1
|
Ohta N, Christiaen L. Cellular remodeling and JAK inhibition promote zygotic gene expression in the Ciona germline. EMBO Rep 2024; 25:2188-2201. [PMID: 38649664 PMCID: PMC11094015 DOI: 10.1038/s44319-024-00139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Transcription control is a major determinant of cell fate decisions in somatic tissues. By contrast, early germline fate specification in numerous vertebrate and invertebrate species relies extensively on RNA-level regulation, exerted on asymmetrically inherited maternal supplies, with little-to-no zygotic transcription. However delayed, a maternal-to-zygotic transition is nevertheless poised to complete the deployment of pre-gametic programs in the germline. Here, we focus on early germline specification in the tunicate Ciona to study zygotic genome activation. We first demonstrate that a peculiar cellular remodeling event excludes localized postplasmic Pem-1 mRNA, which encodes the general inhibitor of transcription. Subsequently, zygotic transcription begins in Pem-1-negative primordial germ cells (PGCs), as revealed by histochemical detection of elongating RNA Polymerase II, and nascent Mef2 transcripts. In addition, we uncover a provisional antagonism between JAK and MEK/BMPRI/GSK3 signaling, which controls the onset of zygotic gene expression, following cellular remodeling of PGCs. We propose a 2-step model for the onset of zygotic transcription in the Ciona germline and discuss the significance of germ plasm dislocation and remodeling in the context of developmental fate specification.
Collapse
Affiliation(s)
- Naoyuki Ohta
- Michael Sars Centre, University of Bergen, Bergen, Norway.
| | - Lionel Christiaen
- Michael Sars Centre, University of Bergen, Bergen, Norway.
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Spagnuolo A. Our motto: Ciona is beautiful! Genesis 2023; 61:e23564. [PMID: 37974336 DOI: 10.1002/dvg.23564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
3
|
Alesci A, Pergolizzi S, Lo Cascio P, Capillo G, Lauriano ER. Localization of vasoactive intestinal peptide and toll-like receptor 2 immunoreactive cells in endostyle of urochordate Styela plicata (Lesueur, 1823). Microsc Res Tech 2022; 85:2651-2658. [PMID: 35394101 PMCID: PMC9324221 DOI: 10.1002/jemt.24119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
The endostyle is the first component of the ascidian digestive tract, it is shaped like a through and is located in the pharynx's ventral wall. This organ is divided longitudinally into nine zones that are parallel to each other. Each zone's cells are physically and functionally distinct. Support elements are found in zones 1, 3, and 5, while mucoproteins secreting elements related to the filtering function are found in zones 2, 4, and 6. Zones 7, 8, and 9, which are located in the lateral dorsal section of the endostyle, include cells with high iodine and peroxidase concentrations. Immunohistochemical technique using the following antibodies, Toll‐like receptor 2 (TLR‐2) and vasoactive intestinal peptide (VIP), and lectin histochemistry (WGA—wheat‐germagglutinin), were used in this investigation to define immune cells in the endostyle of Styela plicata (Lesueur, 1823). Our results demonstrate the presence of immune cells in the endostyle of S. plicata, highlighting that innate immune mechanisms are highly conserved in the phylogeny of the chordates.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, Messina, Italy.,Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), Spianata S. Raineri, Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Onuma TA, Nakanishi R, Sasakura Y, Ogasawara M. Nkx2-1 and FoxE regionalize glandular (mucus-producing) and thyroid-equivalent traits in the endostyle of the chordate Oikopleura dioica. Dev Biol 2021; 477:219-231. [PMID: 34107272 DOI: 10.1016/j.ydbio.2021.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
The endostyle is a ventral pharyngeal organ used for internal filter feeding of basal chordates and is considered homologous to the follicular thyroid of vertebrates. It contains mucus-producing (glandular) and thyroid-equivalent regions organized along the dorsoventral (DV) axis. Although thyroid-related genes (Nkx2-1, FoxE, and thyroid peroxidase (TPO)) are known to be expressed in the endostyle, their roles in establishing regionalization within the organ have not been demonstrated. We report that Nkx2-1 and FoxE are essential for establishing DV axial identity in the endostyle of Oikopleura dioica. Genome and expression analyses showed von Willebrand factor-like (vWFL) and TPO/dual oxidase (Duox)/Nkx2-1/FoxE as orthologs of glandular and thyroid-related genes, respectively. Knockdown experiments showed that Nkx2-1 is necessary for the expression of glandular and thyroid-related genes, whereas FoxE is necessary only for thyroid-related genes. Moreover, Nkx2-1 expression is necessary for FoxE expression in larvae during organogenesis. The results demonstrate the essential roles of Nkx2-1 and FoxE in establishing regionalization in the endostyle, including (1) the Nkx2-1-dependent glandular region, and (2) the Nkx2-1/FoxE-dependent thyroid-equivalent region. DV axial regionalization may be responsible for organizing glandular and thyroid-equivalent traits of the pharynx along the DV axis.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Rina Nakanishi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
5
|
Fiuza UM, Negishi T, Rouan A, Yasuo H, Lemaire P. A Nodal/Eph signalling relay drives the transition from apical constriction to apico-basal shortening in ascidian endoderm invagination. Development 2020; 147:dev.186965. [DOI: 10.1242/dev.186965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/02/2020] [Indexed: 01/13/2023]
Abstract
Gastrulation is the first major morphogenetic event during animal embryogenesis. Ascidian gastrulation starts with the invagination of 10 endodermal precursor cells between the 64- and late 112-cell stages. This process occurs in the absence of endodermal cell division and in two steps, driven by myosin-dependent contractions of the acto-myosin network. First, endoderm precursors constrict their apex. Second, they shorten apico-basally, while retaining small apical surfaces, thereby causing invagination. The mechanisms that prevent endoderm cell division, trigger the transition between step 1 and step 2, and drive apico-basal shortening have remained elusive. Here, we demonstrate a conserved role for Nodal and Eph signalling during invagination in two distantly related ascidian species, Phallusia mammillata and Ciona intestinalis. Specifically, we show that the transition to step 2 is triggered by Nodal relayed by Eph signalling. Additionally, our results indicate that Eph signalling lengthens the endodermal cell cycle, independently of Nodal. Finally, we find that both Nodal and Eph signals are dispensable for endoderm fate specification. These results illustrate commonalities as well as differences in the action of Nodal during ascidian and vertebrate gastrulation.
Collapse
Affiliation(s)
- Ulla-Maj Fiuza
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Takefumi Negishi
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Sorbonne Universités, 06230 Villefranche-sur-Mer, France
| | - Alice Rouan
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Sorbonne Universités, 06230 Villefranche-sur-Mer, France
| | - Hitoyoshi Yasuo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, CNRS, Sorbonne Universités, 06230 Villefranche-sur-Mer, France
| | | |
Collapse
|
6
|
Satou Y. A gene regulatory network for cell fate specification in Ciona embryos. Curr Top Dev Biol 2020; 139:1-33. [DOI: 10.1016/bs.ctdb.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Martín-Durán JM, Hejnol A. A developmental perspective on the evolution of the nervous system. Dev Biol 2019; 475:181-192. [PMID: 31610146 DOI: 10.1016/j.ydbio.2019.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 06/02/2018] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
The evolution of nervous systems in animals has always fascinated biologists, and thus multiple evolutionary scenarios have been proposed to explain the appearance of neurons and complex neuronal centers. However, the absence of a robust phylogenetic framework for animal interrelationships, the lack of a mechanistic understanding of development, and a recapitulative view of animal ontogeny have traditionally limited these scenarios. Only recently, the integration of advanced molecular and morphological studies in a broad range of animals has allowed to trace the evolution of developmental and neuronal characters on a better-resolved animal phylogeny. This has falsified most traditional scenarios for nervous system evolution, paving the way for the emergence of new testable hypotheses. Here we summarize recent progress in studies of nervous system development in major animal lineages and formulate some of the arising questions. In particular, we focus on how lineage analyses of nervous system development and a comparative study of the expression of neural-related genes has influenced our understanding of the evolution of an elaborated central nervous system in Bilateria. We argue that a phylogeny-guided study of neural development combining thorough descriptive and functional analyses is key to establish more robust scenarios for the origin and evolution of animal nervous systems.
Collapse
Affiliation(s)
- José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thørmohlensgate 55, 5006, Bergen, Norway; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thørmohlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
8
|
Ratcliffe LE, Asiedu EK, Pickett CJ, Warburton MA, Izzi SA, Meedel TH. The Ciona myogenic regulatory factor functions as a typical MRF but possesses a novel N-terminus that is essential for activity. Dev Biol 2019; 448:210-225. [PMID: 30365920 PMCID: PMC6478573 DOI: 10.1016/j.ydbio.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/28/2018] [Accepted: 10/16/2018] [Indexed: 11/26/2022]
Abstract
Electroporation-based assays were used to test whether the myogenic regulatory factor (MRF) of Ciona intestinalis (CiMRF) interferes with endogenous developmental programs, and to evaluate the importance of its unusual N-terminus for muscle development. We found that CiMRF suppresses both notochord and endoderm development when it is expressed in these tissues by a mechanism that may involve activation of muscle-specific microRNAs. Because these results add to a large body of evidence demonstrating the exceptionally high degree of functional conservation among MRFs, we were surprised to discover that non-ascidian MRFs were not myogenic in Ciona unless they formed part of a chimeric protein containing the CiMRF N-terminus. Equally surprising, we found that despite their widely differing primary sequences, the N-termini of MRFs of other ascidian species could form chimeric MRFs that were also myogenic in Ciona. This domain did not rescue the activity of a Brachyury protein whose transcriptional activation domain had been deleted, and so does not appear to constitute such a domain. Our results indicate that ascidians have previously unrecognized and potentially novel requirements for MRF-directed myogenesis. Moreover, they provide the first example of a domain that is essential to the core function of an important family of gene regulatory proteins, one that, to date, has been found in only a single branch of the family.
Collapse
Affiliation(s)
- Lindsay E Ratcliffe
- Department of Biology, Rhode Island College, 600 Mt. Pleasant Ave., Providence, RI 02908, USA.
| | - Emmanuel K Asiedu
- Department of Biology, Rhode Island College, 600 Mt. Pleasant Ave., Providence, RI 02908, USA.
| | - C J Pickett
- Department of Biology, Rhode Island College, 600 Mt. Pleasant Ave., Providence, RI 02908, USA.
| | - Megan A Warburton
- Department of Biology, Rhode Island College, 600 Mt. Pleasant Ave., Providence, RI 02908, USA.
| | - Stephanie A Izzi
- Department of Biology, Rhode Island College, 600 Mt. Pleasant Ave., Providence, RI 02908, USA.
| | - Thomas H Meedel
- Department of Biology, Rhode Island College, 600 Mt. Pleasant Ave., Providence, RI 02908, USA.
| |
Collapse
|
9
|
Madgwick A, Magri MS, Dantec C, Gailly D, Fiuza UM, Guignard L, Hettinger S, Gomez-Skarmeta JL, Lemaire P. Evolution of embryonic cis-regulatory landscapes between divergent Phallusia and Ciona ascidians. Dev Biol 2019; 448:71-87. [PMID: 30661644 DOI: 10.1016/j.ydbio.2019.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/31/2018] [Accepted: 01/01/2019] [Indexed: 01/21/2023]
Abstract
Ascidian species of the Phallusia and Ciona genera are distantly related, their last common ancestor dating several hundred million years ago. Although their genome sequences have extensively diverged since this radiation, Phallusia and Ciona species share almost identical early morphogenesis and stereotyped cell lineages. Here, we explored the evolution of transcriptional control between P. mammillata and C. robusta. We combined genome-wide mapping of open chromatin regions in both species with a comparative analysis of the regulatory sequences of a test set of 10 pairs of orthologous early regulatory genes with conserved expression patterns. We find that ascidian chromatin accessibility landscapes obey similar rules as in other metazoa. Open-chromatin regions are short, highly conserved within each genus and cluster around regulatory genes. The dynamics of chromatin accessibility and closest-gene expression are strongly correlated during early embryogenesis. Open-chromatin regions are highly enriched in cis-regulatory elements: 73% of 49 open chromatin regions around our test genes behaved as either distal enhancers or proximal enhancer/promoters following electroporation in Phallusia eggs. Analysis of this datasets suggests a pervasive use in ascidians of "shadow" enhancers with partially overlapping activities. Cross-species electroporations point to a deep conservation of both the trans-regulatory logic between these distantly-related ascidians and the cis-regulatory activities of individual enhancers. Finally, we found that the relative order and approximate distance to the transcription start site of open chromatin regions can be conserved between Ciona and Phallusia species despite extensive sequence divergence, a property that can be used to identify orthologous enhancers, whose regulatory activity can partially diverge.
Collapse
Affiliation(s)
- Alicia Madgwick
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Marta Silvia Magri
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Sevilla, Spain
| | - Christelle Dantec
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Damien Gailly
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Ulla-Maj Fiuza
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Léo Guignard
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix drive, Ashburn, VA, USA
| | - Sabrina Hettinger
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Sevilla, Spain
| | - Patrick Lemaire
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
10
|
Transcriptional regulation of the Ciona Gsx gene in the neural plate. Dev Biol 2018; 448:88-100. [PMID: 30583796 DOI: 10.1016/j.ydbio.2018.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022]
Abstract
The ascidian neural plate consists of a defined number of identifiable cells organized in a grid of rows and columns, representing a useful model to investigate the molecular mechanisms controlling neural patterning in chordates. Distinct anterior brain lineages are specified via unique combinatorial inputs of signalling pathways with Nodal and Delta-Notch signals patterning along the medial-lateral axis and FGF/MEK/ERK signals patterning along the anterior-posterior axis of the neural plate. The Ciona Gsx gene is specifically expressed in the a9.33 cells in the row III/column 2 position of anterior brain lineages, characterised by a combinatorial input of Nodal-OFF, Notch-ON and FGF-ON. Here, we identify the minimal cis-regulatory element (CRE) of 376 bp, which can recapitulate the early activation of Gsx. We show that this minimal CRE responds in the same way as the endogenous Gsx gene to manipulation of FGF- and Notch-signalling pathways and to overexpression of Snail, a mediator of Nodal signals, and Six3/6, which is required to demarcate the anterior boundary of Gsx expression at the late neurula stage. We reveal that sequences proximal to the transcription start site include a temporal regulatory element required for the precise transcriptional onset of gene expression. We conclude that sufficient spatial and temporal information for Gsx expression is integrated in 376 bp of non-coding cis-regulatory sequences.
Collapse
|
11
|
Shimai K, Kusakabe TG. The Use of cis-Regulatory DNAs as Molecular Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [DOI: 10.1007/978-981-10-7545-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Tolkin T, Christiaen L. Rewiring of an ancestral Tbx1/10-Ebf-Mrf network for pharyngeal muscle specification in distinct embryonic lineages. Development 2017; 143:3852-3862. [PMID: 27802138 DOI: 10.1242/dev.136267] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/30/2016] [Indexed: 01/01/2023]
Abstract
Skeletal muscles arise from diverse embryonic origins in vertebrates, yet converge on extensively shared regulatory programs that require muscle regulatory factor (MRF)-family genes. Myogenesis in the tail of the simple chordate Ciona exhibits a similar reliance on its single MRF-family gene, and diverse mechanisms activate Ci-Mrf Here, we show that myogenesis in the atrial siphon muscles (ASMs) and oral siphon muscles (OSMs), which control the exhalant and inhalant siphons, respectively, also requires Mrf We characterize the ontogeny of OSM progenitors and compare the molecular basis of Mrf activation in OSM versus ASM. In both muscle types, Ebf and Tbx1/10 are expressed and function upstream of Mrf However, we demonstrate that regulatory relationships between Tbx1/10, Ebf and Mrf differ between the OSM and ASM lineages. We propose that Tbx1, Ebf and Mrf homologs form an ancient conserved regulatory state for pharyngeal muscle specification, whereas their regulatory relationships might be more evolutionarily variable.
Collapse
Affiliation(s)
- Theadora Tolkin
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
13
|
Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells. Dev Biol 2017; 423:111-125. [DOI: 10.1016/j.ydbio.2017.01.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/12/2017] [Accepted: 01/31/2017] [Indexed: 11/22/2022]
|
14
|
Yoshida K, Nakahata A, Treen N, Sakuma T, Yamamoto T, Sasakura Y. Hox-mediated endodermal identity patterns the pharyngeal muscle formation in the chordate pharynx. Development 2017; 144:1629-1634. [DOI: 10.1242/dev.144436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/07/2017] [Indexed: 01/10/2023]
Abstract
The pharynx, possessing gill slits and the endostyle, is a characteristic of chordates that is a complex of multiple tissues well organized along the anterior-posterior (AP) axis. Although Hox genes show AP coordinated expression in the pharyngeal endoderm, tissue specific roles of these factors for establishing the regional identities within this tissue is largely unknown. Here, we show that Hox1 is essential for the establishment of AP axial identity of the endostyle, a major structure of the pharyngeal endoderm, in the ascidian Ciona intestinalis. We found that Hox1 knockout causes posterior to anterior transformation of the endostyle identity, and Hox1 represses Otx expression and anterior identity, and vice versa. Furthermore, alteration of the regional identity of the endostyle disrupts the formation of body wall muscles, suggesting that the endodermal axial identity is essential for the coordinated pharyngeal development. Our results reveal an essential role of Hox genes for establishment of the AP regional identity in the pharyngeal endoderm and crosstalk between endoderm and mesoderm for the development of chordate pharynx.
Collapse
Affiliation(s)
- Keita Yoshida
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Azusa Nakahata
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Nicholas Treen
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| |
Collapse
|
15
|
Perry KJ, Lyons DC, Truchado-Garcia M, Fischer AHL, Helfrich LW, Johansson KB, Diamond JC, Grande C, Henry JQ. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula. Dev Dyn 2016. [PMID: 26197970 DOI: 10.1002/dvdy.24308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. RESULTS Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. CONCLUSIONS We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.
Collapse
Affiliation(s)
- Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | | | - Marta Truchado-Garcia
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Antje H L Fischer
- Department of Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany.,Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Kimberly B Johansson
- Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | | | - Cristina Grande
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
16
|
Kawai N, Ogura Y, Ikuta T, Saiga H, Hamada M, Sakuma T, Yamamoto T, Satoh N, Sasakura Y. Hox10-regulated endodermal cell migration is essential for development of the ascidian intestine. Dev Biol 2015; 403:43-56. [PMID: 25888074 DOI: 10.1016/j.ydbio.2015.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/25/2015] [Indexed: 11/17/2022]
Abstract
Hox cluster genes play crucial roles in development of the metazoan antero-posterior axis. Functions of Hox genes in patterning the central nervous system and limb buds are well known. They are also expressed in chordate endodermal tissues, where their roles in endodermal development are still poorly understood. In the invertebrate chordate, Ciona intestinalis, endodermal tissues are in a premature state during the larval stage, and they differentiate into the digestive tract during metamorphosis. In this study, we showed that disruption of a Hox gene, Ci-Hox10, prevented intestinal formation. Ci-Hox10-knock-down larvae displayed defective migration of endodermal strand cells. Formation of a protrusion, which is important for cell migration, was disrupted in these cells. The collagen type IX gene is a downstream target of Ci-Hox10, and is negatively regulated by Ci-Hox10 and a matrix metalloproteinase ortholog, prior to endodermal cell migration. Inhibition of this regulation prevented cellular migration. These results suggest that Ci-Hox10 regulates endodermal strand cell migration by forming a protrusion and by reconstructing the extracellular matrix.
Collapse
Affiliation(s)
- Narudo Kawai
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan.
| | - Yosuke Ogura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | - Tetsuro Ikuta
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiohji, Tokyo 192-0397, Japan; Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Hidetoshi Saiga
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiohji, Tokyo 192-0397, Japan
| | - Mayuko Hamada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
17
|
Vizzini A, Parrinello D, Sanfratello MA, Trapani MR, Mangano V, Parrinello N, Cammarata M. Upregulated transcription of phenoloxidase genes in the pharynx and endostyle of Ciona intestinalis in response to LPS. J Invertebr Pathol 2015; 126:6-11. [DOI: 10.1016/j.jip.2015.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/02/2015] [Accepted: 01/26/2015] [Indexed: 01/17/2023]
|
18
|
Gline S, Kaplan N, Bernadskaya Y, Abdu Y, Christiaen L. Surrounding tissues canalize motile cardiopharyngeal progenitors towards collective polarity and directed migration. Development 2015; 142:544-54. [PMID: 25564651 DOI: 10.1242/dev.115444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Collectively migrating cells maintain group polarity and interpret external cues to reach their destination. The cardiogenic progenitors (also known as trunk ventral cells, TVCs) of the ascidian Ciona intestinalis provide a simple chordate model with which to study collective migration. Bilateral pairs of associated TVCs undergo a stereotyped polarized migration away from the tail towards the ventral trunk, arguably constituting the simplest possible example of directed collective migration. To identify tissues contributing to TVC polarity and migration, we quantified the contact between TVCs and surrounding tissues, and blocked the secretory pathway in a tissue-specific manner. Even though TVCs normally migrate as an invariably determined leader-trailer polarized pair of adherent cells, they are capable of migrating individually, albeit a shorter distance and with altered morphology. The mesenchyme contacts newborn TVCs and contributes to robust specification of the trailer but appears to have only minor effects on directed migration. The notochord does not contact the TVCs but contributes to the onset of migration. The trunk endoderm first contacts the leader TVC, then 'encases' both migrating cells and provides the inputs maintaining leader-trailer polarity. Migrating TVCs adhere to the epidermis and need this contact for their cohesion. These phenomenological studies reveal that inherently motile cardiopharyngeal progenitors are channeled into stereotyped behaviors by interactions with surrounding tissues.
Collapse
Affiliation(s)
- Stephanie Gline
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Nicole Kaplan
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Yelena Bernadskaya
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Yusuff Abdu
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| |
Collapse
|
19
|
Satou Y, Imai KS. Gene regulatory systems that control gene expression in the Ciona embryo. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:33-51. [PMID: 25748582 PMCID: PMC4406867 DOI: 10.2183/pjab.91.33] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Transcriptional control of gene expression is one of the most important regulatory systems in animal development. Specific gene expression is basically determined by combinatorial regulation mediated by multiple sequence-specific transcription factors. The decoding of animal genomes has provided an opportunity for us to systematically examine gene regulatory networks consisting of successive layers of control of gene expression. It remains to be determined to what extent combinatorial regulation encoded in gene regulatory networks can explain spatial and temporal gene-expression patterns. The ascidian Ciona intestinalis is one of the animals in which the gene regulatory network has been most extensively studied. In this species, most specific gene expression patterns in the embryo can be explained by combinations of upstream regulatory genes encoding transcription factors and signaling molecules. Systematic scrutiny of gene expression patterns and regulatory interactions at the cellular resolution have revealed incomplete parts of the network elucidated so far, and have identified novel regulatory genes and novel regulatory mechanisms.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University; CREST, JST, Saitama, Japan.
| | | |
Collapse
|
20
|
Thompson JM, Di Gregorio A. Insulin-like genes in ascidians: findings in Ciona and hypotheses on the evolutionary origins of the pancreas. Genesis 2014; 53:82-104. [PMID: 25378051 DOI: 10.1002/dvg.22832] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022]
Abstract
Insulin plays an extensively characterized role in the control of sugar metabolism, growth and homeostasis in a wide range of organisms. In vertebrate chordates, insulin is mainly produced by the beta cells of the endocrine pancreas, while in non-chordate animals insulin-producing cells are mainly found in the nervous system and/or scattered along the digestive tract. However, recent studies have indicated the notochord, the defining feature of the chordate phylum, as an additional site of expression of insulin-like peptides. Here we show that two of the three insulin-like genes identified in Ciona intestinalis, an invertebrate chordate with a dual life cycle, are first expressed in the developing notochord during embryogenesis and transition to distinct areas of the adult digestive tract after metamorphosis. In addition, we present data suggesting that the transcription factor Ciona Brachyury is involved in the control of notochord expression of at least one of these genes, Ciona insulin-like 2. Finally, we review the information currently available on insulin-producing cells in ascidians and on pancreas-related transcription factors that might control their expression.
Collapse
Affiliation(s)
- Jordan M Thompson
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York
| | | |
Collapse
|
21
|
Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida). EvoDevo 2014; 5:39. [PMID: 25908956 PMCID: PMC4407770 DOI: 10.1186/2041-9139-5-39] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/17/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Metazoan digestive systems develop from derivatives of ectoderm, endoderm and mesoderm, and vary in the relative contribution of each germ layer across taxa and between gut regions. In a small number of well-studied model systems, gene regulatory networks specify endoderm and mesoderm of the gut within a bipotential germ layer precursor, the endomesoderm. Few studies have examined expression of endomesoderm genes outside of those models, and thus, it is unknown whether molecular specification of gut formation is broadly conserved. In this study, we utilize a sequenced genome and comprehensive fate map to correlate the expression patterns of six transcription factors with embryonic germ layers and gut subregions during early development in Capitella teleta. RESULTS The genome of C. teleta contains the five core genes of the sea urchin endomesoderm specification network. Here, we extend a previous study and characterize expression patterns of three network orthologs and three additional genes by in situ hybridization during cleavage and gastrulation stages and during formation of distinct gut subregions. In cleavage stage embryos, Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a are expressed in all four macromeres, the endoderm precursors. Ct-otx, Ct-blimp1, and Ct-nkx2.1a are also expressed in presumptive endoderm of gastrulae and later during midgut development. Additional gut-specific expression patterns include Ct-otx, Ct-bra, Ct-foxAB and Ct-gsc in oral ectoderm; Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a in the foregut; and both Ct-bra and Ct-nkx2.1a in the hindgut. CONCLUSIONS Identification of core sea urchin endomesoderm genes in C. teleta indicates they are present in all three bilaterian superclades. Expression of Ct-otx, Ct-blimp1 and Ct-bra, combined with previously published Ct-foxA and Ct-gataB1 patterns, provide the most comprehensive comparison of these five orthologs from a single species within Spiralia. Each ortholog is likely involved in endoderm specification and midgut development, and several may be essential for establishment of the oral ectoderm, foregut and hindgut, including specification of ectodermal and mesodermal contributions. When the five core genes are compared across the Metazoa, their conserved expression patterns suggest that 'gut gene' networks evolved to specify distinct digestive system subregions, regardless of species-specific differences in gut architecture or germ layer contributions within each subregion.
Collapse
|
22
|
Russo MT, Racioppi C, Zanetti L, Ristoratore F. Expression of a single prominin homolog in the embryo of the model chordate Ciona intestinalis. Gene Expr Patterns 2014; 15:38-45. [PMID: 24755348 DOI: 10.1016/j.gep.2014.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 12/21/2022]
Abstract
Prominins are a family of pentaspan transmembrane glycoproteins, expressed in various types of cells, including stem and cancer stem cells in mammals. Prominin-1 is critical in generating and maintaining the structure of the photoreceptors in the eye since mutations in the PROM1 gene are associated with retinal and macular degeneration in human. In this study, we identified a single prominin homolog, Ci-prom1/2, in the model chordate the ascidian Ciona intestinalis and characterized Ci-prom1/2 expression profile in relation to photoreceptor differentiation during Ciona embryonic development. In situ hybridization experiments show Ci-prom1/2 transcripts localized in the developing central nervous system, predominantly in photoreceptor cell precursors as early as neurula stage and expression is maintained through larva stage in photoreceptor cells around the simple eye. We also isolated the regulatory region responsible for the specific spatio-temporal expression of the Ci-prom1/2 in photoreceptor cell lineage. Collectively, we report that Ci-prom1/2 is a novel molecular marker for ascidian photoreceptor cells and might represent a potential source to enlarge the knowledge about the function of prominin family in photoreceptor cell evolution and development.
Collapse
Affiliation(s)
- Monia T Russo
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dorhn, Villa Comunale, 80121 Napoli, Italy
| | - Claudia Racioppi
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dorhn, Villa Comunale, 80121 Napoli, Italy
| | - Laura Zanetti
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dorhn, Villa Comunale, 80121 Napoli, Italy
| | - Filomena Ristoratore
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dorhn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
23
|
Haupaix N, Stolfi A, Sirour C, Picco V, Levine M, Christiaen L, Yasuo H. p120RasGAP mediates ephrin/Eph-dependent attenuation of FGF/ERK signals during cell fate specification in ascidian embryos. Development 2013; 140:4347-52. [PMID: 24067356 DOI: 10.1242/dev.098756] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ERK1/2 MAP kinase exhibits a highly dynamic activation pattern in developing embryos, which largely depends on fibroblast growth factor (FGF) signals. In ascidian embryos, FGF-dependent activation of ERK1/2 occurs differentially between sister cells during marginal zone and neural lineage patterning. Selective attenuation of FGF signals by localised ephrin/Eph signals accounts for this differential ERK activation, which controls the binary fate choice of each sibling cell pair. Here, we show that p120 Ras GTPase-activating protein (p120RasGAP) is a crucial mediator of these ephrin/Eph signals. First, inhibition of p120RasGAP has a similar effect to inhibition of ephrin/Eph function during marginal zone and neural patterning. Second, p120RasGAP acts epistatically to ephrin/Eph signals. Third, p120RasGAP physically associates with Eph3 in an ephrin-dependent manner. This study provides the first in vivo evidence that the functional association between Eph and RasGAP controls the spatial extent of FGF-activated ERK.
Collapse
Affiliation(s)
- Nicolas Haupaix
- Université Pierre et Marie Curie and Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Esposito R, D'Aniello S, Squarzoni P, Pezzotti MR, Ristoratore F, Spagnuolo A. New insights into the evolution of metazoan tyrosinase gene family. PLoS One 2012; 7:e35731. [PMID: 22536431 PMCID: PMC3334994 DOI: 10.1371/journal.pone.0035731] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 03/24/2012] [Indexed: 11/19/2022] Open
Abstract
Tyrosinases, widely distributed among animals, plants and fungi, are involved in the biosynthesis of melanin, a pigment that has been exploited, in the course of evolution, to serve different functions. We conducted a deep evolutionary analysis of tyrosinase family amongst metazoa, thanks to the availability of new sequenced genomes, assessing that tyrosinases (tyr) represent a distinctive feature of all the organisms included in our study and, interestingly, they show an independent expansion in most of the analyzed phyla. Tyrosinase-related proteins (tyrp), which derive from tyr but show distinct key residues in the catalytic domain, constitute an invention of chordate lineage. In addition we here reported a detailed study of the expression territories of the ascidian Ciona intestinalis tyr and tyrps. Furthermore, we put efforts in the identification of the regulatory sequences responsible for their expression in pigment cell lineage. Collectively, the results reported here enlarge our knowledge about the tyrosinase gene family as valuable resource for understanding the genetic components involved in pigment cells evolution and development.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonietta Spagnuolo
- Cellular and Developmental Biology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| |
Collapse
|
25
|
D'Aniello E, Pezzotti MR, Locascio A, Branno M. Onecut is a direct neural-specific transcriptional activator of Rx in Ciona intestinalis. Dev Biol 2011; 355:358-71. [PMID: 21600895 DOI: 10.1016/j.ydbio.2011.05.584] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 04/21/2011] [Accepted: 05/04/2011] [Indexed: 11/28/2022]
Abstract
Retinal homeobox (Rx) genes play a crucial and conserved role in the development of the anterior neural plate of metazoans. During chordate evolution, they have also acquired a novel function in the control of eye formation and neurogenesis. To characterize the Rx genetic cascade and shed light on the mechanisms that led to the acquisition of this new role in eye development, we studied Rx transcriptional regulation using the ascidian, Ciona intestinalis. Through deletion analysis of the Ci-Rx promoter, we have identified two distinct enhancer elements able to induce Ci-Rx specific expression in the anterior part of the CNS and in the photosensory organ at tailbud and larva stages. Bioinformatic analysis highlighted the presence of two Onecut binding sites contained in these enhancers, so we explored the role of this transcription factor in the regulation of Ci-Rx. By in situ hybridization, we first confirmed that these genes are co-expressed in the same cells. Through a series of in vivo and in vitro experiments, we then demonstrated that the two Onecut sites are responsible for enhancer activation in Ci-Rx endogenous territories. We also demonstrated in vivo that Onecut misexpression is able to induce ectopic activation of the Rx promoter. Finally, we demonstrated that Ci-Onecut is able to promote Ci-Rx expression in the sensory vesicle. Together, these results support the conclusion that in Ciona embryogenesis, Ci-Rx expression is under the control of the Onecut transcription factor and that this factor is necessary and sufficient to specifically activate Ci-Rx through two enhancer elements.
Collapse
Affiliation(s)
- Enrico D'Aniello
- Cellular and Developmental Biology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | | | | | | |
Collapse
|
26
|
Squarzoni P, Parveen F, Zanetti L, Ristoratore F, Spagnuolo A. FGF/MAPK/Ets signaling renders pigment cell precursors competent to respond to Wnt signal by directly controlling Ci-Tcf transcription. Development 2011; 138:1421-32. [DOI: 10.1242/dev.057323] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
FGF and Wnt pathways constitute two fundamental signaling cascades, which appear to crosstalk in cooperative or antagonistic fashions in several developmental processes. In vertebrates, both cascades are involved in pigment cell development, but the possible interplay between FGF and Wnt remains to be elucidated. In this study, we have investigated the role of FGF and Wnt signaling in development of the pigment cells in the sensory organs of C. intestinalis. This species possesses the basic features of an ancestral chordate, thus sharing conserved molecular developmental mechanisms with vertebrates. Chemical and targeted perturbation approaches revealed that a FGF signal, spreading in time from early gastrulation to neural tube closure, is responsible for pigment cell precursor induction. This signal is transmitted via the MAPK pathway, which activates the Ci-Ets1/2 transcription factor. Targeted perturbation of Ci-TCF, a downstream factor of the canonical Wnt pathway, indicated its contribution to pigment cell differentiation Furthermore, analyses of the Ci-Tcf regulatory region revealed the involvement of the FGF effector, Ci-Ets1/2, in Ci-Tcf transcriptional regulation in pigment cell precursors. Our results indicate that both FGF and the canonical Wnt pathways are involved in C. intestinalis pigment cell induction and differentiation. Moreover, we present a case of direct transcriptional regulation exerted by the FGF signaling cascade, via the MAPK-ERK-Ets1/2, on the Wnt downstream gene Ci-Tcf. Several examples of FGF/Wnt signaling crosstalk have been described in different developmental processes; however, to our knowledge, FGF-Wnt cross-interaction at the transcriptional level has never been previously reported. These findings further contribute to clarifying the multitude of FGF-Wnt pathway interactions.
Collapse
Affiliation(s)
- Paola Squarzoni
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Fateema Parveen
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Laura Zanetti
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Filomena Ristoratore
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Antonietta Spagnuolo
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
27
|
A single GATA factor plays discrete, lineage specific roles in ascidian heart development. Dev Biol 2011; 352:154-63. [PMID: 21238449 DOI: 10.1016/j.ydbio.2011.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/14/2010] [Accepted: 01/06/2011] [Indexed: 01/12/2023]
Abstract
GATA family transcription factors are core components of the vertebrate heart gene network. GATA factors also contribute to heart formation indirectly through regulation of endoderm morphogenesis. However, the precise impact of GATA factors on vertebrate cardiogenesis is masked by functional redundancy within multiple lineages. Early heart specification in the invertebrate chordate Ciona intestinalis is similar to that of vertebrates but only one GATA factor, Ci-GATAa, is expressed in the heart progenitor cells and adjacent endoderm. Here we delineate precise, tissue specific contributions of GATAa to heart formation. Targeted repression of GATAa activity in the heart progenitors perturbs their transcriptional identity. Targeted repression of endodermal GATAa function disrupts endoderm morphogenesis. Subsequently, the bilateral heart progenitors fail to fuse at the ventral midline. The resulting phenotype is strikingly similar to cardia bifida, as observed in vertebrate embryos when endoderm morphogenesis is disturbed. These findings indicate that GATAa recapitulates cell-autonomous and non-cell-autonomous roles performed by multiple, redundant GATA factors in vertebrate cardiogenesis.
Collapse
|
28
|
Rétaux S, Kano S. Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey Hedgehog case. Integr Comp Biol 2010; 50:98-109. [PMID: 21558191 DOI: 10.1093/icb/icq032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lampreys are agnathans (vertebrates without jaws). They occupy a key phylogenetic position in the emergence of novelties and in the diversification of morphology at the dawn of vertebrates. We have used lampreys to investigate the possibility that embryonic midline signaling systems have been a driving force for the evolution of the forebrain in vertebrates. We have focused on Sonic Hedgehog/Hedgehog (Shh/Hh) signaling. In this article, we first review and summarize our recent work on the comparative analysis of embryonic expression patterns for Shh/Hh, together with Fgf8 (fibroblast growth factor 8) and Wnt (wingless-Int) pathway components, in the embryonic lamprey forebrain. Comparison with nonvertebrate chordates on one hand, and jawed vertebrates on the other hand, shows that these morphogens/growth factors acquired new expression domains in the most rostral part of the neural tube in lampreys compared to nonvertebrate chordates, and in jawed vertebrates compared to lampreys. These data are consistent with the idea that changes in Shh, Fgf8 or Wnt signaling in the course of evolution have been instrumental for the emergence and diversification of the telencephalon, a part of the forebrain that is unique to vertebrates. We have then used comparative genomics on Shh/Hh loci to identify commonalities and differences in noncoding regulatory sequences across species and phyla. Conserved noncoding elements (CNEs) can be detected in lamprey Hh introns, even though they display unique structural features and need adjustments of parameters used for in silico alignments to be detected, because of lamprey-specific properties of the genome. The data also show conservation of a ventral midline enhancer located in Shh/Hh intron 2 of all chordates, the very species which possess a notochord and a floor plate, but not in earlier emerged deuterostomes or protostomes. These findings exemplify how the Shh/Hh locus is one of the best loci to study genome evolution with regards to developmental events.
Collapse
Affiliation(s)
- Sylvie Rétaux
- NeD-UPR3294, CNRS, Institut Alfred Fessard, avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
29
|
Noda T, Hamada M, Hamaguchi M, Fujie M, Satoh N. Early zygotic expression of transcription factors and signal molecules in fully dissociated embryonic cells of Ciona intestinalis: A microarray analysis. Dev Growth Differ 2009; 51:639-55. [PMID: 19712267 DOI: 10.1111/j.1440-169x.2009.01124.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specification of early embryonic cells of animals is established by maternally provided factors and interactions of neighboring cells. The present study addressed a question of autonomous versus non-autonomous specification of embryonic cells by using the Ciona intestinalis embryo, in particular the genetic cascade of zygotic expression of transcription factor genes responsible for notochord specification. To examine this issue, we combined the classic experiment of continuous dissociation of embryonic cells with the modern technique of oligonucleotide-based microarrays. We measured early zygotic expression of 389 core transcription factors genes and 118 major signal molecule genes in embryonic cells that were fully dissociated from the first cleavage. Our results indicated that even if cells are free from contact with neighbors, the major transcription factor genes that have primary roles in embryonic cell specification commence their zygotic expression at the same time as in normal embryos. Dissociation of embryonic cells did not affect extracellular signal-regulated kinases (ERK) activity. Although normal embryos treated with U0126 failed to express Bra and Twist-like-1, dissociated embryonic cells treated with U0126 expressed the genes. These results are discussed in relation to the grade of autonomous versus non-autonomous genetic cascades that are responsible for the specification of early Ciona embryonic cells.
Collapse
Affiliation(s)
- Takeshi Noda
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
30
|
Cañestro C, Bassham S, Postlethwait JH. Evolution of the thyroid: Anterior–posterior regionalization of theOikopleura endostyle revealed byOtx,Pax2/5/8, andHox1 expression. Dev Dyn 2008; 237:1490-9. [DOI: 10.1002/dvdy.21525] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Alfano C, Teresa Russo M, Spagnuolo A. Developmental expression and transcriptional regulation of Ci-Pans, a novel neural marker gene of the ascidian, Ciona intestinalis. Gene 2007; 406:36-41. [PMID: 17616447 DOI: 10.1016/j.gene.2007.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/11/2007] [Accepted: 05/18/2007] [Indexed: 11/23/2022]
Abstract
A novel gene, named Ci-Pans, was isolated and characterized from the ascidian Ciona intestinalis. It is an 885-bp cDNA, is thought to encode a protein with no sequence similarities to known proteins and shows a spatial and temporal specific expression pattern. In fact, besides a transient early localization in the muscle precursors, it is expressed in a dynamic fashion in the nervous system, during C. intestinalis embryogenesis, reaching very high level of expression as the development proceeds. To study Ci-Pans transcriptional control, we isolated the predicted promoter region of C. intestinalis Ci-Pans using databases for this species. Analysis of transgenic embryos, with a green fluorescence protein (GFP) reporter, showed that approximately 1 kb of the 5'-flanking sequence of the Ci-Pans gene was implicated in its specific expression in the CNS. The data on the expression pattern of Ci-Pans together with the strong activity exhibited by the 1 kb promoter region we have identified, indicate that a more deeply investigation on Ci-Pans could provide clues for exploring the complex network of nervous system-specific genes.
Collapse
Affiliation(s)
- Christian Alfano
- Laboratory of Biochemistry and Molecular Biology, Stazione Zoologica A. Dohrn, Villa Comunale, 80121, Naples, Italy
| | | | | |
Collapse
|
32
|
Kawai N, Iida Y, Kumano G, Nishida H. Nuclear accumulation of β-catenin and transcription of downstream genes are regulated by zygotic Wnt5α and maternal Dsh in ascidian embryos. Dev Dyn 2007; 236:1570-82. [PMID: 17474118 DOI: 10.1002/dvdy.21169] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear beta-catenin plays crucial roles in the establishment of the embryonic axis and formation of mesendoderm tissues in ascidians and other animals. However, the cue responsible for nuclear accumulation of beta-catenin in the vegetal hemisphere is still unknown in ascidians. Here, we investigated the roles of Wnt5alpha and Dsh in the nuclear accumulation of beta-catenin and activation of its downstream genes in the ascidian Halocynthia roretzi. Wnt5alpha knockdown embryos lost nuclear accumulation of beta-catenin at the 64-cell stage but not at the 32-cell stage, and expression of Hr-lim, one of the targets of beta-catenin, was impaired in the anterior region of the embryo. Zygotic Wnt5alpha expression in the anterior-vegetal blastomeres was primarily responsible for these defects. Dsh knockdown showed no effect on nuclear localization of beta-catenin, but inhibited Hr-lim expression in the posterior region. These results suggest that maintenance of nuclear Hr-beta-catenin after the 64-cell stage is regulated by zygotic Hr-Wnt5alpha, and that expression of its target genes is modulated by both Hr-Wnt5alpha and Hr-Dsh. Our results also highlight the importance of nuclear accumulation of beta-catenin up to the 32-cell stage through a still unclarified mechanism.
Collapse
Affiliation(s)
- Narudo Kawai
- Department of Biological Sciences, Graduate School of Sciences, Osaka University, Osaka, Japan.
| | | | | | | |
Collapse
|
33
|
Hamaguchi M, Fujie M, Noda T, Satoh N. Microarray analysis of zygotic expression of transcription factor genes and cell signaling molecule genes in early Ciona intestinalis embryos. Dev Growth Differ 2007; 49:27-37. [PMID: 17227342 DOI: 10.1111/j.1440-169x.2007.00902.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In ascidians, specification of embryonic cells takes place very early at the 16-, 32- and 64-cell stages, and this developmental event involves zygotic expression of various genes, some encoding transcription factors and some encoding cell signaling molecules. Previous studies have demonstrated that approximately 50 transcription factor genes and 25 signaling molecule genes commence their zygotic expression by the 64-cell stage of Ciona intestinalis embryos. With the aid of oligonucleotide-based microarray, we examined the zygotic expression profiles of developmental genes in early Ciona embryos. Although the microarray method had a tendency to barely detect zygotic expression of genes that are expressed maternally, the present results confirmed the results of previous studies. In addition, the present analysis demonstrated the zygotic expression of four genes that were not identified in previous studies, and this result was confirmed by whole-mount in situ hybridization. Our results therefore provide further information on the developmental genes that are zygotically expressed in early Ciona embryos, and demonstrate that the microarray is a powerful tool for future studies of the gene regulatory network in Ciona, a basal chordate with a body plan similar to that of vertebrates.
Collapse
Affiliation(s)
- Makoto Hamaguchi
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
34
|
Evolution of the mechanisms and molecular control of endoderm formation. Mech Dev 2007; 124:253-78. [PMID: 17307341 DOI: 10.1016/j.mod.2007.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/24/2006] [Accepted: 01/03/2007] [Indexed: 01/13/2023]
Abstract
Endoderm differentiation and movements are of fundamental importance not only for subsequent morphogenesis of the digestive tract but also to enable normal patterning and differentiation of mesoderm- and ectoderm-derived organs. This review defines the tissues that have been called endoderm in different species, their cellular origin and their movements. We take a comparative approach to ask how signaling pathways leading to embryonic and extraembryonic endoderm differentiation have emerged in different organisms, how they became integrated and point to specific gaps in our knowledge that would be worth filling. Lastly, we address whether the gastrulation movements that lead to endoderm internalization are coupled with its differentiation.
Collapse
|
35
|
Kumano G, Nishida H. Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Dev Dyn 2007; 236:1732-47. [PMID: 17366575 DOI: 10.1002/dvdy.21108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ascidian tadpole larva represents the basic body plan of all chordates in a relatively small number of cells and tissue types. Although it had been considered that ascidians develop largely in a determinative way, whereas vertebrates develop in an inductive way, recent studies at the molecular and cellular levels have uncovered several similarities in the way developmental fates are specified. In this review, we describe ascidian embryogenesis and its cell lineages, introduce several characteristics of ascidian embryos, describe recent advances in understanding of the mechanisms of cell fate specification, and discuss them in the context of what is known in vertebrates and other organisms.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
36
|
Marino R, Melillo D, Di Filippo M, Yamada A, Pinto MR, De Santis R, Brown ER, Matassi G. Ammonium channel expression is essential for brain development and function in the larva ofCiona intestinalis. J Comp Neurol 2007; 503:135-47. [PMID: 17480017 DOI: 10.1002/cne.21370] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ammonium uptake into the cell is known to be mediated by ammonium transport (Amt) proteins, which are present in all domains of life. The physiological role of Amt proteins remains elusive; indeed, loss-of-function experiments suggested that Amt proteins do not play an essential role in bacteria, yeast, and plants. Here we show that the reverse holds true in the tunicate Ciona intestinalis. The genome of C. intestinalis contains two AMT genes, Ci-AMT1a and Ci-AMT1b, which we show derive from an ascidian-specific gene duplication. We analyzed Ci-AMT expression during embryo development. Notably, Ci-AMT1a is expressed in the larval brain in a small number of cells defining a previously unseen V-shaped territory; these cells connect the brain cavity to the external environment. We show that the knockdown of Ci-AMT1a impairs the formation of the brain cavity and consequently the function of the otolith, the gravity-sensing organ contained in it. We speculate that the normal mechanical functioning (flotation and free movement) of the otolith may require a close regulation of ammonium salt(s) concentration in the brain cavity, because ammonium is known to affect both fluid density and viscosity; the cells forming the V territory may act as a conduit in achieving such a regulation.
Collapse
Affiliation(s)
- Rita Marino
- Stazione Zoologica A Dohrn, Villa Comunale, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hiruta J, Mazet F, Ogasawara M. Restricted expression of NADPH oxidase/peroxidase gene (Duox) in zone VII of the ascidian endostyle. Cell Tissue Res 2006; 326:835-41. [PMID: 16823546 DOI: 10.1007/s00441-006-0220-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
The ascidian Ciona intestinalis, a marine invertebrate chordate, is an emerging model system for developmental and evolutionary studies. The endostyle, one of the characteristic organs of ascidians, is a pharyngeal structure with iodine-concentrating and peroxidase activities and is therefore considered to be homologous to the follicular thyroid of higher vertebrates. We have previously reported that a limited part of the endostyle (zone VII) is marked by the expression of orthologs of the thyroid peroxidase (TPO) and thyroid transcription factor-2 (TTF-2/FoxE) genes. In this study, we have identified the Ciona homolog of NADPH oxidase/peroxidase (Duox), which provides hydrogen peroxide (H(2)O(2)) for iodine metabolism by TPO in the vertebrate thyroid. Expression patterns assessed by in situ hybridization have revealed that Ciona Duox (Ci-Duox) is predominantly expressed in the dorsal part of zone VII of the endostyle. Furthermore, two-color fluorescent in situ hybridization with Ci-Duox and Ciona TPO (CiTPO) has revealed that the ventral boundary of the Ci-Duox domain of expression is more dorsal than that of CiTPO. We have also characterized several genes, such as Ci-Fgf8/17/18, 5HT7, and Ci-NK4, which are predominantly expressed in the ventral part of zone VII, in a region complementary to the Ci-Duox expression domain. These observations suggest that, at the molecular level, zone VII has a complex organization that might have some impact on the specification of cell types and functions in this thyroid-equivalent element of the ascidian endostyle.
Collapse
Affiliation(s)
- Jin Hiruta
- Department of Biology, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| | | | | |
Collapse
|
38
|
Abstract
Setting up future body axes is the first important event before and at the beginning of embryogenesis. The ascidian embryo is a classic model that has been used to gain insight into developmental processes for over a century. This review summarizes advances made in this decade in our understanding of the developmental processes involved in the specification of the embryonic axes and cell fates during early ascidian embryogenesis. Maternal factors, including mRNAs, are translocated to specific regions of the egg by cytoplasmic and cortical reorganization, so-called ooplasmic segregation, and specify the animal-vegetal axis and the one perpendicular to it, which is defined as the anteroposterior axis in ascidians. Some postplasmic/PEM RNAs that are anchored to cortical endoplasmic reticulum are brought to the future posterior pole of fertilized eggs, and play crucial roles in posterior development. Following specification of the animal-vegetal axis, nuclear localization of beta-catenin takes place in the vegetal blastomeres; this occurrence is important for the acquisition of the vegetal character of the blastomeres in later development. Positioning of these maternal factors lead to subsequent cell interactions and zygotic gene expression responsible for axis establishment and for cell fate specification. We describe how endoderm blastomeres in the vegetal pole region emanate inductive signals mainly attributable to fibroblast growth factor. Marginal blastomeres next to endoderm blastomeres respond differently in ways that are determined by intrinsic competence factors. Expression patterns of developmentally important genes, including key transcription factors of each tissue type, are also summarized.
Collapse
Affiliation(s)
- Hiroki Nishida
- Department of Biology, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
39
|
Satou Y, Satoh N. Cataloging transcription factor and major signaling molecule genes for functional genomic studies in Ciona intestinalis. Dev Genes Evol 2005; 215:580-96. [PMID: 16252120 DOI: 10.1007/s00427-005-0016-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/05/2005] [Indexed: 11/29/2022]
Abstract
The ascidian Ciona intestinalis provides an excellent experimental system for functional genomic studies because (1) its genome has been sequenced, (2) the transcription factor genes and genes for major signal transduction molecules have been extensively screened and annotated on a genome-wide scale using the molecular phylogenetical method, and (3) their embryonic expression profiles have been almost completely determined. However, the entire genetic structure, including the 5' and 3' untranslated regions and the protein-coding regions, of most gene models used in these prior studies is not always supported by cDNA evidence, and thus, these gene models are potentially imprecise. To facilitate functional genomic studies based on precise gene structures, our present study determined 406 cDNA sequences for 357 transcription factor genes and 112 cDNA sequences for 107 signal transduction molecule genes, greatly improving the previous gene models and revealing transcript variants for 44 genes. Considering these data alongside those of previously characterized genes deposited in the DNA Data Bank of Japan/European Molecular Biology Laboratory/GENBANK databases, 95.6% of the catalogued transcription factor genes (373/390) and 98.3% of the catalogued signal transduction molecule genes (117/119) have now been verified by cDNA sequences. Thus, the present study greatly improves the resources available for functional genomic studies in C. intestinalis.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
40
|
Abstract
Thanks to their transparent and rapidly developing mosaic embryos, ascidians (or sea squirts) have been a model system for embryological studies for over a century. Recently, ascidians have entered the postgenomic era, with the sequencing of the Ciona intestinalis genome and the accumulation of molecular resources that rival those available for fruit flies and mice. One strength of ascidians as a model system is their close similarity to vertebrates. Literature reporting molecular homologies between vertebrate and ascidian tissues has flourished over the past 15 years, since the first ascidian genes were cloned. However, it should not be forgotten that ascidians diverged from the lineage leading to vertebrates over 500 million years ago. Here, we review the main similarities and differences so far identified, at the molecular level, between ascidian and vertebrate tissues and discuss the evolution of the compact ascidian genome.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
41
|
Moret F, Christiaen L, Deyts C, Blin M, Joly JS, Vernier P. The dopamine-synthesizing cells in the swimming larva of the tunicate Ciona intestinalis are located only in the hypothalamus-related domain of the sensory vesicle. Eur J Neurosci 2005; 21:3043-55. [PMID: 15978015 DOI: 10.1111/j.1460-9568.2005.04147.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopamine is a major neuromodulator synthesized by numerous cell populations in the vertebrate forebrain and midbrain. Owing to the simple organization of its larval nervous system, ascidian tunicates provide a useful model to investigate the anatomy, neurogenesis and differentiation of the dopaminergic neural network underlying the stereotypical swimming behaviour of its chordate-type larva. This study provides a high-resolution cellular analysis of tyrosine hydroxylase (TH)-positive and dopamine-positive cells in Ciona intestinalis embryos and larvae. Dopamine cells are present only in the sensory vesicle of the Ciona larval brain, which may be an ancestral chordate feature. The dopamine-positive cells of the ascidian sensory vesicle are located in the expression domain of homologues of vertebrate hypothalamic markers. We show here that the larval coronet cells also arise from this domain. As a similar association between coronet cells and the hypothalamus was reported in bony and cartilaginous fishes, we propose that part of the ascidian ventral sensory vesicle is the remnant of a proto-hypothalamus that may have been present in the chordate ancestor. As dopaminergic cells are specified in the hypothalamus in all vertebrates, we suggest that the mechanisms of dopamine cell specification are conserved in the hypothalamus of Ciona and vertebrates. To test this hypothesis, we have identified new candidate regulators of dopaminergic specification in Ciona based on their expression patterns, which can now be compared with those in vertebrates.
Collapse
Affiliation(s)
- Frédéric Moret
- Development, Evolution, Plasticity of the Nervous System, UPR 2197, Institut de Neurobiologie Alfred Fessard, C.N.R.S., 1, ave de la Terrasse, F-91198 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Ascidians, or sea squirts, are lower chordates, and share basic gene repertoires and many characteristics, both developmental and physiological, with vertebrates. Therefore, decoding cis-regulatory systems in ascidians will contribute toward elucidating the genetic regulatory systems underlying the developmental and physiological processes of vertebrates. cis-Regulatory DNAs can also be used for tissue-specific genetic manipulation, a powerful tool for studying ascidian development and physiology. Because the ascidian genome is compact compared with vertebrate genomes, both intergenic regions and introns are relatively small in ascidians. Short upstream intergenic regions contain a complete set of cis-regulatory elements for spatially regulated expression of a majority of ascidian genes. These features of the ascidian genome are a great advantage in identifying cis-regulatory sequences and in analyzing their functions. Function of cis-regulatory DNAs has been analyzed for a number of tissue-specific and developmentally regulated genes of ascidians by introducing promoter-reporter fusion constructs into ascidian embryos. The availability of the whole genome sequences of the two Ciona species, Ciona intestinalis and Ciona savignyi, facilitates comparative genomics approaches to identify cis-regulatory DNAs. Recent studies demonstrate that computational methods can help identify cis-regulatory elements in the ascidian genome. This review presents a comprehensive list of ascidian genes whose cis-regulatory regions have been subjected to functional analysis, and highlights the recent advances in bioinformatics and comparative genomics approaches to cis-regulatory systems in ascidians.
Collapse
Affiliation(s)
- Takehiro Kusakabe
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Japan.
| |
Collapse
|
43
|
Moret F, Christiaen L, Deyts C, Blin M, Vernier P, Joly JS. Regulatory gene expressions in the ascidian ventral sensory vesicle: evolutionary relationships with the vertebrate hypothalamus. Dev Biol 2005; 277:567-79. [PMID: 15617694 DOI: 10.1016/j.ydbio.2004.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/13/2004] [Accepted: 11/03/2004] [Indexed: 11/28/2022]
Abstract
In extant chordates, the overall patterning along the anteroposterior and dorsoventral axes of the neural tube is remarkably conserved. It has thus been proposed that four domains corresponding to the vertebrate presumptive forebrain, midbrain-hindbrain transition, hindbrain, and spinal cord were already present in the common chordate ancestor. To obtain insights on the evolution of the patterning of the anterior neural tube, we performed a study aimed at characterizing the expression of regulatory genes in the sensory vesicle of Ciona intestinalis, the anteriormost part of the central nervous system (CNS) related to the vertebrate forebrain, at tailbud stages. Selected genes encoded primarily for homologues of transcription factors involved in vertebrate forebrain patterning. Seven of these genes were expressed in the ventral sensory vesicle. A prominent feature of these ascidian genes is their restricted and complementary domains of expression at tailbud stages. These patterning markers thus refine the map of the developing sensory vesicle. Furthermore, they allow us to propose that a large part of the ventral and lateral sensory vesicle consists in a patterning domain corresponding to the vertebrate presumptive hypothalamus.
Collapse
Affiliation(s)
- Frédéric Moret
- Development, Evolution and Plasticity of the Nervous System, Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique, UPR2197, 1 ave de la terrasse, F-91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Large-scale gene duplications occurred early in the vertebrate lineage after the split with protochordates. Thus, protochordate hormones and their receptors, transcription factors, and signaling pathways may be the foundation for the endocrine system in vertebrates. A number of hormones have been identified including cionin, a likely ancestor of cholecytokinin (CCK) and gastrin. Both insulin and insulin-like growth hormone (IGF) have been identified in separate cDNAs in a tunicate, whereas only a single insulin-like peptide was found in amphioxus. In tunicates, nine distinct forms of gonadotropin-releasing hormone (GnRH) are shown to induce gamete release, even though a pituitary gland and sex steroids are lacking. In both tunicates and amphioxus, there is evidence of some components of a thyroid system, but the lack of a sequenced genome for amphioxus has slowed progress in the structural identification of its hormones. Immunocytochemistry has been used to tentatively identify a number of hormones in protochordates, but structural and functional studies are needed. For receptors, protochordates have many vertebrate homologs of nuclear receptors, such as the thyroid, retinoic acid, and retinoid X receptors. Also, tunicates have cell surface receptors including the G-protein-coupled type, such as β-adrenergic, putative endocannabinoid, cionin (CCK-like), and two GnRH receptors. Several tyrosine kinase receptors include two epidermal growth factor (EGF) receptors (tunicates) and an insulin/IGF receptor (amphioxus). Interestingly, neither steroid receptors nor a full complement of enzymes for synthesis of sex steroids are encoded in the Ciona genome. Tunicates appear to have some but not all of the necessary molecules to develop a vertebrate-like pituitary or complete thyroid system.
Collapse
|
45
|
Rhee JM, Oda-Ishii I, Passamaneck YJ, Hadjantonakis AK, Di Gregorio A. Live imaging and morphometric analysis of embryonic development in the ascidianCiona intestinalis. Genesis 2005; 43:136-47. [PMID: 16267822 DOI: 10.1002/gene.20164] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ascidian Ciona intestinalis is one of the model organisms of choice for comparative investigations of chordate development and for unraveling the molecular mechanisms underlying morphogenesis and cell fate specification. Taking advantage of the availability of various genetically encoded fluorescent proteins and of defined cis-regulatory elements, we combined transient transgenesis with laser scanning confocal imaging to acquire and quantitate 3D time-lapse data from living Ciona embryos. We used Ciona tissue-specific enhancers to drive expression of spectrally distinct fluorescent protein reporters to label and simultaneously visualize axially and paraxially positioned mesodermal derivatives, as well as neural precursors in individual embryos. We observed morphogenetic movements, without perturbing development, from the early gastrula throughout the larval stage, including gastrulation, neurulation, convergent extension of the presumptive notochord, and tail elongation. These multidimensional data allowed us to establish a reference system of metrics to quantify key developmental events including blastopore closure and muscle extension. The approach we describe can be used to document morphogenetic cell and tissue rearrangements in living embryos and paves the way for a live digitized anatomical atlas of Ciona.
Collapse
Affiliation(s)
- Jerry M Rhee
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
46
|
Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron 2004; 20:2424-34. [PMID: 15854817 DOI: 10.1016/j.bios.2004.11.006] [Citation(s) in RCA: 687] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/25/2004] [Accepted: 11/11/2004] [Indexed: 11/19/2022]
Abstract
So far, several bio-analytical methods have used nucleic acid probes to detect specific sequences in RNA or DNA targets through hybridisation. More recently, specific nucleic acids, aptamers, selected from random sequence pools, have been shown to bind non-nucleic acid targets, such as small molecules or proteins. The development of in vitro selection and amplification techniques has allowed the identification of specific aptamers, which bind to the target molecules with high affinity. Many small organic molecules with molecular weights from 100 to 10,000 Da have been shown to be good targets for selection. Moreover, aptamers can be selected against difficult target haptens, such as toxins or prions. The selected aptamers can bind to their targets with high affinity and even discriminate between closely related targets. Aptamers can thus be considered as a valid alternative to antibodies or other bio-mimetic receptors, for the development of biosensors and other analytical methods. The production of aptamers is commonly performed by the SELEX (systematic evolution of ligands by exponential enrichment) process, which, starting from large libraries of oligonucleotides, allows the isolation of large amounts of functional nucleic acids by an iterative process of in vitro selection and subsequent amplification through polymerase chain reaction. Aptamers are suitable for applications based on molecular recognition as analytical, diagnostic and therapeutic tools. In this review, the main analytical methods, which have been developed using aptamers, will be discussed together with an overview on the aptamer selection process.
Collapse
Affiliation(s)
- S Tombelli
- Università degli Studi di Firenze, Dipartimento di Chimica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | | | | |
Collapse
|
47
|
Abstract
Thyroid gland organogenesis results in an organ the shape, size, and position of which are largely conserved among adult individuals of the same species, thus suggesting that genetic factors must be involved in controlling these parameters. In humans, the organogenesis of the thyroid gland is often disturbed, leading to a variety of conditions, such as agenesis, ectopy, and hypoplasia, which are collectively called thyroid dysgenesis (TD). The molecular mechanisms leading to TD are largely unknown. Studies in murine models and in a few patients with dysgenesis revealed that mutations in regulatory genes expressed in the developing thyroid are responsible for this condition, thus showing that TD can be a genetic and inheritable disease. These studies open the way to a novel working hypothesis on the molecular and genetic basis of this frequent human condition and render the thyroid an important model in the understanding of molecular mechanisms regulating the size, shape, and position of organs.
Collapse
Affiliation(s)
- Mario De Felice
- Stazione Zoologica Anton Dohrn, University of Naples Federico II, 80121 Naples, Italy
| | | |
Collapse
|
48
|
Fanelli A, Lania G, Spagnuolo A, Di Lauro R. Interplay of negative and positive signals controls endoderm-specific expression of the ascidian Cititf1 gene promoter. Dev Biol 2003; 263:12-23. [PMID: 14568543 DOI: 10.1016/s0012-1606(03)00397-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cititf1 is an early and specific marker of endoderm development in Ciona intestinalis [ Development 126, 5149]. Here, we examine Cititf1 transcriptional regulation focusing in particular on its endodermal restricted expression. Through the analysis of Ciona embryos, electroporated with different portions of Cititf1 5'-flanking region fused to lacZ, we characterized a minimal 300-bp cis-regulatory sequence able to closely reproduce the spatial and temporal expression pattern of the endogenous gene. This enhancer contains at least three distinct regulatory regions, two of which are responsible for activation of transcription in the endoderm and in the mesenchyme, respectively, while the third is a negative control element that represses mesenchyme transcription. We have further defined the sequences responsible for transcriptional activation in the endoderm by clustered point mutations and DNA-binding assays.
Collapse
Affiliation(s)
- Albertina Fanelli
- Laboratory of Biochemistry and Molecular Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | | | | | | |
Collapse
|
49
|
Bertrand V, Hudson C, Caillol D, Popovici C, Lemaire P. Neural Tissue in Ascidian Embryos Is Induced by FGF9/16/20, Acting via a Combination of Maternal GATA and Ets Transcription Factors. Cell 2003; 115:615-27. [PMID: 14651852 DOI: 10.1016/s0092-8674(03)00928-0] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In chordates, formation of neural tissue from ectodermal cells requires an induction. The molecular nature of the inducer remains controversial in vertebrates. Here, using the early neural marker Otx as an entry point, we dissected the neural induction pathway in the simple embryos of Ciona intestinalis. We first isolated the regulatory element driving Otx expression in the prospective neural tissue, showed that this element directly responds to FGF signaling and that FGF9/16/20 acts as an endogenous neural inducer. Binding site analysis and gene loss of function established that FGF9/16/20 induces neural tissue in the ectoderm via a synergy between two maternal response factors. Ets1/2 mediates general FGF responsiveness, while the restricted activity of GATAa targets the neural program to the ectoderm. Thus, our study identifies an endogenous FGF neural inducer and its early downstream gene cascade. It also reveals a role for GATA factors in FGF signaling.
Collapse
Affiliation(s)
- Vincent Bertrand
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS/INSERM, Université de la Méditerranée/AP de Marseille, Parc Scientifique de Luminy, Case 907, F-13288, Marseille Cedex 9, France.
| | | | | | | | | |
Collapse
|
50
|
D'Ambrosio P, Fanelli A, Pischetola M, Spagnuolo A. Ci-GATAa, a GATA-class gene from the ascidian Ciona intestinalis: isolation and developmental expression. Dev Dyn 2003; 226:145-8. [PMID: 12508236 DOI: 10.1002/dvdy.10216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Members of the GATA family of zinc finger transcription factors have been shown to play important roles in controlling gene expression in a variety of cell types in many metazoan. Here, we describe the identification of Ci-GATAa, a member of this gene family, in the ascidian Ciona intestinalis. Whole-mount in situ hybridization showed that Ci-GATAa was expressed in a highly dynamic manner. The maternal transcript was evenly distributed in the embryo during early stages of development; however, the signal gradually decreased until it disappeared at the 64-cell stage. A zygotic transcript was detected at the 110-cell stage in the blastomeres precursors of three different tissues (brain vesicle, mesenchyme, and trunk lateral cells) and the signal was conserved in these territories up to the larval stage, indicating an important role for Ci-GATAa during ascidian differentiation.
Collapse
Affiliation(s)
- Palmira D'Ambrosio
- Laboratory of Biochemistry and Molecular Biology, Stazione Zologica A. Dohrn, Villa Comunale, Naples, Italy
| | | | | | | |
Collapse
|