1
|
Amiri M, Mahmood N, Tahmasebi S, Sonenberg N. eIF4F-mediated dysregulation of mRNA translation in cancer. RNA (NEW YORK, N.Y.) 2025; 31:416-428. [PMID: 39809544 PMCID: PMC11874970 DOI: 10.1261/rna.080340.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Messenger RNA (mRNA) translational control plays a pivotal role in regulating cellular proteostasis under physiological and pathological conditions. Dysregulated mRNA translation is pervasive in cancer, in which protein synthesis is elevated to support accelerated cell growth and proliferation. Consequently, targeting the mRNA translation machinery has emerged as a therapeutic strategy to treat cancer. In this Perspective, we summarize the current knowledge of translation dysregulation in cancer, with emphasis on the eukaryotic translation initiation factor 4F complex. We outline recent endeavors to apply this knowledge to develop novel treatment strategies to combat cancer.
Collapse
Affiliation(s)
- Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Niaz Mahmood
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
2
|
Neural is Fundamental: Neural Stemness as the Ground State of Cell Tumorigenicity and Differentiation Potential. Stem Cell Rev Rep 2021; 18:37-55. [PMID: 34714532 DOI: 10.1007/s12015-021-10275-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
Tumorigenic cells are similar to neural stem cells or embryonic neural cells in regulatory networks, tumorigenicity and pluripotent differentiation potential. By integrating the evidence from developmental biology, tumor biology and evolution, I will make a detailed discussion on the observations and propose that neural stemness underlies two coupled cell properties, tumorigenicity and pluripotent differentiation potential. Neural stemness property of tumorigenic cells can hopefully integrate different observations/concepts underlying tumorigenesis. Neural stem cells and tumorigenic cells share regulatory networks; both exhibit neural stemness, tumorigenicity and pluripotent differentiation potential; both depend on expression or activation of ancestral genes; both rely primarily on aerobic glycolytic metabolism; both can differentiate into various cells/tissues that are derived from three germ layers, leading to tumor formation resembling severely disorganized or more degenerated process of embryonic tissue differentiation; both are enriched in long genes with more splice variants that provide more plastic scaffolds for cell differentiation, etc. Neural regulatory networks, which include higher levels of basic machineries of cell physiological functions and developmental programs, work concertedly to define a basic state with fast cell cycle and proliferation. This is predestined by the evolutionary advantage of neural state, the ground or initial state for multicellularity with adaptation to an ancient environment. Tumorigenesis might represent a process of restoration of neural ground state, thereby restoring a state with fast proliferation and pluripotent differentiation potential in somatic cells. Tumorigenesis and pluripotent differentiation potential might be better understood from understanding neural stemness, and cancer therapy should benefit more from targeting neural stemness.
Collapse
|
3
|
Wang B, Rong X, Zhou Y, Liu Y, Sun J, Zhao B, Deng B, Lu L, Lu L, Li Y, Zhou J. Eukaryotic initiation factor 4A3 inhibits Wnt/β-catenin signaling and regulates axis formation in zebrafish embryos. Development 2021; 148:261699. [PMID: 33914867 DOI: 10.1242/dev.198101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/25/2021] [Indexed: 12/31/2022]
Abstract
A key step in the activation of canonical Wnt signaling is the interaction between β-catenin and Tcf/Lefs that forms the transcription activation complex and facilitates the expression of target genes. Eukaryotic initiation factor 4A3 (EIF4A3) is an ATP-dependent DEAD box-family RNA helicase and acts as a core subunit of the exon junction complex (EJC) to control a series of RNA post-transcriptional processes. In this study, we uncover that EIF4A3 functions as a Wnt inhibitor by interfering with the formation of β-catenin/Tcf transcription activation complex. As Wnt stimulation increases, accumulated β-catenin displaces EIF4A3 from a transcriptional complex with Tcf/Lef, allowing the active complex to facilitate the expression of target genes. In zebrafish embryos, eif4a3 depletion inhibited the development of the dorsal organizer and pattern formation of the anterior neuroectoderm by increasing Wnt/β-catenin signaling. Conversely, overexpression of eif4a3 decreased Wnt/β-catenin signaling and inhibited the formation of the dorsal organizer before gastrulation. Our results reveal previously unreported roles of EIF4A3 in the inhibition of Wnt signaling and the regulation of embryonic development in zebrafish.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| | - Yumei Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiqin Sun
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Beibei Zhao
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Bei Deng
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lei Lu
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| |
Collapse
|
4
|
Bansal P, Madlung J, Schaaf K, Macek B, Bono F. An Interaction Network of RNA-Binding Proteins Involved in Drosophila Oogenesis. Mol Cell Proteomics 2020; 19:1485-1502. [PMID: 32554711 PMCID: PMC8143644 DOI: 10.1074/mcp.ra119.001912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/26/2020] [Indexed: 12/31/2022] Open
Abstract
During Drosophila oogenesis, the localization and translational regulation of maternal transcripts relies on RNA-binding proteins (RBPs). Many of these RBPs localize several mRNAs and may have additional direct interaction partners to regulate their functions. Using immunoprecipitation from whole Drosophila ovaries coupled to mass spectrometry, we examined protein-protein associations of 6 GFP-tagged RBPs expressed at physiological levels. Analysis of the interaction network and further validation in human cells allowed us to identify 26 previously unknown associations, besides recovering several well characterized interactions. We identified interactions between RBPs and several splicing factors, providing links between nuclear and cytoplasmic events of mRNA regulation. Additionally, components of the translational and RNA decay machineries were selectively co-purified with some baits, suggesting a mechanism for how RBPs may regulate maternal transcripts. Given the evolutionary conservation of the studied RBPs, the interaction network presented here provides the foundation for future functional and structural studies of mRNA localization across metazoans.
Collapse
Affiliation(s)
- Prashali Bansal
- Living Systems Institute, University of Exeter, Exeter, UK; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Johannes Madlung
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Kristina Schaaf
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Fulvia Bono
- Living Systems Institute, University of Exeter, Exeter, UK; Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
5
|
Abstract
The eIF4A (eukaryotic initiation factor 4A) proteins belong to the extensive DEAD-box RNA helicase family, the members of which are involved in many aspects of RNA metabolism by virtue of their RNA-binding capacity and ATPase activity. Three eIF4A proteins have been characterized in vertebrates: eIF4A1 and eIF4A2 are cytoplasmic, whereas eIF4A3 is nuclear-localized. Although highly similar, they have been shown to possess rather diverse roles in the mRNA lifecycle. Their specific and diverse functions are often regulated and dictated by interacting partner proteins. The key differences between eIF4A family members are discussed in the present review.
Collapse
|
6
|
Roeseler DA, Sachdev S, Buckley DM, Joshi T, Wu DK, Xu D, Hannink M, Waters ST. Elongation factor 1 alpha1 and genes associated with Usher syndromes are downstream targets of GBX2. PLoS One 2012; 7:e47366. [PMID: 23144817 PMCID: PMC3493575 DOI: 10.1371/journal.pone.0047366] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022] Open
Abstract
Gbx2 encodes a DNA-binding transcription factor that plays pivotal roles during embryogenesis. Gain-and loss-of-function studies in several vertebrate species have demonstrated a requirement for Gbx2 in development of the anterior hindbrain, spinal cord, inner ear, heart, and neural crest cells. However, the target genes through which GBX2 exerts its effects remain obscure. Using chromatin immunoprecipitation coupled with direct sequencing (ChIP-Seq) analysis in a human prostate cancer cell line, we identified cis-regulatory elements bound by GBX2 to provide insight into its direct downstream targets. The analysis revealed more than 286 highly significant candidate target genes, falling into various functional groups, of which 51% are expressed in the nervous system. Several of the top candidate genes include EEF1A1, ROBO1, PLXNA4, SLIT3, NRP1, and NOTCH2, as well as genes associated with the Usher syndrome, PCDH15 and USH2A, and are plausible candidates contributing to the developmental defects in Gbx2(-/-) mice. We show through gel shift analyses that sequences within the promoter or introns of EEF1A1, ROBO1, PCDH15, USH2A and NOTCH2, are directly bound by GBX2. Consistent with these in vitro results, analyses of Gbx2(-/-) embryos indicate that Gbx2 function is required for migration of Robo1-expressing neural crest cells out of the hindbrain. Furthermore, we show that GBX2 activates transcriptional activity through the promoter of EEF1A1, suggesting that GBX2 could also regulate gene expression indirectly via EEF1A. Taken together, our studies show that GBX2 plays a dynamic role in development and diseases.
Collapse
Affiliation(s)
- David A. Roeseler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Shrikesh Sachdev
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Desire M. Buckley
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Doris K. Wu
- Laboratory of Molecular Biology, NIDCD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dong Xu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Mark Hannink
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Samuel T. Waters
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
7
|
Eif4a3 is required for accurate splicing of the Xenopus laevis ryanodine receptor pre-mRNA. Dev Biol 2012; 372:103-10. [PMID: 22944195 DOI: 10.1016/j.ydbio.2012.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/17/2012] [Accepted: 08/19/2012] [Indexed: 11/22/2022]
Abstract
The Exon Junction Complex (EJC) plays a critical role in multiple posttranscriptional events, including RNA subcellular localization, nonsense-mediated decay (NMD), and translation. We previously reported that knockdown of the EJC core component Eukaryotic initiation factor 4a3 (Eif4a3) results in full-body paralysis of embryos of the frog, Xenopus laevis. Here, we explore the cellular and molecular mechanisms underlying this phenotype. We find that cultured muscle cells derived from Eif4a3 morphants do not contract, and fail to undergo calcium-dependent calcium release in response to electrical stimulation or treatment with caffeine. We show that ryr (ryanodine receptor) transcripts are incorrectly spliced in Eif4a3 morphants, and demonstrate that inhibition of Xenopus Ryr function similarly results in embryonic paralysis. These results suggest that the EJC mediates muscle cell function via regulation of pre-mRNA splicing during early vertebrate embryogenesis.
Collapse
|
8
|
Haremaki T, Sridharan J, Dvora S, Weinstein DC. Regulation of vertebrate embryogenesis by the exon junction complex core component Eif4a3. Dev Dyn 2010; 239:1977-87. [PMID: 20549732 PMCID: PMC2922852 DOI: 10.1002/dvdy.22330] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The establishment and maintenance of cellular identity are ultimately dependent upon the accurate regulation of gene expression, the process by which genetic information is used to synthesize functional gene products. The post-transcriptional, pre-translational regulation of RNA constitutes RNA processing, which plays a prominent role in the modulation of gene expression in differentiated animal cells. The multi-protein Exon Junction Complex (EJC) serves as a critical signaling hub within the network that underlies many RNA processing events. Here, we identify a requirement for the EJC during early vertebrate embryogenesis. Knockdown of the EJC component Eukaryotic initiation factor 4a3 (Eif4a3) in embryos of the frog Xenopus laevis results in full-body paralysis, with defects in sensory neuron, pigment cell, and cardiac development; similar phenotypes are seen following knockdown of other "core" EJC protein constituents. Our studies point to an essential role for the EJC in the development of neural plate border derivatives.
Collapse
Affiliation(s)
- Tomomi Haremaki
- Biology Department Queens College of the City University of New York 65-30 Kissena Boulevard Flushing, NY 11367
| | - Jyotsna Sridharan
- Biology Department Queens College of the City University of New York 65-30 Kissena Boulevard Flushing, NY 11367
- Department of Developmental and Regenerative Biology Mount Sinai School of Medicine 1 Gustave Levy Place New York, NY 10029
| | - Shira Dvora
- Biology Department Queens College of the City University of New York 65-30 Kissena Boulevard Flushing, NY 11367
| | - Daniel C. Weinstein
- Biology Department Queens College of the City University of New York 65-30 Kissena Boulevard Flushing, NY 11367
| |
Collapse
|
9
|
Melamed P. Hormonal signaling to follicle stimulating hormone beta-subunit gene expression. Mol Cell Endocrinol 2010; 314:204-12. [PMID: 19481581 DOI: 10.1016/j.mce.2009.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 11/27/2022]
Abstract
Expression of the hormone-specific beta-subunit of follicle stimulating hormone (FSHbeta) is regulated primarily by gonadotropin releasing hormone (GnRH) and activin, with additional feedback by various steroids. While the nature of this hormonal regulation appears conserved, the molecular mechanisms mediating these effects appear less so. This is apparent from the diverse cis-elements required for hormonal stimulation in different species, distinct transcription factors that seem to mediate the effects, as well as the lack of conservation of several reportedly functional cis-elements across species. Recent additional information on the molecular mechanisms through which these regulatory hormones exert their effects, supports the possibility of species-specific mechanisms of regulation, while some redundancy may exist in signaling by the activated transcription factors which allows preservation of the hormonal regulation in these different promoter contexts.
Collapse
Affiliation(s)
- Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
10
|
Rozovsky N, Butterworth AC, Moore MJ. Interactions between eIF4AI and its accessory factors eIF4B and eIF4H. RNA (NEW YORK, N.Y.) 2008; 14:2136-2148. [PMID: 18719248 PMCID: PMC2553726 DOI: 10.1261/rna.1049608] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 06/12/2008] [Indexed: 05/26/2023]
Abstract
Ribonucleoprotein complexes (RNP) remodeling by DEAD-box proteins is required at all stages of cellular RNA metabolism. These proteins are composed of a core helicase domain lacking sequence specificity; flanking protein sequences or accessory proteins target and affect the core's activity. Here we examined the interaction of eukaryotic initiation factor 4AI (eIF4AI), the founding member of the DEAD-box family, with two accessory factors, eIF4B and eIF4H. We find that eIF4AI forms a stable complex with RNA in the presence of AMPPNP and that eIF4B or eIF4H can add to this complex, also dependent on AMPPNP. For both accessory factors, the minimal stable complex with eIF4AI appears to have 1:1 protein stoichiometry. However, because eIF4B and eIF4H share a common binding site on eIF4AI, their interactions are mutually exclusive. The eIF4AI:eIF4B and eIF4AI:eIF4H complexes have the same RNase resistant footprint as does eIF4AI alone (9-10 nucleotides [nt]). In contrast, in a selective RNA binding experiment, eIF4AI in complex with either eIF4B or eIF4H preferentially bound RNAs much longer than those bound by eIF4AI alone (30-33 versus 17 nt, respectively). The differences between the RNase resistant footprints and the preferred RNA binding site sizes are discussed, and a model is proposed in which eIF4B and eIF4H contribute to RNA affinity of the complex through weak interactions not detectable in structural assays. Our findings mirror and expand on recent biochemical and structural data regarding the interaction of eIF4AI's close relative eIF4AIII with its accessory protein MLN51.
Collapse
Affiliation(s)
- Nadja Rozovsky
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02453, USA
| | | | | |
Collapse
|
11
|
Feng J, Lawson MA, Melamed P. A proteomic comparison of immature and mature mouse gonadotrophs reveals novel differentially expressed nuclear proteins that regulate gonadotropin gene transcription and RNA splicing. Biol Reprod 2008; 79:546-61. [PMID: 18480465 PMCID: PMC2574604 DOI: 10.1095/biolreprod.108.068106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 02/22/2008] [Accepted: 04/23/2008] [Indexed: 12/27/2022] Open
Abstract
The alphaT3-1 and LbetaT2 gonadotroph cell lines contain all the known factors required for expression of gonadotropin genes, yet only the LbetaT2 cells express the beta subunits. We hypothesized that comparison of their nuclear proteomes would reveal novel proteins and/or modifications that regulate expression of these genes. We identified nine proteins with different expression profiles in the two cell lines, of which several were chosen for further functional studies. Of those found at higher levels in alphaT3-1 nuclei, 1110005A23RIK was found associated with the Fshb gene promoter and repressed its expression. Transgelin 3 overexpression reduced transcript levels of Fshb, and its knockdown elevated Lhb and Cga transcript levels, indicating an ongoing repressive effect on these more highly expressed genes, possibly through altering levels of phosphorylated mitogen-activated protein kinase. Heterogeneous nuclear ribonucleoprotein A2/B1 repressed splicing of the Fshb primary transcript, which it binds in the first intron. Proteins at higher levels in LbetaT2 nuclei included prohibitin, the overexpression of which reduced promoter activity of all three gonadotropin subunits, and appeared to mediate the differential effect of GnRH on proliferation of the two cell lines; its knockdown also altered cell morphology. Two other splicing factors were also found at higher levels in LbetaT2 nuclei: the knockdown of PRPF19 or EIF4A3 decreased splicing of Lhb, or of both beta subunit transcripts, respectively. The levels of Eif4a3 mRNA were increased by activin, and both factors increased Fshb splicing. This study has revealed a number of novel factors that alter gonadotropin expression and gonadotroph function, and likely mediate or moderate effects of the regulatory hormones.
Collapse
Affiliation(s)
- Jiajun Feng
- Department of Biological Sciences, National University of Singapore, Singapore 117542
| | - Mark A. Lawson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | - Philippa Melamed
- Department of Biological Sciences, National University of Singapore, Singapore 117542
| |
Collapse
|
12
|
Hernández G, Vazquez-Pianzola P. Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mech Dev 2006; 122:865-76. [PMID: 15922571 DOI: 10.1016/j.mod.2005.04.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 04/06/2005] [Accepted: 04/07/2005] [Indexed: 02/04/2023]
Abstract
Protein synthesis in eukaryotic cells is fundamental for gene expression. This process involves the binding of an mRNA molecule to the small ribosomal subunit in a group of reactions catalyzed by eukaryotic translation initiation factors (eIF) eIF4. To date, the role of each of the four eIF4, i.e. eIF4E, eIF4G, eIF4A and eIF4B, is well established. However, with the advent of genome-wide sequencing projects of various organisms, families of genes for each translation initiation factor have been identified. Intriguingly, recent studies have now established that certain eIF4 proteins can promote or inhibit translation of specific mRNAs, and also that some of them are active in processes other than translation. In addition, there is evidence of tissue- and developmental-stage-specific expression for some of these proteins. These new findings point to an additional level of complexity in the translation initiation process. In this review, we analyze the latest advances concerning the functionality of members of the eIF4 families in eukaryotic organisms and discuss the implications of this in the context of our current understanding of regulation of the translation initiation process.
Collapse
Affiliation(s)
- Greco Hernández
- Max-Planck-Institut für Biophysikalische Chemie, Abt. Molekulare Biologie, Am Fassberg 11, 37077 Göttingen, Germany.
| | | |
Collapse
|
13
|
Shibuya T, Tange TØ, Stroupe ME, Moore MJ. Mutational analysis of human eIF4AIII identifies regions necessary for exon junction complex formation and nonsense-mediated mRNA decay. RNA (NEW YORK, N.Y.) 2006; 12:360-74. [PMID: 16495234 PMCID: PMC1383576 DOI: 10.1261/rna.2190706] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The exon junction complex (EJC) is deposited on mRNAs by the process of pre-mRNA splicing and is a key effector of downstream mRNA metabolism. We previously demonstrated that human eIF4AIII, which is essential for nonsense-mediated mRNA decay (NMD), constitutes at least part of the RNA-binding platform anchoring other EJC components to the spliced mRNA. To determine the regions of eIF4AIII that are functionally important for EJC formation, for binding to other EJC components, and for NMD, we now report results of an extensive mutational analysis of human eIF4AIII. Using GFP-, GST- or Flag-fusions of eIF4AIII versions containing site-specific mutations or truncations, we analyzed subcellular localizations, protein-protein interactions, and EJC formation in vivo and in vitro. We also tested whether mutant proteins could rescue NMD inhibition resulting from RNAi depletion of endogenous eIF4AIII. Motifs Ia and VI, which are conserved among the eIF4A family of RNA helicases (DEAD-box proteins), are crucial for EJC formation and NMD, as is one eIF4AIII-specific region. An additional eIF4AIII-specific motif forms part of the binding site for MLN51, another EJC core component. Mutations in the canonical Walker A and B motifs that eliminate RNA-dependent ATP hydrolysis by eIF4AIII in vitro are of no detectable consequence for EJC formation and NMD activation. Implications of these findings are discussed in the context of other recent results and a new structural model for human eIF4AIII based on the known crystal structure of Saccharomyces cerevisiae eIF4AI.
Collapse
Affiliation(s)
- Toshiharu Shibuya
- Howard Hughes Medical Institute, Department of Biochemistry, MS009, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
14
|
Vonica A, Brivanlou AH. An obligatory caravanserai stop on the silk road to neural induction: Inhibition of BMP/GDF signaling. Semin Cell Dev Biol 2006; 17:117-32. [PMID: 16516504 DOI: 10.1016/j.semcdb.2005.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Work in Xenopus laevis produced the first molecular explanation for neural specification, the default model, where inactivation of the BMP pathway in ectodermal cells changes fates from epidermal to neural. This review covers the present status of our understanding of neural specification, with emphasis on Xenopus, but including relevant facts in other model systems. While recent experiments have increased the complexity of the molecular picture, they have also provided additional support for the default model and the central position of the BMP pathway. We conclude that synergy between accumulated knowledge and technical progress will maintain Xenopus at the forefront of research in neural development.
Collapse
Affiliation(s)
- Alin Vonica
- Laboratory of Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
15
|
Morley SJ, Coldwell MJ, Clemens MJ. Initiation factor modifications in the preapoptotic phase. Cell Death Differ 2005; 12:571-84. [PMID: 15900314 DOI: 10.1038/sj.cdd.4401591] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recent studies have identified several mechanistic links between the regulation of translation and the process of apoptosis. Rates of protein synthesis are controlled by a wide range of agents that induce cell death, and in many instances, the changes that occur to the translational machinery precede overt apoptosis and loss of cell viability. The two principal ways in which factors required for translational activity are modified prior to and during apoptosis involve (i) changes in protein phosphorylation and (ii) specific proteolytic cleavages. In this review, we summarise the principal targets for such regulation, with particular emphasis on polypeptide chain initiation factors eIF2 and eIF4G and the eIF4E-binding proteins. We indicate how the functions of these factors and of other proteins with which they interact may be altered as a result of activation of apoptosis and we discuss the potential significance of such changes for translational control and cell growth regulation.
Collapse
Affiliation(s)
- S J Morley
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | | | | |
Collapse
|
16
|
Shibuya T, Tange TØ, Sonenberg N, Moore MJ. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat Struct Mol Biol 2004; 11:346-51. [PMID: 15034551 DOI: 10.1038/nsmb750] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 03/03/2004] [Indexed: 11/09/2022]
Abstract
The exon junction complex (EJC), a set of proteins deposited on mRNAs as a consequence of pre-mRNA splicing, is a key effector of downstream mRNA metabolism. We have identified eIF4AIII, a member of the eukaryotic translation initiation factor 4A family of RNA helicases (also known as DExH/D box proteins), as a novel EJC core component. Crosslinking and antibody inhibition studies suggest that eIF4AIII constitutes at least part of the platform anchoring other EJC components to spliced mRNAs. A nucleocytoplasmic shuttling protein, eIF4AIII associates in vitro and in vivo with two other EJC core factors, Y14 and Magoh. In mammalian cells, eIF4AIII is essential for nonsense-mediated mRNA decay (NMD). Finally, a model is proposed by which eIF4AIII represents a new functional class of DExH/D box proteins that act as RNA clamps or 'place holders' for the sequence-independent attachment of additional factors to RNAs.
Collapse
Affiliation(s)
- Toshiharu Shibuya
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
17
|
Palacios IM, Gatfield D, St Johnston D, Izaurralde E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 2004; 427:753-7. [PMID: 14973490 DOI: 10.1038/nature02351] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 01/19/2004] [Indexed: 11/09/2022]
Abstract
The specification of both the germ line and abdomen in Drosophila depends on the localization of oskar messenger RNA to the posterior of the oocyte. This localization requires several trans-acting factors, including Barentsz and the Mago-Y14 heterodimer, which assemble with oskar mRNA into ribonucleoprotein particles (RNPs) and localize with it at the posterior pole. Although Barentsz localization in the germ line depends on Mago-Y14, no direct interaction between these proteins has been detected. Here, we demonstrate that the translation initiation factor eIF4AIII interacts with Barentsz and is a component of the oskar messenger RNP localization complex. Moreover, eIF4AIII interacts with Mago-Y14 and thus provides a molecular link between Barentsz and the heterodimer. The mammalian Mago (also known as Magoh)-Y14 heterodimer is a component of the exon junction complex. The exon junction complex is deposited on spliced mRNAs and functions in nonsense-mediated mRNA decay (NMD), a surveillance mechanism that degrades mRNAs with premature translation-termination codons. We show that both Barentsz and eIF4AIII are essential for NMD in human cells. Thus, we have identified eIF4AIII and Barentsz as components of a conserved protein complex that is essential for mRNA localization in flies and NMD in mammals.
Collapse
Affiliation(s)
- Isabel M Palacios
- Wellcome Trust/Cancer Research UK Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
18
|
Wahl M, Shukunami C, Heinzmann U, Hamajima K, Hiraki Y, Imai K. Transcriptome analysis of early chondrogenesis in ATDC5 cells induced by bone morphogenetic protein 4. Genomics 2004; 83:45-58. [PMID: 14667808 DOI: 10.1016/s0888-7543(03)00201-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We performed serial analysis of gene expression (SAGE) profiling in mouse chondrogenic ATDC5 cells before and 6 h after the onset of chondrogenesis induced by BMP4. A total of 43,656 SAGE tags (21,875 and 21,781 tags from the uninduced and induced libraries, respectively) were analyzed. Our analysis predicted that 139 transcripts were differentially represented in the two libraries (p < 0.05), including 72 downregulated and 67 upregulated transcripts. Ninety-five of them matched single UniGene entries (77 known genes and 18 ESTs), while 12 tags corresponded to potentially novel genes. Surprisingly, many of these known genes have never been implicated in chondrogenic differentiation. Interestingly, we found that a significant fraction of these genes formed physical linkage groups. This suggests that the transcriptional control by BMP signaling is in part targeted to genes in certain chromosomal domains. Together, our results provide novel insights into molecular events regulated by BMP signaling in chondrogenesis.
Collapse
Affiliation(s)
- Matthias Wahl
- Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Hama J, Suri C, Haremaki T, Weinstein DC. The molecular basis of Src kinase specificity during vertebrate mesoderm formation. J Biol Chem 2002; 277:19806-10. [PMID: 11912191 DOI: 10.1074/jbc.m110637200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Src family of non-receptor tyrosine kinases play a critical role in mesoderm formation in the frog, Xenopus laevis, acting as required mediators downstream of the fibroblast growth factor receptor. At least four members of this gene family, Src, Fyn, Yes, and Laloo, are expressed during early embryonic development. Ectopic expression of Laloo and Fyn, but not Src, induce mesoderm in ectodermal explants, indicating that these factors are non-redundant during early vertebrate development. Here we investigate the basis for the differential activity of the Src and Laloo kinases during mesoderm formation. We demonstrate that although both Src and Laloo physically interact with the substrate protein SNT-1/FRS2alpha only Laloo phosphorylates SNT-1, an event previously shown to be required for the activity of the latter and for mesoderm induction in vivo. We show that Src is enzymatically capable of stimulating mesoderm formation, as an activated Src construct both phosphorylates SNT-1 and induces mesoderm in explant cultures. However, a chimeric Laloo construct containing a Src C-terminal tail is inactive, suggesting that the early embryo contains a specific Laloo-activating, or Src-inactivating, factor. Finally, through further chimeric analysis, we provide evidence to suggest that differences in Laloo and Src activity are also mediated by the SH2, SH3, and kinase domains of these molecules.
Collapse
Affiliation(s)
- Joanne Hama
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
20
|
Morley SJ. The regulation of eIF4F during cell growth and cell death. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:1-37. [PMID: 11575157 DOI: 10.1007/978-3-662-09889-9_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S J Morley
- Biochemistry Laboratory, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
21
|
Sacco-Bubulya P, Spector DL. Disassembly of interchromatin granule clusters alters the coordination of transcription and pre-mRNA splicing. J Cell Biol 2002; 156:425-36. [PMID: 11827980 PMCID: PMC2173333 DOI: 10.1083/jcb.200107017] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the involvement of interchromatin granule clusters (IGCs) in transcription and pre-mRNA splicing in mammalian cell nuclei, the serine-arginine (SR) protein kinase cdc2-like kinase (Clk)/STY was used as a tool to manipulate IGC integrity in vivo. Both immunofluorescence and transmission electron microscopy analyses of cells overexpressing Clk/STY indicate that IGC components are completely redistributed to a diffuse nuclear localization, leaving no residual structure. Conversely, overexpression of a catalytically inactive mutant, Clk/STY(K190R), causes retention of hypophosphorylated SR proteins in nuclear speckles. Our data suggest that the protein-protein interactions responsible for the clustering of interchromatin granules are disrupted when SR proteins are hyperphosphorylated and stabilized when SR proteins are hypophosphorylated. Interestingly, cells without intact IGCs continue to synthesize nascent transcripts. However, both the accumulation of splicing factors at sites of pre-mRNA synthesis as well as pre-mRNA splicing are dramatically reduced, demonstrating that IGC disassembly perturbs coordination between transcription and pre-mRNA splicing in mammalian cell nuclei.
Collapse
|
22
|
Kato A, Fujita S, Komeda Y. Identification and characterization of two genes encoding the eukaryotic initiation factor 4A in rice. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:295-303. [PMID: 11913775 DOI: 10.3109/10425170109084453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A cDNA encoding eukaryotic translation initiation factor 4A (eIF4A) was isolated from a cDNA library of rice (Oryza sativa L.). Based on this DNA sequence, a 414-amino acid protein exhibiting 67, 64 and 59% homology to the mouse, Schizosaccharomyces pombe and Saccharomyces cerevisiae eIF4A, respectively, was predicted. The deduced amino acid sequence contains the characteristic motifs shared by the DEAD box supergene family. Another cDNA of rice eIF4A was reported previously. Comparison of the coding sequences of the two rice eIF4As showed 85% homology in the nucleotide sequence and 90% homology in the amino acid sequence. The genomic clones corresponding to the two rice eIF4A cDNAs were also isolated from a genomic library of rice (Oryza sativa L.). It was found that the two genes have common patterns of exon-intron boundaries. Their coding regions are split into four exons, and there is an additional exon in the 5'-non coding region.
Collapse
Affiliation(s)
- A Kato
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan.
| | | | | |
Collapse
|
23
|
Muñoz-Sanjuán I, H-Brivanlou A. Early posterior/ventral fate specification in the vertebrate embryo. Dev Biol 2001; 237:1-17. [PMID: 11518501 DOI: 10.1006/dbio.2001.0350] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the central questions in developmental biology is that of how one cell can give rise to all specialized cell types and organs in the organism. Within the embryo, all tissues are composed of cells derived from one or more of the three germ layers, the ectoderm, the mesoderm, and the endoderm. Understanding the molecular events that underlie both the specification and patterning of the germ layers has been a long-standing interest for developmental biologists. Recent years have seen a rapid advancement in the elucidation of the molecular players implicated in patterning the vertebrate embryo. In this review, we will focus solely on the ventral and posterior fate acquisition in the ventral-lateral domains of the pregastrula embryo. We will address the embryonic origins of various tissues and will present embryological and experimental evidence to illustrate how "classically defined" ventral and posterior structures develop in all three germ layers. We will discuss the status of our current knowledge by focusing on the African frog Xenopus laevis, although we will also gather evidence from other vertebrates, where available. In particular, genetic studies in the zebrafish and mouse have been very informative in addressing the requirement for individual genes in these processes. The amphibian system has enjoyed great interest since the early days of experimental embryology, and constitutes the best understood system in terms of early patterning signals and axis specification. We want to draw interest to the embryological origins of cells that will develop into what we have collectively termed "posterior" and "ventral" cells/tissues, and we will address the involvement of the major signaling pathways implicated in posterior/ventral fate specification. Particular emphasis is given as to how these signaling pathways are integrated during early development for the specification of posterior and ventral fates.
Collapse
Affiliation(s)
- I Muñoz-Sanjuán
- Laboratory of Vertebrate Embryology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
24
|
Altmann CR, Bell E, Sczyrba A, Pun J, Bekiranov S, Gaasterland T, Brivanlou AH. Microarray-based analysis of early development in Xenopus laevis. Dev Biol 2001; 236:64-75. [PMID: 11456444 DOI: 10.1006/dbio.2001.0298] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In order to examine transcriptional regulation globally, during early vertebrate embryonic development, we have prepared Xenopus laevis cDNA microarrays. These prototype embryonic arrays contain 864 sequenced gastrula cDNA. In order to analyze and store array data, a microarray analysis pipeline was developed and integrated with sequence analysis and annotation tools. In three independent experimental settings, we demonstrate the power of these global approaches and provide optimized protocols for their application to molecular embryology. In the first set, by comparing maternal versus zygotic transcription, we document groups of genes that are temporally regulated. This analytical approach resulted in the discovery of novel temporally regulated genes. In the second, we examine changes in gene expression spatially during development by comparing dorsal and ventral mesoderm dissected from early gastrula embryos. We have discovered novel genes with spatial enrichment from these experiments. Finally, we use the prototype microarray to examine transcriptional responses from embryonic explants treated with activin. We selected genes (two of which are novel) regulated by activin for further characterization. All results obtained by the arrays were independently tested by RT-PCR or by in situ hybridization to provide a direct assessment of the accuracy and reproducibility of these approaches in the context of molecular embryology.
Collapse
Affiliation(s)
- C R Altmann
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 2000; 68:913-63. [PMID: 10872469 DOI: 10.1146/annurev.biochem.68.1.913] [Citation(s) in RCA: 1645] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic translation initiation factor 4F (eIF4F) is a protein complex that mediates recruitment of ribosomes to mRNA. This event is the rate-limiting step for translation under most circumstances and a primary target for translational control. Functions of the constituent proteins of eIF4F include recognition of the mRNA 5' cap structure (eIF4E), delivery of an RNA helicase to the 5' region (eIF4A), bridging of the mRNA and the ribosome (eIF4G), and circularization of the mRNA via interaction with poly(A)-binding protein (eIF4G). eIF4 activity is regulated by transcription, phosphorylation, inhibitory proteins, and proteolytic cleavage. Extracellular stimuli evoke changes in phosphorylation that influence eIF4F activity, especially through the phosphoinositide 3-kinase (PI3K) and Ras signaling pathways. Viral infection and cellular stresses also affect eIF4F function. The recent determination of the structure of eIF4E at atomic resolution has provided insight about how translation is initiated and regulated. Evidence suggests that eIF4F is also implicated in malignancy and apoptosis.
Collapse
Affiliation(s)
- A C Gingras
- Department of Biochemistry McGill University, Montréal, Québec, Canada.
| | | | | |
Collapse
|
26
|
|
27
|
Abstract
The formation of the vertebrate nervous system is initiated at gastrula stages of development, when signals from a specialized cluster of cells (the organizer) trigger neural development in the ectoderm. This process, termed neural induction, was first described in 1924 and stemmed from experiments on amphibia (Spemann & Mangold 1924). In recent years, the molecular mechanisms underlying neural induction in the amphibian have been elucidated. Surprisingly, neuralizing agents secreted by the organizer do not act via receptor-mediated signaling events; rather, these factors antagonize local epidermal inducers within the cells of the dorsal ectoderm and function to uncover the latent neural fate of these cells. Many of the recent advances in our understanding of vertebrate neural induction come from studies on the frog, Xenopus laevis. It is now clear that a blockade of signaling of the bone morphogenetic proteins (BMPs) during gastrula stages is sufficient to initiate neuralization of the ectoderm in this species. Thus this review first details our current understanding of neural induction, using the amphibian as a model. We then use data emerging from other systems to examine the extent to which the Xenopus studies can be applied to other vertebrate species. The initiation of the neurectoderm-specific gene expression program and subsequent steps in patterning and neuronal development are only touched on here. We focus primarily on the initial establishment of the neural fate in the vertebrate gastrula ectoderm.
Collapse
Affiliation(s)
- D C Weinstein
- Department of Molecular Vertebrate Embryology, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
28
|
Li Q, Imataka H, Morino S, Rogers GW, Richter-Cook NJ, Merrick WC, Sonenberg N. Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol Cell Biol 1999; 19:7336-46. [PMID: 10523622 PMCID: PMC84727 DOI: 10.1128/mcb.19.11.7336] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/1999] [Accepted: 08/06/1999] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic initiation factor 4A (eIF4A) is an RNA-dependent ATPase and ATP-dependent RNA helicase that is thought to melt the 5' proximal secondary structure of eukaryotic mRNAs to facilitate attachment of the 40S ribosomal subunit. eIF4A functions in a complex termed eIF4F with two other initiation factors (eIF4E and eIF4G). Two isoforms of eIF4A, eIF4AI and eIF4AII, which are encoded by two different genes, are functionally indistinguishable. A third member of the eIF4A family, eIF4AIII, whose human homolog exhibits 65% amino acid identity to human eIF4AI, has also been cloned from Xenopus and tobacco, but its function in translation has not been characterized. In this study, human eIF4AIII was characterized biochemically. While eIF4AIII, like eIF4AI, exhibits RNA-dependent ATPase activity and ATP-dependent RNA helicase activity, it fails to substitute for eIF4AI in an in vitro-reconstituted 40S ribosome binding assay. Instead, eIF4AIII inhibits translation in a reticulocyte lysate system. In addition, whereas eIF4AI binds independently to the middle and carboxy-terminal fragments of eIF4G, eIF4AIII binds to the middle fragment only. These functional differences between eIF4AI and eIF4AIII suggest that eIF4AIII might play an inhibitory role in translation under physiological conditions.
Collapse
Affiliation(s)
- Q Li
- Department of Biochemistry, McGill Cancer Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | |
Collapse
|