BZ. Genetic control of branching morphogenesis during Drosophila tracheal development. Curr Opin Cell Biol 2000; 12:731-5. [PMID: 11063940 DOI: 10.1016/s0955-0674(00)00160-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Branching morphogenesis is a widely used strategy to increase the surface area of a given organ. A number of tissues undergo branching morphogenesis during development, including the lung, kidney, vascular system and numerous glands. Until recently, very little has been known about the genetic principles underlying the branching process and about the molecules participating in organ specification and branch formation. The tracheal system of insects represents one of the best-characterised branched organs. The tracheal network provides air to most tissues and its development during embryogenesis has been studied intensively at the morphological and genetic level. More than 30 genes have been identified and ordered into sequential steps controlling branching morphogenesis. These studies have revealed a number of important principles that might be conserved in other systems.
Collapse
Affiliation(s)
- M Affolter
- Biozentrum, Abteilung Zellbiologie, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | | |
Collapse
|
36
|
Franch-Marro X, Casanova J. The alternative migratory pathways of the Drosophila tracheal cells are associated with distinct subsets of mesodermal cells. Dev Biol 2000; 227:80-90. [PMID: 11076678 DOI: 10.1006/dbio.2000.9890] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila tracheal system is a model for the study of the mechanisms that guide cell migration. The general conclusion from many studies is that migration of tracheal cells relies on directional cues provided by nearby cells. However, very little is known about which paths are followed by the migrating tracheal cells and what kind of interactions they establish to move in the appropriate direction. Here we analyze how tracheal cells migrate relative to their surroundings and which tissues participate in tracheal cell migration. We find that cells in different branches exploit different strategies for their migration; while some migrate through preexisting grooves, others make their way through homogeneous cell populations. We also find that alternative migratory pathways of tracheal cells are associated with distinct subsets of mesodermal cells and propose a model for the allocation of groups of tracheal cells to different branches. These results show how adjacent tissues influence morphogenesis of the tracheal system and offer a model for understanding how organ formation is determined by its genetic program and by the surrounding topological constraints.
Collapse
Affiliation(s)
- X Franch-Marro
- Institut de Biologia Molecular de Barcelona, C/ Jordi Girona 18-26, Barcelona, 08034, Spain
| | | |
Collapse
|
37
|
Abstract
The tubular epithelium of the Drosophila tracheal system forms a network with a stereotyped pattern consisting of cells and branches with distinct identity. The tracheal primordium undergoes primary branching induced by the FGF homolog Branchless, differentiates cells with specialized functions such as fusion cells, which perform target recognition and adhesion during branch fusion, and extends branches toward specific targets. Specification of a unique identity for each primary branch is essential for directed migration, as a defect in either the EGFR or the Dpp pathway leads to a loss of branch identity and the misguidance of tracheal cell migration. Here, we investigate the role of Wingless signaling in the specification of cell and branch identity in the tracheal system. Wingless and its intracellular signal transducer, Armadillo, have multiple functions, including specifying the dorsal trunk through activation of Spalt expression and inducing differentiation of fusion cells in all fusion branches. Moreover, we show that Wingless signaling regulates Notch signaling by stimulating delta expression at the tip of primary branches. These activities of Wingless signaling together specify the shape of the dorsal trunk and other fusion branches.
Collapse
Affiliation(s)
- T Chihara
- Genetic Strain Research Center and The Graduate University for Advanced Studies, National Institute of Genetics, Mishima 411-8540, Japan
| | | |
Collapse
|
38
|
Llimargas M. Wingless and its signalling pathway have common and separable functions during tracheal development. Development 2000; 127:4407-17. [PMID: 11003840 DOI: 10.1242/dev.127.20.4407] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila tracheal tree consists of a tubular network of epithelial branches that constitutes the respiratory system. Groups of tracheal cells migrate towards stereotyped directions while they acquire specific tracheal fates. This work shows that the wingless/WNT signalling pathway is needed within the tracheal cells for the formation of the dorsal trunk and for fusion of the branches. These functions are achieved through the regulation of target genes, such as spalt in the dorsal trunk and escargot in the fusion cells. The pathway also aids tracheal invagination and helps guide the ganglionic branch. Moreover the wingless/WNT pathway displays antagonistic interactions with the DPP (decapentaplegic) pathway, which regulates branching along the dorsoventral axis. Remarkably, the wingless gene itself, acting through its canonical pathway, seems not to be absolutely required for all these tracheal functions. However, the artificial overexpression of wingless in tracheal cells mimics the overexpression of a constitutively activated armadillo protein. The results suggest that another gene product, possibly a WNT, could help to trigger the wingless cascade in the developing tracheae.
Collapse
Affiliation(s)
- M Llimargas
- Medical Research Council-Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
39
|
Affolter M. Cell-cell interaction during Drosophila embryogenesis: novel mechanisms and molecules. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2000:65-79. [PMID: 10943305 DOI: 10.1007/978-3-662-04264-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- M Affolter
- Abteilung Zellbiologie, Biozentrum Universität Basel, Switzerland
| |
Collapse
|
40
|
Boube M, Llimargas M, Casanova J. Cross-regulatory interactions among tracheal genes support a co-operative model for the induction of tracheal fates in the Drosophila embryo. Mech Dev 2000; 91:271-8. [PMID: 10704851 DOI: 10.1016/s0925-4773(99)00315-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The Drosophila tracheal system arises from clusters of ectodermal cells that invaginate and migrate to originate a network of epithelial tubes. Genetic analyses have identified several genes that are specifically expressed in the tracheal cells and are required for tracheal development. Among them, trachealess (trh) is able to induce ectopic tracheal pits and therefore it has been suggested that it would act as an inducer of tracheal cell fates; however, this capacity appears to be spatially restricted. Here we analyze the expression of the tracheal specific genes in the early steps of tracheal development and their cross-interactions. We find that there is a set of primary genes including trh and ventral veinless (vvl) whose expression does not depend on any other tracheal gene and a set of downstream genes whose expression requires different combinations of the primary genes. We also find that the combined expression of primary genes is sufficient to induce some downstream genes but not others. These results indicate that there is not a single master gene responsible for the appropriate expression of the tracheal genes and support a model where tracheal cell fates are induced by the co-operation of several factors rather than by the activity of a single tracheal inducer.
Collapse
Affiliation(s)
- M Boube
- Institut de Biologia Molecular de Barcelona (CSIC), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | | |
Collapse
|
41
|
de Celis JF, Barrio R. Function of the spalt/spalt-related gene complex in positioning the veins in the Drosophila wing. Mech Dev 2000; 91:31-41. [PMID: 10704828 DOI: 10.1016/s0925-4773(99)00261-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spalt and Spalt-related encode conserved Zn-finger proteins that mediate the function of the TGF-beta molecule Decapentaplegic during the positioning of veins in the Drosophila wing. Here we show that Spalt and Spalt-related regulate the vein-specific expression of the transcription factors of the knirps and iroquois gene complexes, delimiting their domains of expression in the wing pouch. The effects of spalt/spalt-related mutations on knirps and iroquois expression are cell-autonomous, suggesting that they could be direct. The regulation of iroquois involves transcriptional repression by Spalt and Spalt-related, whereas the regulation of knirps involves a combination of transcriptional activation and repression mediated by the same genes. We suggest that the regulation of the iroquois and knirps gene complexes by Spalt and Spalt-related translates the Decapentaplegic morphogenetic gradient into precisely spaced pattern elements.
Collapse
Affiliation(s)
- J F de Celis
- European Molecular Biology Laboratory, Meyerhofstrasse, 69117, Heidelberg, Germany.
| | | |
Collapse
|
42
|
Zelzer E, Shilo BZ. Interaction between the bHLH-PAS protein Trachealess and the POU-domain protein Drifter, specifies tracheal cell fates. Mech Dev 2000; 91:163-73. [PMID: 10704841 DOI: 10.1016/s0925-4773(99)00295-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
bHLH-PAS proteins represent a class of transcription factors involved in diverse biological activities. Previous experiments demonstrated that the PAS domain confers target specificity (Zelzer et al., 1997. Genes Dev. 11, 2079-2089). This suggested an association between the PAS domain and additional DNA-binding proteins, which is essential for the induction of specific target genes. A candidate for interaction with Trh is Drifter/Ventral veinless, a POU-domain protein. A dual requirement for Trh and Drifter was identified for the autoregulation of Trh and Drifter expression. Furthermore, ectopic expression of both Trh and Dfr (but not each one alone) triggered trh autoregulation in several embryonic tissues. A direct interaction between Drifter and Trh proteins, mediated by the PAS domain of Trh and the POU domain of Drifter, was demonstrated.
Collapse
Affiliation(s)
- E Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
43
|
Steneberg P, Hemphälä J, Samakovlis C. Dpp and Notch specify the fusion cell fate in the dorsal branches of the Drosophila trachea. Mech Dev 1999; 87:153-63. [PMID: 10495279 DOI: 10.1016/s0925-4773(99)00157-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Decapentaplegic (Dpp) signaling determines the number of cells that migrate dorsally to form the dorsal primary branch during tracheal development. We report that Dpp signaling is also required for the differentiation of one of three different cell types in the dorsal branches, the fusion cell. In Mad mutant embryos or in embryos expressing dominant negative constructs of the two type I Dpp receptors in the trachea the number of cells expressing fusion cell-specific marker genes is reduced and fusion of the dorsal branches is defective. Ectopic expression of Dpp or the activated form of the Dpp receptor Tkv in all tracheal cells induces ectopic fusions of the tracheal lumen and ectopic expression of fusion gene markers in all tracheal branches. Among the fusion marker genes that are activated in the trachea in response to ectopic Dpp signaling is Delta. In conditional Notch loss of function mutants additional tracheal cells adopt the fusion cell fate and ectopic expression of an activated form of the Notch receptor in fusion cells results in suppression of fusion cell markers and disruption of the branch fusion. The number of cells that express the fusion cell markers in response to ectopic Dpp signaling is increased in Notch(ts1) mutants, suggesting that the two signaling pathways have opposing effects in the selection of the fusion cells in the dorsal branches.
Collapse
Affiliation(s)
- P Steneberg
- Umeå Center for Molecular Pathogenesis, Umeå University, S-90187, Umeå, Sweden
| | | | | |
Collapse
|
44
|
Montell DJ. The genetics of cell migration in Drosophila melanogaster and Caenorhabditis elegans development. Development 1999; 126:3035-46. [PMID: 10375496 DOI: 10.1242/dev.126.14.3035] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell migrations are found throughout the animal kingdom and are among the most dramatic and complex of cellular behaviors. Historically, the mechanics of cell migration have been studied primarily in vitro, where cells can be readily viewed and manipulated. However, genetic approaches in relatively simple model organisms are yielding additional insights into the molecular mechanisms underlying cell movements and their regulation during development. This review will focus on these simple model systems where we understand some of the signaling and receptor molecules that stimulate and guide cell movements. The chemotactic guidance factor encoded by the Caenorhabditis elegans unc-6 locus, whose mammalian homolog is Netrin, is perhaps the best known of the cell migration guidance factors. In addition, receptor tyrosine kinases (RTKs), and FGF receptors in particular, have emerged as key mediators of cell migration in vivo, confirming the importance of molecules that were initially identified and studied in cell culture. Somewhat surprisingly, screens for mutations that affect primordial germ cell migration in Drosophila have revealed that enzymes involved in lipid metabolism play a role in guiding cell migration in vivo, possibly by producing and/or degrading lipid chemoattractants or chemorepellents. Cell adhesion molecules, such as integrins, have been extensively characterized with respect to their contribution to cell migration in vitro and genetic evidence now supports a role for these receptors in certain instances in vivo as well. The role for non-muscle myosin in cell motility was controversial, but has now been demonstrated genetically, at least in some cell types. Currently the best characterized link between membrane receptor signaling and regulation of the actin cytoskeleton is that provided by the Rho family of small GTPases. Members of this family are clearly essential for the migrations of some cells; however, key questions remain concerning how chemoattractant and chemorepellent signals are integrated within the cell and transduced to the cytoskeleton to produce directed cell migration. New types of genetic screens promise to fill in some of these gaps in the near future.
Collapse
Affiliation(s)
- D J Montell
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA.
| |
Collapse
|
45
|
Abstract
The genetic programs that direct formation of the treelike branching structures of two animal organs have begun to be elucidated. In both the developing Drosophila tracheal (respiratory) system and mammalian lung, a fibroblast growth factor (FGF) signaling pathway is reiteratively used to pattern successive rounds of branching. The initial pattern of signaling appears to be established by early, more global embryonic patterning systems. The FGF pathway is then modified at each stage of branching by genetic feedback controls and other signals to give distinct branching outcomes. The reiterative use of a signaling pathway by both insects and mammals suggests a general scheme for patterning branching morphogenesis.
Collapse
Affiliation(s)
- R J Metzger
- Howard Hughes Medical Institute and Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | |
Collapse
|
46
|
Chen CK, Kühnlein RP, Eulenberg KG, Vincent S, Affolter M, Schuh R. The transcription factors KNIRPS and KNIRPS RELATED control cell migration and branch morphogenesis during Drosophila tracheal development. Development 1998; 125:4959-68. [PMID: 9811580 DOI: 10.1242/dev.125.24.4959] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell migration during embryonic tracheal system development in Drosophila requires DPP and EGF signaling to generate the archetypal branching pattern. We show that two genes encoding the transcription factors KNIRPS and KNIRPS RELATED possess multiple and redundant functions during tracheal development. knirps/knirps related activity is necessary to mediate DPP signaling which is required for tracheal cell migration and formation of the dorsal and ventral branches. Ectopic knirps or knirps related expression in lateral tracheal cells respecifies their anteroposterior to a dorsoventral migration behavior, similar to that observed in the case of ectopic DPP expression. In dorsal tracheal cells knirps/knirps related activity represses the transcription factor SPALT; this repression is essential for secondary and terminal branch formation. However, in cells of the dorsal trunk, spalt expression is required for normal anteroposterior cell migration and morphogenesis. spalt expression is maintained by the EGF receptor pathway and, hence, some of the opposing activities of the EGF and DPP signaling pathways are mediated by spalt and knirps/knirps related. Furthermore, we provide evidence that the border between cells acquiring dorsal branch and dorsal trunk identity is established by the direct interaction of KNIRPS with a spalt cis-regulatory element.
Collapse
Affiliation(s)
- C K Chen
- Max-Planck-Institut für biophysikalische Chemie, Abt. Molekulare Entwicklungsbiologie, Am Fassberg, D-37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Muñoz-Mármol AM, Casali A, Miralles A, Bueno D, Bayascas JR, Romero R, Saló E. Characterization of platyhelminth POU domain genes: ubiquitous and specific anterior nerve cell expression of different epitopes of GtPOU-1. Mech Dev 1998; 76:127-40. [PMID: 9767147 DOI: 10.1016/s0925-4773(98)00113-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
POU domain proteins are a large family of transcription factors that have been identified in a variety of metazoans, from freshwater sponges, planarians and nematodes to arthropods, echinoderms and vertebrates. Many of these proteins are implicated in the development and establishment of the nervous system. In this paper we describe the identification of the planarian genes GtPOU-1, GtPOU-3 and GtPOU-4, which belong to the subclasses III and IV of POU-domain genes. Their similarity with other members of the POU family is restricted to the POU and homeo domains, plus some peptide sequences scattered in the linker and flanking regions. As with other subclass III POU genes, GtPOU-1 is devoid of introns. Axial transcript distribution by RT-PCR and immunohistochemical assays, performed with a polyclonal antibody raised against the GtPOU-1 fusion protein, indicate that both the GtPOU-1 transcript and protein are continuously expressed along the antero-posterior axis. A monoclonal antibody raised against the same fusion protein indicates that a GtPOU-1-specific epitope, probably obtained by post-translational modification, is present in neural cells from both the central and peripheral nerve systems of the adult planarian's anterior third. Moreover, the GtPOU-1-specific epitope shows a dynamic expression pattern during regeneration, always marking the most anterior region of the planarian nervous system. Both the rapid and general GtPOU-1-specific epitope modification, during posterior regeneration, indicate that regeneration is a global process involving all planarian regions, including those that are far from the wound, by a combination of morphallactic and epimorphic mechanisms.
Collapse
Affiliation(s)
- A M Muñoz-Mármol
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08071, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The establishment of branched tubular epithelial structures is critical for the viability of multicellular organisms: the tracheal system in Drosophila and the vertebrate lung being two such structures. Although there are obvious differences in the complexity of these branched organs, many of the underlying mechanisms and genes regulating their development appear to have been evolutionarily conserved.
Collapse
Affiliation(s)
- B L Hogan
- Howard Hughes Medical Institute, Vanderbilt Medical Center, Nashville, Tennessee 37232-2175, USA.
| | | |
Collapse
|
49
|
Abstract
The multiple roles of the Drosophila epidermal growth factor receptor (EGFR) require that its activation is regulated precisely. Recent work has highlighted two important control mechanisms: the existence of multiple ligands with distinct properties and the interaction between EGFR pathway and other signalling pathways. The integration of signalling pathways into networks is beginning to be understood.
Collapse
Affiliation(s)
- M Freeman
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|