1
|
Simulations of sea urchin early development delineate the role of oriented cell division in the morula-to-blastula transition. Mech Dev 2020; 162:103606. [PMID: 32165284 DOI: 10.1016/j.mod.2020.103606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 11/24/2022]
Abstract
The sea urchin morula to blastula transition has long been thought to require oriented cell divisions and blastomere adherence to the enveloping hyaline layer. In a computer simulation model, cell divisions constrained by a surface plane division rule are adequate to effect morphological transition. The hyaline membrane acts as an enhancer but is not essential. The model is consistent with the orientation of micromere divisions and the open blastulae of direct developing species. The surface plane division rule precedes overt epithelization of surface cells and acts to organize the developing epithelium. It is a universal feature of early metazoan development and simulations of non-echinoid cleavage patterns support its role throughout Metazoa. The surface plane division rule requires only local cues and cells need not reference global positional information or embryonic axes.
Collapse
|
2
|
Brun-Usan M, Marín-Riera M, Grande C, Truchado-Garcia M, Salazar-Ciudad I. A set of simple cell processes is sufficient to model spiral cleavage. Development 2016; 144:54-62. [PMID: 27888194 DOI: 10.1242/dev.140285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/14/2016] [Indexed: 11/20/2022]
Abstract
During cleavage, different cellular processes cause the zygote to become partitioned into a set of cells with a specific spatial arrangement. These processes include the orientation of cell division according to: an animal-vegetal gradient; the main axis (Hertwig's rule) of the cell; and the contact areas between cells or the perpendicularity between consecutive cell divisions (Sachs' rule). Cell adhesion and cortical rotation have also been proposed to be involved in spiral cleavage. We use a computational model of cell and tissue biomechanics to account for the different existing hypotheses about how the specific spatial arrangement of cells in spiral cleavage arises during development. Cell polarization by an animal-vegetal gradient, a bias to perpendicularity between consecutive cell divisions (Sachs' rule), cortical rotation and cell adhesion, when combined, reproduce the spiral cleavage, whereas other combinations of processes cannot. Specifically, cortical rotation is necessary at the 8-cell stage to direct all micromeres in the same direction. By varying the relative strength of these processes, we reproduce the spatial arrangement of cells in the blastulae of seven different invertebrate species.
Collapse
Affiliation(s)
- Miguel Brun-Usan
- Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Evo-devo Helsinki community, Centre of Excellence in Computational and Experimental Developmental Biology, Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki FIN-00014, Finland
| | - Miquel Marín-Riera
- Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Evo-devo Helsinki community, Centre of Excellence in Computational and Experimental Developmental Biology, Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki FIN-00014, Finland
| | - Cristina Grande
- Departamento de Biología Molecular and Centro de Biología Molecular, 'Severo Ochoa' (CSIC, Universidad Autónoma de Madrid), Madrid, Spain.,Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Marta Truchado-Garcia
- Departamento de Biología Molecular and Centro de Biología Molecular, 'Severo Ochoa' (CSIC, Universidad Autónoma de Madrid), Madrid, Spain.,Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain .,Evo-devo Helsinki community, Centre of Excellence in Computational and Experimental Developmental Biology, Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki FIN-00014, Finland
| |
Collapse
|
3
|
Abstract
Epithelia are polarized layers of adherent cells that are the building blocks for organ and appendage structures throughout animals. To preserve tissue architecture and barrier function during both homeostasis and rapid growth, individual epithelial cells divide in a highly constrained manner. Building on decades of research focused on single cells, recent work is probing the mechanisms by which the dynamic process of mitosis is reconciled with the global maintenance of epithelial order during development. These studies reveal how symmetrically dividing cells both exploit and conform to tissue organization to orient their mitotic spindles during division and establish new adhesive junctions during cytokinesis.
Collapse
Affiliation(s)
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO 64110 Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160
| |
Collapse
|
4
|
Minc N, Burgess D, Chang F. Influence of cell geometry on division-plane positioning. Cell 2011; 144:414-26. [PMID: 21295701 PMCID: PMC3048034 DOI: 10.1016/j.cell.2011.01.016] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 11/09/2010] [Accepted: 01/10/2011] [Indexed: 12/31/2022]
Abstract
The spatial organization of cells depends on their ability to sense their own shape and size. Here, we investigate how cell shape affects the positioning of the nucleus, spindle and subsequent cell division plane. To manipulate geometrical parameters in a systematic manner, we place individual sea urchin eggs into microfabricated chambers of defined geometry (e.g., triangles, rectangles, and ellipses). In each shape, the nucleus is positioned at the center of mass and is stretched by microtubules along an axis maintained through mitosis and predictive of the future division plane. We develop a simple computational model that posits that microtubules sense cell geometry by probing cellular space and orient the nucleus by exerting pulling forces that scale to microtubule length. This model quantitatively predicts division-axis orientation probability for a wide variety of cell shapes, even in multicellular contexts, and estimates scaling exponents for length-dependent microtubule forces.
Collapse
Affiliation(s)
- Nicolas Minc
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
5
|
Laumann M, Bergmann P, Norton RA, Heethoff M. First cleavages, preblastula and blastula in the parthenogenetic mite Archegozetes longisetosus (Acari, Oribatida) indicate holoblastic rather than superficial cleavage. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:276-286. [PMID: 20153841 DOI: 10.1016/j.asd.2010.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 02/02/2010] [Accepted: 02/05/2010] [Indexed: 05/28/2023]
Abstract
The mode of cleavage in the Acari is generalized as superficial or intralecithal, with a preceding phase of total (holoblastic) cleavage, but the knowledge is fragmentary and conclusions have been inconsistent, even when relating to the same species. Since no data about early embryology is available for the speciose group Oribatida, we studied Archegozetes longisetosus using transmission electron microscopy. We focused on early cleavages and the formation of the blastula, as these are the important and controversial points in early embryology of the Acari. We expected, as postulated for other acarine eggs, the early cleavages to be holoblastic and followed by a superficial preblastoderm stage. The early cleavages of A. longisetosus are holoblastic and blastomeres give rise to yolk-free micromeres and macromeres containing all the yolk. In contrast to expectations, the micromeres do not form a superficial preblastoderm layer. They are scattered along the embryonic surface and form an external, monocellular layer that covers the whole surface of the embryo. Since each of the existing TEM studies of mites shows this same pattern, and since this specialized form of total cleavage seems to be unique in Chelicerata, it may be the general mode of cleavage in Acari. However, the question will require much more investigation, especially since most data relate to the Actinotrichida and very few are currently available for species in the other major group, the Anactinotrichida.
Collapse
Affiliation(s)
- Michael Laumann
- University of Tübingen, Department of Evolutionary Biology of Invertebrates, Auf der Morgenstelle 28E, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
6
|
Wang SW, Hertzler PL, Clark WH. Mesendoderm cells induce oriented cell division and invagination in the marine shrimp Sicyonia ingentis. Dev Biol 2008; 320:175-84. [PMID: 18589411 DOI: 10.1016/j.ydbio.2008.05.525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 04/20/2008] [Accepted: 05/02/2008] [Indexed: 11/29/2022]
Abstract
The mesendoderm (ME) cells are the two most vegetal blastomeres in the early developing embryo of the marine shrimp Sicyonia ingentis. These two cells enter mitotic arrest for three cycles after the 5th cell cycle (32-cell stage) and ingress into the blastocoel at the 6th cycle (62-cell stage). Circumjacent to the ingressing ME cells are nine presumptive naupliar mesoderm (PNM) cells that exhibit a predictable pattern of spindle orientation into the blastopore, followed by invagination. We examined the role of ME cells and PNM cells in gastrulation using blastomere recombinations and confocal microscopy. Removal of ME progenitors prevented gastrulation. Removal of any other blastomeres, including PNM progenitors, did not interfere with normal invagination. Altered spindle orientations occurred in blastomeres that had direct contact with one of the ME cells; one spindle pole localized to the cytoplasmic region closest to ME cell contact. In recombined embryos, this resulted in an extension of the region of ME-embryo contact. Our results show that ME cells direct the spindle orientations of their adjacent cells and are consistent with a mechanism of oriented cell division being a responsible force for archenteron elongation.
Collapse
Affiliation(s)
- Steven W Wang
- Bodega Marine Laboratory, University of California, Davis, P.O. Box 247, Bodega Bay, CA 94923, USA.
| | | | | |
Collapse
|
7
|
Théry M, Racine V, Pépin A, Piel M, Chen Y, Sibarita JB, Bornens M. The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 2005; 7:947-53. [PMID: 16179950 DOI: 10.1038/ncb1307] [Citation(s) in RCA: 595] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 08/30/2005] [Indexed: 11/09/2022]
Abstract
The cell division axis determines the future positions of daughter cells and is therefore critical for cell fate. The positioning of the division axis has been mostly studied in systems such as embryos or yeasts, in which cell shape is well defined. In these cases, cell shape anisotropy and cell polarity affect spindle orientation. It remains unclear whether cell geometry or cortical cues are determinants for spindle orientation in mammalian cultured cells. The cell environment is composed of an extracellular matrix (ECM), which is connected to the intracellular actin cytoskeleton via transmembrane proteins. We used micro-contact printing to control the spatial distribution of the ECM on the substrate and demonstrated that it has a role in determining the orientation of the division axis of HeLa cells. On the basis of our analysis of the average distributions of actin-binding proteins in interphase and mitosis, we propose that the ECM controls the location of actin dynamics at the membrane, and thus the segregation of cortical components in interphase. This segregation is further maintained on the cortex of mitotic cells and used for spindle orientation.
Collapse
Affiliation(s)
- Manuel Théry
- Biologie du cycle cellulaire et de la motilité, UMR144, CNRS, Institut Curie, 26 rue d'Ulm 75248 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The one-cell Caenorhabditis elegans embryo divides asymmetrically into a larger and smaller blastomere, each with a different fate. How does such asymmetry arise? The sperm-supplied centrosome establishes an axis of polarity in the embryo that is transduced into the establishment of anterior and posterior cortical domains. These cortical domains define the polarity of the embryo, acting upstream of the PAR proteins. The PAR proteins, in turn, determine the subsequent segregation of fate determinants and the plane of cell division. We address how cortical asymmetry could be established, relying on data from C. elegans and other polarized cells, as well as from applicable models. We discuss how cortical polarity influences spindle position to accomplish an asymmetric division, presenting the current models of spindle orientation and anaphase spindle displacement. We focus on asymmetric cell division as a function of the actin and microtubule cytoskeletons, emphasizing the cell biology of polarity.
Collapse
Affiliation(s)
- Carrie R Cowan
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | | |
Collapse
|
9
|
Abstract
During intrinsically asymmetric division, the spindle is oriented onto a polarized axis specified by a group of conserved PAR proteins. Extrinsic geometric asymmetry generated by cell shape also affects spindle orientation in some systems, but how intrinsic and extrinsic mechanisms coexist without interfering with each other is unknown. In some asymmetrically dividing cells of the wild-type Caenorhabditis elegans embryo, nuclear rotation directed toward the anterior cortex orients the forming spindle. We find that in such cells, a PAR-dependent mechanism dominates and causes rotation onto the polarized axis, regardless of cell shape. However, when geometric asymmetry is removed, free nuclear rotation in the center of the cell is observed, indicating that the anterior-directed nature of rotation in unaltered embryos is an effect of cell shape. This free rotation is inconsistent with the prevailing model for nuclear rotation, the specialized cortical site model. In contrast, in par-3 mutant embryos, a geometry-dependent mechanism becomes active and causes directed nuclear rotation. These results lead to the model that in wild-type embryos both PAR-3 and PAR-2 are essential for nuclear rotation in asymmetrically dividing cells, but that PAR-3 inhibits geometry-dependent rotation in nonpolarized cells, thus preventing cell shape from interfering with spindle orientation.
Collapse
Affiliation(s)
- Meng-Fu Bryan Tsou
- Section of Molecular and Cellular Biology, One Shields Ave., University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
10
|
Song B, Zhao M, Forrester JV, McCaig CD. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci U S A 2002; 99:13577-82. [PMID: 12368473 PMCID: PMC129716 DOI: 10.1073/pnas.202235299] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2002] [Indexed: 12/27/2022] Open
Abstract
Controlling cell division is fundamental. One environmental cue that exerts profound control over both the orientation and frequency of cell division in vivo is a naturally occurring, wound-induced electric field (EF). Wounds in rat corneas generate endogenous EFs in the plane of the epithelial sheet because the transcorneal potential difference (TCPD; +40 mV internally positive) collapses at the wound edge, but is maintained at normal levels at 0.5 mm back from the wound. We manipulated the endogenous EF this creates by using drugs with differing actions. The wound-induced EF controlled the orientation of cell division; most epithelial cells divided with a cleavage plane parallel to the wound edge and perpendicular to the EF vector. Increasing or decreasing the EF pharmacologically, respectively increased or decreased the extent of oriented cell division. In addition, cells closest to the wound edge, where the EF was highest, were oriented most strongly by the EF. Remarkably, an endogenous EF also enhanced the frequency of cell division. This also was regulated by enhancing or suppressing the EF pharmacologically. Because the endogenous EF also regulated the wound healing rate, it may act as one control of the interplay between cell migration and cell division during healing.
Collapse
Affiliation(s)
- Bing Song
- Department of Biomedical Sciences, Institute of Medical Sciences, Medical School, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | | | |
Collapse
|
11
|
Abstract
Many cells must divide in specific orientations, yet for only a handful of cases do we have some understanding of how cells choose division orientations. We know of only a few cases where division orientations are controlled by specific cell-cell interactions. These cases are of interest, because they tell us something new and seemingly fundamental about how cells can function during development. Here, the evidence that interactions control division orientation in some cells of the early C. elegans embryo is presented, and what is known about how contact can regulate division orientation is discussed. Whether contact-mediated division orientation is a peculiarity of C. elegans or whether it may be more widespread is addressed.
Collapse
Affiliation(s)
- B Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, 27599-3280, USA.
| |
Collapse
|
12
|
Nishida H, Morokuma J, Nishikata T. Maternal cytoplasmic factors for generation of unique cleavage patterns in animal embryos. Curr Top Dev Biol 1999; 46:1-37. [PMID: 10417875 DOI: 10.1016/s0070-2153(08)60324-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- H Nishida
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
13
|
Affiliation(s)
- R L Gardner
- Department of Zoology, University of Oxford, United Kingdom
| |
Collapse
|