1
|
Pasten MC, Carballo J, Díaz AR, Mizzotti C, Cucinotta M, Colombo L, Echenique VC, Mendes MA. New insights into Eragrostis curvula's sexual and apomictic reproductive development. FRONTIERS IN PLANT SCIENCE 2025; 16:1530855. [PMID: 40376162 PMCID: PMC12078246 DOI: 10.3389/fpls.2025.1530855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/07/2025] [Indexed: 05/18/2025]
Abstract
Apomixis, defined as asexual propagation by seeds, is considered of great importance for agriculture as it allows the fixation of desired traits and its propagation through generations. Eragrostis curvula (Schrad.) Ness, is a perennial grass that comprises a polymorphic complex including sexual and diplosporous apomictic cytotypes, where all apomicts are polyploids. In this study we present the first detailed description of female and male gametophyte development in E. curvula through confocal laser microscopy, contrasting three genotypes: the fully apomictic Tanganyika, the facultative apomictic Don Walter, and the sexual OTA-S. Moreover, we have studied the localized expression of a gene known as SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), that was found to be differentially expressed in contrasting genotypes of E. curvula. This gene had been previously linked with flower development and abiotic stresses in several species, thus, in situ hybridizations were carried out in the model plant Arabidopsis thaliana, as well as in sexual and apomictic E. curvula genotypes. Our microscopy analysis has led to the identification of specific morphological characteristics for each genotype, mainly depicting a larger ovule in the sexual genotype's reproductive development after the meiosis stage. These results reveal potentially important features, which could be used for a simple identification of genotypes. Moreover, differential expression of the gene SPL7 was detected, specifically determining an overexpression of the gene in the sexual genotype. These results demonstrated that it could be an interesting candidate to understand the mechanisms behind apomictic development.
Collapse
Affiliation(s)
- María Cielo Pasten
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (UNS - CONICET), Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - José Carballo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (UNS - CONICET), Bahía Blanca, Argentina
| | - Alejandra Raquel Díaz
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (UNS - CONICET), Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Chiara Mizzotti
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milan, Italy
| | - Mara Cucinotta
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milan, Italy
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milan, Italy
| | - Viviana Carmen Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (UNS - CONICET), Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | | |
Collapse
|
2
|
Sivakumar P, Pandey S, Ramesha A, Davda JN, Singh A, Kumar C, Gala H, Subbiah V, Adicherla H, Dhawan J, Aravind L, Siddiqi I. Sporophyte-directed gametogenesis in Arabidopsis. NATURE PLANTS 2025; 11:398-409. [PMID: 40087543 DOI: 10.1038/s41477-025-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/30/2025] [Indexed: 03/17/2025]
Abstract
Plants alternate between diploid sporophyte and haploid gametophyte generations1. In mosses, which retain features of ancestral land plants, the gametophyte is dominant and has an independent existence. However, in flowering plants the gametophyte has undergone evolutionary reduction to just a few cells enclosed within the sporophyte. The gametophyte is thought to retain genetic control of its development even after reduction2. Here we show that male gametophyte development in Arabidopsis, long considered to be autonomous, is also under genetic control of the sporophyte via a repressive mechanism that includes large-scale regulation of protein turnover. We identify an Arabidopsis gene SHUKR as an inhibitor of male gametic gene expression. SHUKR is unrelated to proteins of known function and acts sporophytically in meiosis to control gametophyte development by negatively regulating expression of a large set of genes specific to postmeiotic gametogenesis. This control emerged late in evolution as SHUKR homologues are found only in eudicots. We show that SHUKR is rapidly evolving under positive selection, suggesting that variation in control of protein turnover during male gametogenesis has played an important role in evolution within eudicots.
Collapse
Affiliation(s)
- Prakash Sivakumar
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saurabh Pandey
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
- databaum GmbH, Hamburg, Germany
| | - A Ramesha
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | | | - Aparna Singh
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - Chandan Kumar
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
- University of Texas at Austin, Austin, TX, USA
| | - Hardik Gala
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
| | | | | | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Imran Siddiqi
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
Xue L, Zhang Y, Wei F, Shi G, Tian B, Yuan Y, Jiang W, Zhao M, Hu L, Xie Z, Gu H. Recent Progress on Plant Apomixis for Genetic Improvement. Int J Mol Sci 2024; 25:11378. [PMID: 39518931 PMCID: PMC11545481 DOI: 10.3390/ijms252111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Apomixis is a reproductive process that produces clonal seeds while bypassing meiosis (or apomeiosis) without undergoing fertilization (or pseudo-fertilization). The progenies are genetically cloned from their parents, retaining the parental genotype, and have great potential for the preservation of genes of interest and the fixing of heterosis. The hallmark components of apomixis include the formation of female gametes without meiosis, the development of fertilization-independent embryos, and the formation of functional endosperm. Understanding and utilizing the molecular mechanism of apomixis has far-reaching implications for plant genetic breeding and agricultural development. Therefore, this study focuses on the classification, influencing factors, genetic regulation, and molecular mechanism of apomixis, as well as progress in the research and application of apomixis-related genes in plant breeding. This work will elucidate the molecular mechanisms of apomixis and its application for plant genetic improvement.
Collapse
Affiliation(s)
- Lihua Xue
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Yingying Zhang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Gongyao Shi
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China;
| | - Wenjing Jiang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Meiqi Zhao
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Lijiao Hu
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huihui Gu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Ojosnegros S, Alvarez JM, Gagliardini V, Quintanilla LG, Grossniklaus U, Fernández H. Transcriptomic analyses in the gametophytes of the apomictic fern Dryopteris affinis. PLANTA 2024; 260:111. [PMID: 39356333 PMCID: PMC11447071 DOI: 10.1007/s00425-024-04540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024]
Abstract
MAIN CONCLUSION A novel genomic map of the apogamous gametophyte of the fern Dryopteris affinis unlocks oldest hindrance with this complex plant group, to gain insight into evo-devo approaches. The gametophyte of the fern Dryopteris affinis ssp. affinis represents a good model to explore the molecular basis of vegetative and reproductive development, as well as stress responses. Specifically, this fern reproduces asexually by apogamy, a peculiar case of apomixis whereby a sporophyte forms directly from a gametophytic cell without fertilization. Using RNA-sequencing approach, we have previously annotated more than 6000 transcripts. Here, we selected 100 of the inferred proteins homolog to those of Arabidopsis thaliana, which were particularly interesting for a detailed study of their potential functions, protein-protein interactions, and distance trees. As expected, a plethora of proteins associated with gametogenesis and embryogenesis in angiosperms, such as FERONIA (FER) and CHROMATING REMODELING 11 (CHR11) were identified, and more than a dozen candidates potentially involved in apomixis, such as ARGONAUTE family (AGO4, AGO9, and AGO 10), BABY BOOM (BBM), FASCIATED STEM4 (FAS4), FERTILIZATION-INDEPENDENT ENDOSPERM (FIE), and MATERNAL EFFECT EMBRYO ARREST29 (MEE29). In addition, proteins involved in the response to biotic and abiotic stresses were widely represented, as shown by the enrichment of heat-shock proteins. Using the String platform, the interactome revealed that most of the protein-protein interactions were predicted based on experimental, database, and text mining datasets, with MULTICOPY SUPPRESSOR OF IRA4 (MSI4) showing the highest number of interactions: 16. Lastly, some proteins were studied through distance trees by comparing alignments with respect to more distantly or closely related plant groups. This analysis identified DCL4 as the most distant protein to the predicted common ancestor. New genomic information in relation to gametophyte development, including apomictic reproduction, could expand our current vision of evo-devo approaches.
Collapse
Affiliation(s)
- Sara Ojosnegros
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071, Oviedo, Spain
| | - José Manuel Alvarez
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071, Oviedo, Spain
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008, Zurich, Switzerland
| | - Luis G Quintanilla
- Global Change Research Institute, University Rey Juan Carlos, 28933, Móstoles, Spain
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008, Zurich, Switzerland
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071, Oviedo, Spain.
| |
Collapse
|
5
|
Cai H, Huang Y, Liu L, Zhang M, Chai M, Xi X, Aslam M, Wang L, Ma S, Su H, Liu K, Tian Y, Zhu W, Qi J, Dresselhaus T, Qin Y. Signaling by the EPFL-ERECTA family coordinates female germline specification through the BZR1 family in Arabidopsis. THE PLANT CELL 2023; 35:1455-1473. [PMID: 36748257 PMCID: PMC10118260 DOI: 10.1093/plcell/koad032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
In most flowering plants, the female germline is initiated in the subepidermal L2 layer of ovule primordia forming a single megaspore mother cell (MMC). How signaling from the L1 (epidermal) layer could contribute to the gene regulatory network (GRN) restricting MMC formation to a single cell is unclear. We show that EPIDERMAL PATTERNING FACTOR-like (EPFL) peptide ligands are expressed in the L1 layer, together with their ERECTA family (ERf) receptor kinases, to control female germline specification in Arabidopsis thaliana. EPFL-ERf dependent signaling restricts multiple subepidermal cells from acquiring MMC-like cell identity by activating the expression of the major brassinosteroid (BR) receptor kinase BRASSINOSTEROID INSENSITIVE 1 and the BR-responsive transcription factor BRASSINOZOLE RESISTANT 1 (BZR1). Additionally, BZR1 coordinates female germline specification by directly activating the expression of a nucleolar GTP-binding protein, NUCLEOSTEMIN-LIKE 1 (NSN1), which is expressed in early-stage ovules excluding the MMC. Mutants defective in this GRN form multiple MMCs resulting in a strong reduction of seed set. In conclusion, we uncovered a ligand/receptor-like kinase-mediated signaling pathway acting upstream and coordinating BR signaling via NSN1 to restrict MMC differentiation to a single subepidermal cell.
Collapse
Affiliation(s)
- Hanyang Cai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youmei Huang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Liu
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Man Zhang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Dafeng Road 6, Tianhe District, Guangzhou 510640, China
| | - Mengnan Chai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinpeng Xi
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohammad Aslam
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lulu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Suzhuo Ma
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Han Su
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaichuang Liu
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaru Tian
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zhu
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingang Qi
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Xia Q, Dang J, Wang P, Liang S, Wei X, Li X, Xiang S, Sun H, Wu D, Jing D, Wang S, Xia Y, He Q, Guo Q, Liang G. Low Female Gametophyte Fertility Contributes to the Low Seed Formation of the Diploid Loquat [ Eriobotrya Japonica (Thunb.) Lindl.] Line H30-6. FRONTIERS IN PLANT SCIENCE 2022; 13:882965. [PMID: 35677248 PMCID: PMC9168767 DOI: 10.3389/fpls.2022.882965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Loquat is a widely grown subtropic fruit because of its unique ripening season, nutrient content, and smooth texture of its fruits. However, loquat is not well-received because the fruits contain many large seeds. Therefore, the development of seedless or few-seed loquat varieties is the main objective of loquat breeding. Polyploidization is an effective approach for few-seed loquat breeding, but the resource is rare. The few-seed loquat line H30-6 was derived from a seedy variety. Additionally, H30-6 was systematically studied for its fruit characteristics, gamete fertility, pollen mother cell (PMC) meiosis, stigma receptivity, in situ pollen germination, fruit set, and karyotype. The results were as follows. (1) H30-6 produced only 1.54 seeds per fruit and the fruit edible rate was 70.77%. The fruit setting rate was 14.44% under open pollination, and the other qualities were equivalent to those of two other seedy varieties. (2) The in vitro pollen germination rate was only 4.04 and 77.46% of the H30-6 embryo sacs were abnormal. Stigma receptivity and self-compatibility in H30-6 were verified by in situ pollen germination and artificial pollination. Furthermore, the seed numbers in the fruits of H30-6 did not significantly differ among any of the pollination treatments (from 1.59 ±0.14 to 2 ± 0.17). (3) The chromosome configuration at meiotic diakinesis of H30-6 was 6.87I + 9.99II + 1.07III +0.69IV +0.24V (H30-6), and a total of 89.55% of H30-6 PMCs presented univalent chromosomes. Furthermore, chromosome lagging was the main abnormal phenomenon. Karyotype analysis showed that chromosomes of H30-6 had no recognizable karyotype abnormalities leading to unusual synapsis on the large scale above. (4) The abnormal embryo sacs of H30-6 could be divided into three main types: those remaining in the tetrad stage (13.38%), those remaining in the binucleate embryo sac stage (1.41%), and those without embryo sacs (52.82%). Therefore, we conclude that the loquat line H30-6 is a potential few-seed loquat resource. The diploid loquat line H30-6 was with low gametophyte fertility, which may be driven by abnormal meiotic synapses. The low female gamete fertility was the main reason for the few seeds. This diploid loquat line provides a new possibility for breeding a few-seed loquat at the diploid level.
Collapse
Affiliation(s)
- Qingqing Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Peng Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Senlin Liang
- Economic Crops of Ziyang City, Ziyang City, China
| | - Xu Wei
- America Citrus Research and Education Center, University of Florida, Gainesville, FL, United States
| | - Xiaolin Li
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Suqiong Xiang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Haiyan Sun
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shumin Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiao He
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Yin PP, Tang LP, Zhang XS, Su YH. Options for Engineering Apomixis in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:864987. [PMID: 35371148 PMCID: PMC8967160 DOI: 10.3389/fpls.2022.864987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
In plants, embryogenesis and reproduction are not strictly dependent on fertilization. Several species can produce embryos in seeds asexually, a process known as apomixis. Apomixis is defined as clonal asexual reproduction through seeds, whereby the progeny is identical to the maternal genotype, and provides valuable opportunities for developing superior cultivars, as its induction in agricultural crops can facilitate the development and maintenance of elite hybrid genotypes. In this review, we summarize the current understanding of apomixis and highlight the successful introduction of apomixis methods into sexual crops. In addition, we discuss several genes whose overexpression can induce somatic embryogenesis as candidate genes to induce parthenogenesis, a unique reproductive method of gametophytic apomixis. We also summarize three schemes to achieve engineered apomixis, which will offer more opportunities for the realization of apomictic reproduction.
Collapse
Affiliation(s)
| | | | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, China
| | - Ying Hua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, China
| |
Collapse
|
8
|
Brassinosteroid signaling regulates female germline specification in Arabidopsis. Curr Biol 2022; 32:1102-1114.e5. [DOI: 10.1016/j.cub.2022.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
9
|
Bondada R, Kulaar DS, Siddiqi I, Maruthachalam R. Cantil - a new organ or a morphological oddity? THE NEW PHYTOLOGIST 2021; 232:1904-1908. [PMID: 34537960 DOI: 10.1111/nph.17744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Cantil is reported as a new-found organ specific to the model plant Arabidopsis thaliana that is prominent only in short-day-grown wild-type accessions or long-day-grown genetic mutants with delayed vegetative to reproductive transition. Here, we show that cantils (previously known as nubbins) arise as one of the many phenotypic consequences of aneuploidy resulting from chromosome dosage imbalances in Arabidopsis polyaneuploids despite normal reproductive transition in long-day photoperiods. Without a demonstrated function or adaptive significance, we view cantils as a morphological oddity rather than a separate organ, and as a manifestation of physiological perturbations triggered by genetic and environmental factors. We also note a striking phenotypic resemblance between 'cantil' and 'gynophore', a floral morphological structure that is naturally present in the allopolyploid Arabidopsis suecica.
Collapse
Affiliation(s)
- Ramesh Bondada
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Dilsher Singh Kulaar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Imran Siddiqi
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Ravi Maruthachalam
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
10
|
Hou Z, Liu Y, Zhang M, Zhao L, Jin X, Liu L, Su Z, Cai H, Qin Y. High-throughput single-cell transcriptomics reveals the female germline differentiation trajectory in Arabidopsis thaliana. Commun Biol 2021; 4:1149. [PMID: 34599277 PMCID: PMC8486858 DOI: 10.1038/s42003-021-02676-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
Female germline cells in flowering plants differentiate from somatic cells to produce specialized reproductive organs, called ovules, embedded deep inside the flowers. We investigated the molecular basis of this distinctive developmental program by performing single-cell RNA sequencing (scRNA-seq) of 16,872 single cells of Arabidopsis thaliana ovule primordia at three developmental time points during female germline differentiation. This allowed us to identify the characteristic expression patterns of the main cell types, including the female germline and its surrounding nucellus. We then reconstructed the continuous trajectory of female germline differentiation and observed dynamic waves of gene expression along the developmental trajectory. A focused analysis revealed transcriptional cascades and identified key transcriptional factors that showed distinct expression patterns along the germline differentiation trajectory. Our study provides a valuable reference dataset of the transcriptional process during female germline differentiation at single-cell resolution, shedding light on the mechanisms underlying germline cell fate determination. Zhimin Hou, Yanhui Liu et al. used single cell RNA-seq to analyze the model organism, Arabidopsis thaliana, at three stages during female germline differentiation. They reconstructed the continuous trajectory of female germline differentiation, providing a valuable reference for future investigation of germline cell fate determination in A. thaliana.
Collapse
Affiliation(s)
- Zhimin Hou
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yanhui Liu
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Man Zhang
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Lihua Zhao
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Xingyue Jin
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Liping Liu
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zhenxia Su
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Hanyang Cai
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Yuan Qin
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, 350002, Fuzhou, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, 530004, Nanning, China.
| |
Collapse
|
11
|
Böwer F, Schnittger A. How to Switch from Mitosis to Meiosis: Regulation of Germline Entry in Plants. Annu Rev Genet 2021; 55:427-452. [PMID: 34530640 DOI: 10.1146/annurev-genet-112618-043553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the major cell fate transitions in eukaryotes is entry into meiosis. While in single-celled yeast this decision is triggered by nutrient starvation, in multicellular eukaryotes, such as plants, it is under developmental control. In contrast to animals, plants have only a short germline and instruct cells to become meiocytes in reproductive organs late in development. This situation argues for a fundamentally different mechanism of how plants recruit meiocytes, and consistently, none of the regulators known to control meiotic entry in yeast and animals are present in plants. In recent years, several factors involved in meiotic entry have been identified, especially in the model plant Arabidopsis, and pieces of a regulatory network of germline control in plants are emerging. However, the corresponding studies also show that the mechanisms of meiotic entry control are diversified in flowering plants, calling for further analyses in different plant species. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Franziska Böwer
- Department of Developmental Biology, Institute for Plant Sciences and Microbiology, University of Hamburg, D-22609 Hamburg, Germany;
| | - Arp Schnittger
- Department of Developmental Biology, Institute for Plant Sciences and Microbiology, University of Hamburg, D-22609 Hamburg, Germany;
| |
Collapse
|
12
|
Soliman M, Podio M, Marconi G, Di Marsico M, Ortiz JPA, Albertini E, Delgado L. Differential Epigenetic Marks Are Associated with Apospory Expressivity in Diploid Hybrids of Paspalum rufum. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040793. [PMID: 33920644 PMCID: PMC8072704 DOI: 10.3390/plants10040793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Apomixis seems to emerge from the deregulation of preexisting genes involved in sexuality by genetic and/or epigenetic mechanisms. The trait is associated with polyploidy, but diploid individuals of Paspalum rufum can form aposporous embryo sacs and develop clonal seeds. Moreover, diploid hybrid families presented a wide apospory expressivity variation. To locate methylation changes associated with apomixis expressivity, we compare relative DNA methylation levels, at CG, CHG, and CHH contexts, between full-sib P. rufum diploid genotypes presenting differential apospory expressivity. The survey was performed using a methylation content-sensitive enzyme ddRAD (MCSeEd) strategy on samples at premeiosis/meiosis and postmeiosis stages. Based on the relative methylation level, principal component analysis and heatmaps, clearly discriminate samples with contrasting apospory expressivity. Differential methylated contigs (DMCs) showed 14% of homology to known transcripts of Paspalum notatum reproductive transcriptome, and almost half of them were also differentially expressed between apomictic and sexual samples. DMCs showed homologies to genes involved in flower growth, development, and apomixis. Moreover, a high proportion of DMCs aligned on genomic regions associated with apomixis in Setaria italica. Several stage-specific differential methylated sequences were identified as associated with apospory expressivity, which could guide future functional gene characterization in relation to apomixis success at diploid and tetraploid levels.
Collapse
Affiliation(s)
- Mariano Soliman
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Maricel Podio
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Gianpiero Marconi
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Marco Di Marsico
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Juan Pablo A. Ortiz
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Emidio Albertini
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Luciana Delgado
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| |
Collapse
|
13
|
Functional analysis of a conserved domain in SWITCH1 reveals a role in commitment to female meiocyte differentiation in Arabidopsis. Biochem Biophys Res Commun 2021; 551:121-126. [PMID: 33725573 DOI: 10.1016/j.bbrc.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/23/2022]
Abstract
We have investigated the mechanism of action of SWITCH1/DYAD (SWI1), an important regulator of plant meiosis in Arabidopsis that is required for meiotic chromosome organization including maintenance of sister chromatid cohesion. The central portion of SWI1 contains a domain of unknown function that shows strong conservation between SWI1 and its orthologs in maize and rice and is also found in paralogs including MALE MEIOCYTE DEATH 1 (MMD1). In order to examine the role of this domain we performed domain swap experiments into SWI1 in a swi1 mutant background. Domain swap analysis revealed functional conservation of the central domain between SWI1 and its orthologs but not with the domain from MMD1 suggesting that the domain plays an important role in SWI1 function that has been conserved in orthologs and diverged in paralogs in plant evolution. Analysis of expression of the non-complementing MMD1 domain swap SWI1(DSMMD1)::GFP transgenic lines revealed an altered pattern of expression that suggests a role for SWI1 in commitment to female meiocyte differentiation and meiosis. The results suggest that SWI1 may also play a developmental role as an identity determinant in the female germ cell lineage in addition to its known role in meiotic chromosome organization.
Collapse
|
14
|
Liu H, Cao A, Yang L, Wang J. Rice Female Meiosis: Genome-Wide mRNA, Small RNA, and DNA Methylation Analysis During Ovule Development. Methods Mol Biol 2020; 2061:267-280. [PMID: 31583666 DOI: 10.1007/978-1-4939-9818-0_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Meiosis is an essential process in sexual life cycle, not only for the genomic stability maintenance but also for the genetic diversity creation through recombination. In rice ovule, megaspore mother cells undergo meiosis to form megaspores; then the functional megaspore performs three rounds of mitoses to form female gametophyte. However, the mechanism of gene expression and regulation in female meiosis process is still poorly understood. As important gene regulatory factors, miRNAs and DNA methylation are widely involved in plant meiosis and ovule development. In order to systematically study the potential mechanism of gene expression and regulation in female meiosis, ovules at megaspore mother cell meiosis stage, functional megaspore mitosis stage, and mature female gametophytes are collected to perform genome-wide RNA sequencing, small RNA sequencing, and bisulfite sequencing. Through bioinformatics analysis, we obtained many differentially expressed genes, miRNAs, and differentially methylated genes related to female meiosis. These data may provide important clues for further revealing the mechanism of female meiosis in rice.
Collapse
Affiliation(s)
- Helian Liu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Aqin Cao
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Liyu Yang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianbo Wang
- College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Lora J, Yang X, Tucker MR. Establishing a framework for female germline initiation in the plant ovule. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2937-2949. [PMID: 31063548 DOI: 10.1093/jxb/erz212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/02/2019] [Indexed: 05/21/2023]
Abstract
Female gametogenesis in flowering plants initiates in the ovule, where a single germline progenitor differentiates from a pool of somatic cells. Germline initiation is a fundamental prerequisite for seed development but is poorly understood at the molecular level due to the location of the cells deep within the flower. Studies in Arabidopsis have shown that regulators of germline development include transcription factors such as NOZZLE/SPOROCYTELESS and WUSCHEL, components of the RNA-dependent DNA methylation pathway such as ARGONAUTE9 and RNA-DEPENDENT RNA POLYMERASE 6, and phytohormones such as auxin and cytokinin. These factors accumulate in a range of cell types from where they establish an environment to support germline differentiation. Recent studies provide fresh insight into the transition from somatic to germline identity, linking chromatin regulators, cell cycle genes, and novel mobile signals, capitalizing on cell type-specific methodologies in both dicot and monocot models. These findings are providing unique molecular and compositional insight into the mechanistic basis and evolutionary conservation of female germline development in plants.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Subtropical Fruits, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Mathew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
16
|
Yang C, Hamamura Y, Sofroni K, Böwer F, Stolze SC, Nakagami H, Schnittger A. SWITCH 1/DYAD is a WINGS APART-LIKE antagonist that maintains sister chromatid cohesion in meiosis. Nat Commun 2019; 10:1755. [PMID: 30988453 PMCID: PMC6465247 DOI: 10.1038/s41467-019-09759-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Mitosis and meiosis both rely on cohesin, which embraces the sister chromatids and plays a crucial role for the faithful distribution of chromosomes to daughter cells. Prior to the cleavage by Separase at anaphase onset, cohesin is largely removed from chromosomes by the non-proteolytic action of WINGS APART-LIKE (WAPL), a mechanism referred to as the prophase pathway. To prevent the premature loss of sister chromatid cohesion, WAPL is inhibited in early mitosis by Sororin. However, Sororin homologs have only been found to function as WAPL inhibitors during mitosis in vertebrates and Drosophila. Here we show that SWITCH 1/DYAD defines a WAPL antagonist that acts in meiosis of Arabidopsis. Crucially, SWI1 becomes dispensable for sister chromatid cohesion in the absence of WAPL. Despite the lack of any sequence similarities, we found that SWI1 is regulated and functions in a similar manner as Sororin hence likely representing a case of convergent molecular evolution across the eukaryotic kingdom.
Collapse
Affiliation(s)
- Chao Yang
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Yuki Hamamura
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Kostika Sofroni
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Franziska Böwer
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | | | - Hirofumi Nakagami
- Max-Planck-Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany.
| |
Collapse
|
17
|
|
18
|
León-Martínez G, Vielle-Calzada JP. Apomixis in flowering plants: Developmental and evolutionary considerations. Curr Top Dev Biol 2019; 131:565-604. [DOI: 10.1016/bs.ctdb.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Erbasol Serbes I, Palovaara J, Groß-Hardt R. Development and function of the flowering plant female gametophyte. Curr Top Dev Biol 2019; 131:401-434. [DOI: 10.1016/bs.ctdb.2018.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
|
21
|
Cao L, Wang S, Venglat P, Zhao L, Cheng Y, Ye S, Qin Y, Datla R, Zhou Y, Wang H. Arabidopsis ICK/KRP cyclin-dependent kinase inhibitors function to ensure the formation of one megaspore mother cell and one functional megaspore per ovule. PLoS Genet 2018. [PMID: 29513662 PMCID: PMC5858843 DOI: 10.1371/journal.pgen.1007230] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In most plants, the female germline starts with the differentiation of one megaspore mother cell (MMC) in each ovule that produces four megaspores through meiosis, one of which survives to become the functional megaspore (FM). The FM further develops into an embryo sac. Little is known regarding the control of MMC formation to one per ovule and the selective survival of the FM. The ICK/KRPs (interactor/inhibitor of cyclin-dependent kinase (CDK)/Kip-related proteins) are plant CDK inhibitors and cell cycle regulators. Here we report that in the ovules of Arabidopsis mutant with all seven ICK/KRP genes inactivated, supernumerary MMCs, FMs and embryo sacs were formed and the two embryo sacs could be fertilized to form two embryos with separate endosperm compartments. Twin seedlings were observed in about 2% seeds. Further, in the mutant ovules the number and position of surviving megaspores from one MMC were variable, indicating that the positional signal for determining the survival of megaspore was affected. Strikingly, ICK4 fusion protein with yellow fluorescence protein was strongly present in the degenerative megaspores but absent in the FM, suggesting an important role of ICKs in the degeneration of non-functional megaspores. The absence of or much weaker phenotypes in lower orders of mutants and complementation of the septuple mutant by ICK4 or ICK7 indicate that multiple ICK/KRPs function redundantly in restricting the formation of more than one MMC and in the selective survival of FM, which are critical to ensure the development of one embryo sac and one embryo per ovule. In most plants, the female germline starts with the differentiation of one megaspore mother cell (MMC) in each ovule that produces multiple megaspores through meiosis. One of the megaspores in a fixed position survives to become the functional megaspore (FM) while the other megaspores undergo degeneration. The FM further develops into an embryo sac. We have been working on the functions and regulation of a family of plant cyclin-dependent kinase inhibitors called ICKs or KRPs. We observed that in the ovules of Arabidopsis mutant with all seven ICK/KRP genes inactivated, multiple MMCs, FMs and embryo sacs were formed, and the embryo sacs could be fertilized to produce two embryos with separate endosperm compartments. Further, in mutant ovules the number and position of surviving megaspores from one MMC were variable and ICK4-YFP (yellow fluorescence protein) fusion protein was strongly expressed in the degenerative megaspores but absent in the FM. Those findings together with other results in our study indicate that multiple ICK/KRPs function redundantly in controlling the formation of one MMC per ovule and also in the degeneration of non-functional megaspores, which are critical for the subsequent development of one embryo sac per ovule and one embryo per seed.
Collapse
Affiliation(s)
- Ling Cao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Dept. of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sheng Wang
- Dept. of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Lihua Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yan Cheng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Dept. of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shengjian Ye
- Dept. of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail: (HW); (YZ)
| | - Hong Wang
- Dept. of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail: (HW); (YZ)
| |
Collapse
|
22
|
|
23
|
|
24
|
Huang S, Liu Z, Li C, Yao R, Li D, Hou L, Li X, Liu W, Feng H. Transcriptome Analysis of a Female-sterile Mutant ( fsm) in Chinese Cabbage ( Brassica campestris ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2017; 8:546. [PMID: 28443127 PMCID: PMC5385380 DOI: 10.3389/fpls.2017.00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/27/2017] [Indexed: 05/03/2023]
Abstract
Female-sterile mutants are ideal materials for studying pistil development in plants. Here, we identified a female-sterile mutant fsm in Chinese cabbage. This mutant, which exhibited stable inheritance, was derived from Chinese cabbage DH line 'FT' using a combination of isolated microspore culture and ethyl methanesulfonate mutagenesis. Compared with the wild-type line 'FT,' the fsm plants exhibited pistil abortion, and floral organs were also relatively smaller. Genetic analysis indicated that the phenotype of fsm is controlled by a single recessive nuclear gene. Morphological observations revealed that the presence of abnormal ovules in fsm likely influenced normal fertilization process, ultimately leading to female sterility. Comparative transcriptome analysis on the flower buds of 'FT' and fsm using RNA-Seq revealed a total of 1,872 differentially expressed genes (DEGs). Of these, a number of genes involved in pistil development were identified, such as PRETTY FEW SEEDS 2 (PFS2), temperature-induced lipocalin (TIL), AGAMOUS-LIKE (AGL), and HECATE (HEC). Furthermore, GO and KEGG pathway enrichment analyses of the DEGs suggested that a variety of biological processes and metabolic pathways are significantly enriched during pistil development. In addition, the expression patterns of 16 DEGs, including four pistil development-related genes and 12 floral organ development-related genes, were analyzed using qRT-PCR. A total of 31,272 single nucleotide polymorphisms were specifically detected in fsm. These results contribute to shed light on the regulatory mechanisms underlying pistil development in Chinese cabbage.
Collapse
|
25
|
Yang L, Wu Y, Yu M, Mao B, Zhao B, Wang J. Genome-wide transcriptome analysis of female-sterile rice ovule shed light on its abortive mechanism. PLANTA 2016; 244:1011-1028. [PMID: 27357232 DOI: 10.1007/s00425-016-2563-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/23/2016] [Indexed: 05/03/2023]
Abstract
The comprehensive transcriptome analysis of rice female-sterile line and wild-type line ovule provides an important clue for exploring the regulatory network of the formation of rice fertile female gametophyte. Ovules are the female reproductive tissues of rice (Oryza sativa L.) and play a major role in sexual reproduction. To investigate the potential mechanism of rice female gametophyte fertility, we used RNA sequencing, combined with genetic subtraction, to compare the transcriptome of the ovules of a high-frequency female-sterile line (fsv1) and a rice wild-type line (Gui 99) during ovule development. Ovules were harvested at three developmental stages: ovule containing megaspore mother cell in meiosis process (stage 1), ovule containing functional megaspore in mitosis process (stage 2), and ovule containing mature female gametophyte (stage 3). Six cDNA libraries generated a total of 42.2 million high-quality clean reads that aligned with 30,204 genes. The comparison between the fsv1 and Gui 99 ovules identified a large number of differentially expressed genes (DEGs), i.e., 45, 495, and 932 DEGs at the three ovule developmental stages, respectively. From the comparison of the two rice lines, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and MapMan analyses indicated that a large number of DEGs associated with starch and sucrose metabolism, plant hormone signal transduction, protein modification and degradation, oxidative phosphorylation, and receptor kinase. These DEGs might play roles in ovule development and fertile female gametophyte formation. Many transcription factor genes and epigenetic-related genes also exhibit different expression patterns and significantly different expression levels in two rice lines during ovule development, which might provide important information regarding the abortive mechanism of the female gametophyte in rice.
Collapse
Affiliation(s)
- Liyu Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ya Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Meiling Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
26
|
Yang Y, Shi J, Wang X, Liu G, Wang H. Genetic architecture and mechanism of seed number per pod in rapeseed: elucidated through linkage and near-isogenic line analysis. Sci Rep 2016; 6:24124. [PMID: 27067010 PMCID: PMC4828700 DOI: 10.1038/srep24124] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/16/2016] [Indexed: 11/09/2022] Open
Abstract
Seed number per pod (SNPP) is one of the major yield components and breeding targets in rapeseed that shows great variation and is invaluable for genetic improvement. To elucidate the genetic architecture and uncover the mechanism of SNPP, we identified five quantitative trait loci (QTLs) using the BnaZNRIL population, which were integrated with those of previous studies by physical map to demonstrate a complex and relatively complete genetic architecture of SNPP. A major QTL, qSN.A6, was successfully fine-mapped from 1910 to 267 kb using near-isogenic line (NIL). In addition, qSN.A6 exhibited an antagonistic pleiotropy on seed weight (SW), which is caused by a physiological interaction in which SNPP acts "upstream" of SW. Because the negative effect of qSN.A6 on SW cannot fully counteract its positive effect on SNPP, it also enhanced the final yield (17.4%), indicating its great potential for utilization in breeding. The following genetic and cytological experiments further confirmed that the different rate of ovule abortion was responsible for the ~5 seed difference between Zhongshuang11 and NIL-qSN.A6. This systematic approach to dissecting the comprehensive genetic architecture of SNPP and characterizing the underlying mechanism has advanced the understanding of SNPP and will facilitate the development of high-yield cultivars.
Collapse
Affiliation(s)
- Yuhua Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Guihua Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
27
|
Gangwar M, Sood H, Chauhan RS. Genomics and relative expression analysis identifies key genes associated with high female to male flower ratio in Jatropha curcas L. Mol Biol Rep 2016; 43:305-22. [PMID: 26878857 DOI: 10.1007/s11033-016-3953-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/09/2016] [Indexed: 02/02/2023]
Abstract
Jatropha curcas, has been projected as a major source of biodiesel due to high seed oil content (42 %). A major roadblock for commercialization of Jatropha-based biodiesel is low seed yield per inflorescence, which is affected by low female to male flower ratio (1:25-30). Molecular dissection of female flower development by analyzing genes involved in phase transitions and floral organ development is, therefore, crucial for increasing seed yield. Expression analysis of 42 genes implicated in floral organ development and sex determination was done at six floral developmental stages of a J. curcas genotype (IC561235) with inherently higher female to male flower ratio (1:8-10). Relative expression analysis of these genes was done on low ratio genotype. Genes TFL1, SUP, AP1, CRY2, CUC2, CKX1, TAA1 and PIN1 were associated with reproductive phase transition. Further, genes CUC2, TAA1, CKX1 and PIN1 were associated with female flowering while SUP and CRY2 in female flower transition. Relative expression of these genes with respect to low female flower ratio genotype showed up to ~7 folds increase in transcript abundance of SUP, TAA1, CRY2 and CKX1 genes in intermediate buds but not a significant increase (~1.25 folds) in female flowers, thereby suggesting that these genes possibly play a significant role in increased transition towards female flowering by promoting abortion of male flower primordia. The outcome of study has implications in feedstock improvement of J. curcas through functional validation and eventual utilization of key genes associated with female flowering.
Collapse
Affiliation(s)
- Manali Gangwar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, Solan, Himachal Pradesh, India
| | - Hemant Sood
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, Solan, Himachal Pradesh, India
| | - Rajinder Singh Chauhan
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, Solan, Himachal Pradesh, India.
| |
Collapse
|
28
|
Li J, Dukowic-Schulze S, Lindquist IE, Farmer AD, Kelly B, Li T, Smith AG, Retzel EF, Mudge J, Chen C. The plant-specific protein FEHLSTART controls male meiotic entry, initializing meiotic synchronization in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:659-71. [PMID: 26382719 DOI: 10.1111/tpj.13026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/28/2015] [Accepted: 09/02/2015] [Indexed: 05/15/2023]
Abstract
Meiosis marks the transition from the sporophyte to the gametophyte generation in the life cycle of flowering plants, and creates genetic variations through homologous recombination. In most flowering plants, meiosis is highly synchronized within each anther, which is significant for efficient fertilization. To date, little is known about the molecular mechanisms of entry into meiosis and exit from it, and only a few genes in Arabidopsis have been characterized with a role in regulating meiotic progression. In this study, we report the functional characterization of a plant-specific basic helix-loop-helix (bHLH) protein, FEHLSTART (FST), a defect in which leads to premature meiotic entry and asynchronous meiosis, and results in decreased seed yield. Investigation of the time course of meiosis showed that the onset of leptotene, the first stage of prophase I, frequently occurred earlier in fst-1 than in the wild type. Asynchronous meiosis followed, which could manifest in the disruption of regular spindle structures and symmetric cell divisions in fst-1 mutants during the meiosis I/II transition. In accordance with frequently accelerated meiotic entry, whole-transcriptome analysis of fst-1 anthers undergoing meiosis revealed that 19 circadian rhythm genes were affected and 47 pollen-related genes were prematurely expressed at a higher level. Taken together, we propose that FST is required for normal meiotic entry and the establishment of meiotic synchrony.
Collapse
Affiliation(s)
- Junhua Li
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Stefanie Dukowic-Schulze
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Ingrid E Lindquist
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Andrew D Farmer
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Bridget Kelly
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Tao Li
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Alan G Smith
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Ernest F Retzel
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Joann Mudge
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| |
Collapse
|
29
|
Singh DK, Spillane C, Siddiqi I. PATRONUS1 is expressed in meiotic prophase I to regulate centromeric cohesion in Arabidopsis and shows synthetic lethality with OSD1. BMC PLANT BIOLOGY 2015; 15:201. [PMID: 26272661 PMCID: PMC4536785 DOI: 10.1186/s12870-015-0558-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/18/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Retention of sister centromere cohesion during meiosis I and its dissolution at meiosis II is necessary for balanced chromosome segregation and reduction of chromosome number. PATRONUS1 (PANS1) has recently been proposed to regulate centromere cohesion in Arabidopsis after meiosis I, during interkinesis. pans1 mutants lose centromere cohesion prematurely during interkinesis and segregate randomly at meiosis II. PANS1 protein interacts with components of the Anaphase Promoting Complex/Cyclosome (APC/C). RESULTS We show here that PANS1 protein is found mainly in prophase I of meiosis, with its level declining late in prophase I during diplotene. PANS1 also shows expression in dividing tissues. We demonstrate that, in addition to the previously reported premature loss of centromere cohesion during interkinesis, pans1 mutants show partially penetrant defects in centromere cohesion during meiosis I. We also determine that pans1 shows synthetic lethality at the level of the sporophyte, with Omission of Second Division 1 (osd1), which encodes a known inhibitor of the APC/C that is required for cell cycle progression during mitosis, as well as meiosis I and II. CONCLUSIONS Our results show that PANS1 is expressed mainly in meiosis I where it has an important function and together with previous studies indicate that PANS1 and OSD1 are part of a network linking centromere cohesion and cell cycle progression through control of APC/C activity.
Collapse
Affiliation(s)
- Dipesh Kumar Singh
- Centre for Cellular and Molecular Biology (CSIR), Uppal Road, Hyderabad, 500007, India.
| | - Charles Spillane
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Botany and Plant Sciences, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Imran Siddiqi
- Centre for Cellular and Molecular Biology (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
30
|
De novo sequencing of the Hypericum perforatum L. flower transcriptome to identify potential genes that are related to plant reproduction sensu lato. BMC Genomics 2015; 16:254. [PMID: 25887758 PMCID: PMC4451943 DOI: 10.1186/s12864-015-1439-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/06/2015] [Indexed: 02/07/2023] Open
Abstract
Background St. John’s wort (Hypericum perforatum L.) is a medicinal plant that produces important metabolites with antidepressant and anticancer activities. Recently gained biological information has shown that this species is also an attractive model system for the study of a naturally occurring form of asexual reproduction called apomixis, which allows cloning plants through seeds. In aposporic gametogenesis, one or multiple somatic cells belonging to the ovule nucellus change their fate by dividing mitotically and developing functionally unreduced embryo sacs by mimicking sexual gametogenesis. Although the introduction of apomixis into agronomically important crops could have revolutionary implications for plant breeding, the genetic control of this mechanism of seed formation is still not well understood for most of the model species investigated so far. We used Roche 454 technology to sequence the entire H. perforatum flower transcriptome of whole flower buds and single flower verticils collected from obligately sexual and unrelated highly or facultatively apomictic genotypes, which enabled us to identify RNAs that are likely exclusive to flower organs (i.e., sepals, petals, stamens and carpels) or reproductive strategies (i.e., sexual vs. apomictic). Results Here we sequenced and annotated the flower transcriptome of H. perforatum with particular reference to reproductive organs and processes. In particular, in our study we characterized approximately 37,000 transcripts found expressed in male and/or female reproductive organs, including tissues or cells of sexual and apomictic flower buds. Ontological annotation was applied to identify major biological processes and molecular functions involved in flower development and plant reproduction. Starting from this dataset, we were able to recover and annotate a large number of transcripts related to meiosis, gametophyte/gamete formation, and embryogenesis, as well as genes that are exclusively or preferentially expressed in sexual or apomictic libraries. Real-Time RT-qPCR assays on pistils and anthers collected at different developmental stages from accessions showing alternative modes of reproduction were used to identify potential genes that are related to plant reproduction sensu lato in H. perforatum. Conclusions Our approach of sequencing flowers from two fully obligate sexual genotypes and two unrelated highly apomictic genotypes, in addition to different flower parts dissected from a facultatively apomictic accession, enabled us to analyze the complexity of the flower transcriptome according to its main reproductive organs as well as for alternative reproductive behaviors. Both annotation and expression data provided original results supporting the hypothesis that apomixis in H. perforatum relies upon spatial or temporal mis-expression of genes acting during female sexual reproduction. The present analyses aim to pave the way toward a better understanding of the molecular basis of flower development and plant reproduction, by identifying genes or RNAs that may differentiate or regulate the sexual and apomictic reproductive pathways in H. perforatum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1439-y) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Zhao L, He J, Cai H, Lin H, Li Y, Liu R, Yang Z, Qin Y. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:615-28. [PMID: 25182975 PMCID: PMC7494246 DOI: 10.1111/tpj.12657] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 05/03/2023]
Abstract
Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis.
Collapse
Affiliation(s)
- Lihua Zhao
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiangman He
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hanyang Cai
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Haiyan Lin
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanqiang Li
- University of Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renyi Liu
- Department of Botany and Plant Science, University of California, Riverside, CA 92521, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Science, University of California, Riverside, CA 92521, USA
| | - Yuan Qin
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- For correspondence ()
| |
Collapse
|
32
|
De K, Sterle L, Krueger L, Yang X, Makaroff CA. Arabidopsis thaliana WAPL is essential for the prophase removal of cohesin during meiosis. PLoS Genet 2014; 10:e1004497. [PMID: 25033056 PMCID: PMC4102442 DOI: 10.1371/journal.pgen.1004497] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/28/2014] [Indexed: 12/18/2022] Open
Abstract
Sister chromatid cohesion, which is mediated by the cohesin complex, is essential for the proper segregation of chromosomes in mitosis and meiosis. The establishment of stable sister chromatid cohesion occurs during DNA replication and involves acetylation of the complex by the acetyltransferase CTF7. In higher eukaryotes, the majority of cohesin complexes are removed from chromosomes during prophase. Studies in fly and human have shown that this process involves the WAPL mediated opening of the cohesin ring at the junction between the SMC3 ATPase domain and the N-terminal domain of cohesin's α-kleisin subunit. We report here the isolation and detailed characterization of WAPL in Arabidopsis thaliana. We show that Arabidopsis contains two WAPL genes, which share overlapping functions. Plants in which both WAPL genes contain T-DNA insertions show relatively normal growth and development but exhibit a significant reduction in male and female fertility. The removal of cohesin from chromosomes during meiotic prophase is blocked in Atwapl mutants resulting in chromosome bridges, broken chromosomes and uneven chromosome segregation. In contrast, while subtle mitotic alterations are observed in some somatic cells, cohesin complexes appear to be removed normally. Finally, we show that mutations in AtWAPL suppress the lethality associated with inactivation of AtCTF7. Taken together our results demonstrate that WAPL plays a critical role in meiosis and raises the possibility that mechanisms involved in the prophase removal of cohesin may vary between mitosis and meiosis in plants.
Collapse
Affiliation(s)
- Kuntal De
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| | - Lauren Sterle
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| | - Laura Krueger
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| | - Xiaohui Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| | - Christopher A. Makaroff
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| |
Collapse
|
33
|
Moghe GD, Shiu SH. The causes and molecular consequences of polyploidy in flowering plants. Ann N Y Acad Sci 2014; 1320:16-34. [PMID: 24903334 DOI: 10.1111/nyas.12466] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polyploidy is an important force shaping plant genomes. All flowering plants are descendants of an ancestral polyploid species, and up to 70% of extant vascular plant species are believed to be recent polyploids. Over the past century, a significant body of knowledge has accumulated regarding the prevalence and ecology of polyploid plants. In this review, we summarize our current understanding of the causes and molecular consequences of polyploidization in angiosperms. We also provide a discussion on the relationships between polyploidy and adaptation and suggest areas where further research may provide a better understanding of polyploidy.
Collapse
|
34
|
Zamariola L, Tiang CL, De Storme N, Pawlowski W, Geelen D. Chromosome segregation in plant meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:279. [PMID: 24987397 PMCID: PMC4060054 DOI: 10.3389/fpls.2014.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.
Collapse
Affiliation(s)
- Linda Zamariola
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
| | - Choon Lin Tiang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
| | - Wojtek Pawlowski
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
- *Correspondence: Danny Geelen, Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
35
|
Wijnker E, Schnittger A. Control of the meiotic cell division program in plants. PLANT REPRODUCTION 2013; 26:143-58. [PMID: 23852379 PMCID: PMC3747318 DOI: 10.1007/s00497-013-0223-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/23/2013] [Indexed: 05/02/2023]
Abstract
While the question of why organisms reproduce sexually is still a matter of controversy, it is clear that the foundation of sexual reproduction is the formation of gametes with half the genomic DNA content of a somatic cell. This reduction in genomic content is accomplished through meiosis that, in contrast to mitosis, comprises two subsequent chromosome segregation steps without an intervening S phase. In addition, meiosis generates new allele combinations through the compilation of new sets of homologous chromosomes and the reciprocal exchange of chromatid segments between homologues. Progression through meiosis relies on many of the same, or at least homologous, cell cycle regulators that act in mitosis, e.g., cyclin-dependent kinases and the anaphase-promoting complex/cyclosome. However, these mitotic control factors are often differentially regulated in meiosis. In addition, several meiosis-specific cell cycle genes have been identified. We here review the increasing knowledge on meiotic cell cycle control in plants. Interestingly, plants appear to have relaxed cell cycle checkpoints in meiosis in comparison with animals and yeast and many cell cycle mutants are viable. This makes plants powerful models to study meiotic progression and allows unique modifications to their meiotic program to develop new plant-breeding strategies.
Collapse
Affiliation(s)
- Erik Wijnker
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
36
|
Singh DK, Andreuzza S, Panoli AP, Siddiqi I. AtCTF7 is required for establishment of sister chromatid cohesion and association of cohesin with chromatin during meiosis in Arabidopsis. BMC PLANT BIOLOGY 2013; 13:117. [PMID: 23941555 PMCID: PMC3751900 DOI: 10.1186/1471-2229-13-117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/05/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND The establishment of sister chromatid cohesion followed by its controlled release at the metaphase to anaphase transition is necessary for faithful segregation of chromosomes in mitosis and meiosis. Cohesion is established by the action of Ctf7/Eco1 on the cohesin complex during DNA replication following loading of cohesin onto chromatin by the Scc2-Scc4 complex. Ctf7 is also required for sister chromatid cohesion during repair of DNA double strand breaks. Ctf7 contains an acetyltransferase domain and a zinc finger motif and acetylates conserved lysine residues in the Smc3 subunit of cohesin. In Arabidopsis CTF7 is encoded by a single gene and mutations in AtCTF7 cause embryo lethality indicating that the gene is essential. RESULTS To study the function of Ctf7 in plants and to determine its role in sister chromatid cohesion, we constructed a conditional allele of AtCTF7 in Arabidopsis using an inducible RNA interference (RNAi) strategy, so as to avoid the embryo lethality caused by mutations in AtCTF7. We found that induction of RNAi against AtCTF7 caused severe inhibition and defects in growth during vegetative and reproductive stages as well as sterility. AtCTF7-RNAi plants displayed chromosome fragmentation and loss of sister chromatid cohesion during meiosis. Immunostaining for the cohesion subunit AtSCC3 showed a marked reduction in association of cohesin with chromatin during meiosis in AtCTF7-RNAi plants. CONCLUSIONS We find that AtCTF7 is essential for sister chromatid cohesion during meiosis in Arabidopsis and is required for association of cohesin with chromatin in prophase of meiosis.
Collapse
Affiliation(s)
- Dipesh K Singh
- Centre for Cellular & Molecular Biology (CSIR), Uppal Road, Hyderabad 500007, India
| | - Sebastien Andreuzza
- Centre for Cellular & Molecular Biology (CSIR), Uppal Road, Hyderabad 500007, India
| | - Aneesh P Panoli
- Centre for Cellular & Molecular Biology (CSIR), Uppal Road, Hyderabad 500007, India
| | - Imran Siddiqi
- Centre for Cellular & Molecular Biology (CSIR), Uppal Road, Hyderabad 500007, India
| |
Collapse
|
37
|
Xu S, Innes DJ, Lynch M, Cristescu ME. The role of hybridization in the origin and spread of asexuality in Daphnia. Mol Ecol 2013; 22:4549-61. [PMID: 23879327 DOI: 10.1111/mec.12407] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 05/16/2013] [Accepted: 05/26/2013] [Indexed: 11/27/2022]
Abstract
The molecular mechanisms leading to asexuality remain little understood despite their substantial bearing on why sexual reproduction is dominant in nature. Here, we examine the role of hybridization in the origin and spread of obligate asexuality in Daphnia pulex, arguably the best-documented case of contagious asexuality. Obligately parthenogenetic (OP) clones of D. pulex have traditionally been separated into 'hybrid' (Ldh SF) and 'nonhybrid' (Ldh SS) forms because the lactase dehydrogenase (Ldh) locus distinguishes the cyclically parthenogenetic (CP) lake dwelling Daphnia pulicaria (Ldh FF) from its ephemeral pond dwelling sister species D. pulex (Ldh SS). The results of our population genetic analyses based on microsatellite loci suggest that both Ldh SS and SF OP individuals can originate from the crossing of CP female F1 (D. pulex × D. pulicaria) and backcross with males from OP lineages carrying genes that suppress meiosis specifically in female offspring. In previous studies, a suite of diagnostic markers was found to be associated with OP in Ldh SS D. pulex lineages. Our association mapping supports a similar genetic mechanism for the spread of obligate parthenogenesis in Ldh SF OP individuals. Interestingly, our study shows that CP D. pulicaria carry many of the diagnostic microsatellite alleles associated with obligate parthenogenesis. We argue that the assemblage of mutations that suppress meiosis and underlie obligate parthenogenesis in D. pulex originated due to a unique historical hybridization and introgression event between D. pulex and D. pulicaria.
Collapse
Affiliation(s)
- Sen Xu
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada N9B 3P4.
| | | | | | | |
Collapse
|
38
|
De Storme N, Geelen D. Sexual polyploidization in plants--cytological mechanisms and molecular regulation. THE NEW PHYTOLOGIST 2013; 198:670-684. [PMID: 23421646 PMCID: PMC3744767 DOI: 10.1111/nph.12184] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/01/2013] [Indexed: 05/18/2023]
Abstract
In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization.
Collapse
Affiliation(s)
- Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, B-9000, Gent, Belgium
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, B-9000, Gent, Belgium
| |
Collapse
|
39
|
Abstract
Meiosis is at the heart of Mendelian heredity. Recently, much progress has been made in the understanding of this process, in various organisms. In the last 15 years, the functional characterization of numerous genes involved in meiosis has dramatically deepened our knowledge of key events, including recombination, the cell cycle, and chromosome distribution. Through a constantly advancing tool set and knowledge base, a number of advances have been made that will allow manipulation of meiosis from a plant breeding perspective. This review focuses on the aspects of meiosis that can be tinkered with to create and propagate new varieties. We would like to dedicate this review to the memory of Simon W. Chan (1974-2012) (http://www.plb.ucdavis.edu/labs/srchan/).
Collapse
|
40
|
Schatlowski N, Köhler C. Tearing down barriers: understanding the molecular mechanisms of interploidy hybridizations. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6059-67. [PMID: 23105129 DOI: 10.1093/jxb/ers288] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polyploidization, the process leading to more than two sets of chromosomes, is widely recognized as a major speciation mechanism that might hold the key to Darwin's 'abominable mystery', as he referred to the sudden rise of angiosperms to ecological dominance. On their way to become polyploid most plants take the route through the production of unreduced gametes that might eventually lead to viable triploid intermediates able to backcross or self-fertilize to give rise to stable polyploid plants. Polyploids are almost instantly reproductively isolated from their non-polyploid ancestors; as hybridizations of species that differ in ploidy mostly lead to non-viable progeny. This immediate reproductive barrier referred to as 'triploid block' is established in the endosperm, pointing towards an important but greatly underestimated role of the endosperm in preventing interploidy hybridizations. Parent-of-origin specific gene expression occurs predominantly in the endosperm and might cause the dosage-sensitivity of the endosperm. This article illustrates, based on the recent molecular and genetic findings mainly gained in the model species Arabidopsis thaliana, the 'journey' of unreduced gametes to triploid intermediates to polyploid plants and will also discuss the implications for interploidy and interspecies hybridizations.
Collapse
Affiliation(s)
- Nicole Schatlowski
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, 750 07 Uppsala, Sweden
| | | |
Collapse
|
41
|
Seeliger K, Dukowic-Schulze S, Wurz-Wildersinn R, Pacher M, Puchta H. BRCA2 is a mediator of RAD51- and DMC1-facilitated homologous recombination in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 193:364-75. [PMID: 22077663 DOI: 10.1111/j.1469-8137.2011.03947.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Mutations in the breast cancer susceptibility gene 2 (BRCA2) are correlated with hereditary breast cancer in humans. Studies have revealed that mammalian BRCA2 plays crucial roles in DNA repair. Therefore, we wished to define the role of the BRCA2 homologs in Arabidopsis in detail. • As Arabidopsis contains two functional BRCA2 homologs, an Atbrca2 double mutant was generated and analyzed with respect to hypersensitivity to genotoxic agents and recombination frequencies. Cytological studies addressing male and female meiosis were also conducted, and immunolocalization was performed in male meiotic prophase I. • The Atbrca2 double mutant showed hypersensitivity to the cross-linking agent mitomycin C and displayed a dramatic reduction in somatic homologous recombination frequency, especially after double-strand break induction. The loss of AtBRCA2 also led to severe defects in male meiosis and development of the female gametophyte and impeded proper localization of the synaptonemal complex protein AtZYP1 and the recombinases AtRAD51 and AtDMC1. • The results demonstrate that AtBRCA2 is important for both somatic and meiotic homologous recombination. We further show that AtBRCA2 is required for proper meiotic synapsis and mediates the recruitment of AtRAD51 and AtDMC1. Our results suggest that BRCA2 controls single-strand invasion steps during homologous recombination in plants.
Collapse
Affiliation(s)
- Katharina Seeliger
- Botanical Institute II, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
42
|
Schmidt A, Wuest SE, Vijverberg K, Baroux C, Kleen D, Grossniklaus U. Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development. PLoS Biol 2011; 9:e1001155. [PMID: 21949639 PMCID: PMC3176755 DOI: 10.1371/journal.pbio.1001155] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/05/2011] [Indexed: 01/23/2023] Open
Abstract
Germ line specification is a crucial step in the life cycle of all organisms. For sexual plant reproduction, the megaspore mother cell (MMC) is of crucial importance: it marks the first cell of the plant "germline" lineage that gets committed to undergo meiosis. One of the meiotic products, the functional megaspore, subsequently gives rise to the haploid, multicellular female gametophyte that harbours the female gametes. The MMC is formed by selection and differentiation of a single somatic, sub-epidermal cell in the ovule. The transcriptional network underlying MMC specification and differentiation is largely unknown. We provide the first transcriptome analysis of an MMC using the model plant Arabidopsis thaliana with a combination of laser-assisted microdissection and microarray hybridizations. Statistical analyses identified an over-representation of translational regulation control pathways and a significant enrichment of DEAD/DEAH-box helicases in the MMC transcriptome, paralleling important features of the animal germline. Analysis of two independent T-DNA insertion lines suggests an important role of an enriched helicase, MNEME (MEM), in MMC differentiation and the restriction of the germline fate to only one cell per ovule primordium. In heterozygous mem mutants, additional enlarged MMC-like cells, which sometimes initiate female gametophyte development, were observed at higher frequencies than in the wild type. This closely resembles the phenotype of mutants affected in the small RNA and DNA-methylation pathways important for epigenetic regulation. Importantly, the mem phenotype shows features of apospory, as female gametophytes initiate from two non-sister cells in these mutants. Moreover, in mem gametophytic nuclei, both higher order chromatin structure and the distribution of LIKE HETEROCHROMATIN PROTEIN1 were affected, indicating epigenetic perturbations. In summary, the MMC transcriptome sets the stage for future functional characterization as illustrated by the identification of MEM, a novel gene involved in the restriction of germline fate.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Samuel E. Wuest
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Kitty Vijverberg
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Célia Baroux
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Daniela Kleen
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
43
|
Sporophytic and gametophytic functions of the cell cycle-associated Mob1 gene in Arabidopsis thaliana L. Gene 2011; 484:1-12. [DOI: 10.1016/j.gene.2011.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/15/2011] [Accepted: 05/16/2011] [Indexed: 11/20/2022]
|
44
|
Libeau P, Durandet M, Granier F, Marquis C, Berthomé R, Renou JP, Taconnat-Soubirou L, Horlow C. Gene expression profiling of Arabidopsis meiocytes. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:784-93. [PMID: 21815983 DOI: 10.1111/j.1438-8677.2010.00435.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is a special type of cell division present in all organisms that reproduce by sexual reproduction. It ensures the transition between the sporophytic and gametophytic state and allows gamete production through meiotic recombination and chromosome number reduction. In this paper, we describe a technique for the isolation of Arabidopsis thaliana male meiocytes. From this cellular material, it was then possible to develop large-scale transcriptome studies using CATMA microarrays and thus to obtain an overview of genes expressed during Arabidopsis meiosis. The expression profiles were studied with either stringent statistical criteria or by performing clustering. Both methods resulted in gene clusters enriched in meiosis-specific genes (from 14- to 55-fold). Analysis of these data provided a unique set of genes that will be pivotal to further analysis aimed at understanding the meiotic process.
Collapse
Affiliation(s)
- P Libeau
- Institut Jean-Pierre Bourgin, INRA de Versailles, INRA-AgroParisTech, Versailles, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ravi M, Shibata F, Ramahi JS, Nagaki K, Chen C, Murata M, Chan SWL. Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana. PLoS Genet 2011; 7:e1002121. [PMID: 21695238 PMCID: PMC3111537 DOI: 10.1371/journal.pgen.1002121] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 04/21/2011] [Indexed: 01/12/2023] Open
Abstract
Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior. There are two types of cell division in eukaryotes. Mitosis produces cells with identical copies of the genome, while meiosis produces gametes with half the number of chromosomes found in the parent cell. Faithful genome inheritance is controlled by centromeres, chromosomal structures that allow duplicated chromosomes to be pulled apart correctly during cell division. Centromeres are differentially configured during meiosis (relative to mitosis) so chromosome number can be reduced by half. Centromeres are built upon a specialized DNA packing protein, CENH3. Here we describe altered forms of CENH3 that are loaded correctly during mitosis but are severely depleted from centromeres in meiotic cells. As CENH3 is essential for chromosome inheritance, plants expressing these versions of the protein are sterile because they produce very few viable gametes. Differential loading of CENH3 during meiosis may play a role in modulating chromosome inheritance to form haploid gametes.
Collapse
Affiliation(s)
- Maruthachalam Ravi
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Fukashi Shibata
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Joseph S. Ramahi
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Minoru Murata
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Simon W. L. Chan
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Armenta-Medina A, Demesa-Arévalo E, Vielle-Calzada JP. Epigenetic control of cell specification during female gametogenesis. ACTA ACUST UNITED AC 2011; 24:137-47. [PMID: 21484604 DOI: 10.1007/s00497-011-0166-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 03/17/2011] [Indexed: 11/29/2022]
Abstract
In flowering plants, the formation of gametes depends on the differentiation of cellular precursors that divide meiotically before giving rise to a multicellular gametophyte. The establishment of this gametophytic phase presents an opportunity for natural selection to act on the haploid plant genome by means of epigenetic mechanisms that ensure a tight regulation of plant reproductive development. Despite this early acting selective pressure, there are numerous examples of naturally occurring developmental alternatives that suggest a flexible regulatory control of cell specification and subsequent gamete formation in flowering plants. In this review, we discuss recent findings indicating that epigenetic mechanisms related to the activity of small RNA pathways prevailing during ovule formation play an essential role in cell specification and genome integrity. We also compare these findings to small RNA pathways acting during gametogenesis in animals and discuss their implications for the understanding of the mechanisms that control the establishment of the female gametophytic lineage during both sexual reproduction and apomixis.
Collapse
Affiliation(s)
- Alma Armenta-Medina
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, CINVESTAV, Irapuato, Mexico
| | | | | |
Collapse
|
47
|
Brownfield L, Köhler C. Unreduced gamete formation in plants: mechanisms and prospects. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1659-68. [PMID: 21109579 DOI: 10.1093/jxb/erq371] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyploids, organisms with more than two sets of chromosomes, are widespread in flowering plants, including many important crop species. Increases in ploidy level are believed to arise commonly through the production of gametes that have not had their ploidy level reduced during meiosis. Although there have been cytological descriptions of unreduced gamete formation in a number of plants, until recently none of the underlying genes or molecular mechanisms involved in unreduced gamete production have been described. The recent discovery of several genes in which mutations give rise to a high frequency of unreduced gametes in the model plant Arabidopsis thaliana opens the door to the elucidation of this important event and its manipulation in crop species. Here this recent progress is reviewed and the identified genes and the mechanism by which the loss of protein function leads to the formation of unreduced gametes are discussed. The potential to use the knowledge gained from Arabidopsis mutants to design tools and develop techniques to engineer unreduced gamete production in important crop species for use in plant breeding is also discussed.
Collapse
Affiliation(s)
- Lynette Brownfield
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, Zurich, Switzerland
| | | |
Collapse
|
48
|
Edlinger B, Schlögelhofer P. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1545-63. [PMID: 21220780 DOI: 10.1093/jxb/erq421] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.
Collapse
Affiliation(s)
- Bernd Edlinger
- University of Vienna, Max F. Perutz Laboratories, Department of Chromosome Biology, Dr. Bohr-Gasse 1, Vienna, Austria
| | | |
Collapse
|
49
|
Pérez-España VH, Sánchez-León N, Vielle-Calzada JP. CYP85A1 is required for the initiation of female gametogenesis in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2011; 6:321-6. [PMID: 21364326 PMCID: PMC3142408 DOI: 10.4161/psb.6.3.13206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 08/02/2010] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are steroid-like hormones essential for plant growth and development. The most active forms of brassinosteroids are Brassinolide (BL) and Castasterone (CS), which are catalyzed by members of the CYP85A family of cytochrome P450 monooxygenases. In Arabidopsis thaliana there are two CYP85A gene members: CYP85A1 and CYP85A2. Unlike CYP85A1, CYP85A2 mediates the conversion of CS to BL. In contrast to mutations in CYP85A2 that result in severe dwarfism, cyp85a1 mutants do not show any obvious morphological phenotype during vegetative or floral development. By analyzing large-scale transcriptional activity in the ovule of Arabidopsis thaliana (Arabidopsis), we determined that CYP85A1 is abundantly expressed in wild-type but not in sporocyteless (spl) ovules lacking a female gametophyte. Insertional T-DNA lines defective in the activity of CYP85A1 exhibit a semi-sterile phenotype, suggesting a role for the corresponding enzyme acting at the gametophytic level. The CYP85A1 mRNA is localized in the female gametophyte and its neighboring sporophytic cells; however, translational fusions of the CYP85A1 promoter to uidA (GUS) showed GUS expression restricted to the female gametophyte, suggesting that within the ovule the corresponding protein is mostly active in gametophytic cells. A cytological analysis of heterozygous cyp85a1/+ individuals showed that close to 50% of female gametophytes are arrested before the first nuclear mitotic division of the haploid functional megaspore. Our results indicate that BR biosynthesis is required for the initiation of megagametogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Victor Hugo Pérez-España
- Grupo de Desarrollo Reproductivo y Apomixis, Departamento de Ingeniería Genética y Laboratorio Nacional de Genómica para Biodiversidad, CINVESTAV Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, Mexico
| | | | | |
Collapse
|
50
|
Abstract
The events occurring at the onset of meiosis have not been fully elucidated. In the present study, OsAM1 was identified in rice (Oryza sativa L.) by map-based cloning. OsAM1, a homolog of Arabidopsis SWI1 and maize AM1, encodes a protein with a coiled-coil domain in its central region. In the Osam1 mutant, pollen mother cells are arrested at leptotene, showing that OsAM1 is required for the leptotene-zygotene transition. Immunocytological analysis revealed that OsAM1 exists as foci in early prophase I meiocytes. Very faint OsREC8 foci persisted in the Osam1 mutant, indicating that OsAM1 is not required for the initial meiotic recruitment of OsREC8. In the absence of OsAM1, many other critical meiotic components, including PAIR2, ZEP1 and OsMER3, could not be correctly installed onto chromosomes. In contrast, in pair2, Osmer3 and zep1 mutants, OsAM1 could be loaded normally, suggesting that OsAM1 plays a fundamental role in building the proper chromosome structure at the beginning of meiosis.
Collapse
|