1
|
Harbin JP, Shen Y, Lin SY, Kemper K, Haag ES, Schwarz EM, Ellis RE. Robust sex determination in the Caenorhabditis nigoni germ line. Genetics 2025; 229:iyae207. [PMID: 39663849 PMCID: PMC12005254 DOI: 10.1093/genetics/iyae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Sexual characteristics and reproductive systems are dynamic traits in many taxa, but the developmental modifications that allow change and innovation are largely unknown. A leading model for this process is the evolution of self-fertile hermaphrodites from male/female ancestors. However, these studies require direct analysis of sex determination in male/female species, as well as in the hermaphroditic species that are related to them. In Caenorhabditis nematodes, this has only become possible recently, with the discovery of new species. Here, we use gene editing to characterize major sex determination genes in Caenorhabditis nigoni, a sister to the widely studied hermaphroditic species Caenorhabditis briggsae. These 2 species are close enough to mate and form partially fertile hybrids. First, we find that tra-1 functions as the master regulator of sex in C. nigoni, in both the soma and the germ line. Surprisingly, these mutants make only sperm, in contrast to tra-1 mutants in related hermaphroditic species. Moreover, the XX mutants display a unique defect in somatic gonad development that is not seen elsewhere in the genus. Second, the fem-3 gene acts upstream of tra-1 in C. nigoni, and the mutants are females, unlike in the sister species C. briggsae, where they develop as hermaphrodites. This result points to a divergence in the role of fem-3 in the germ line of these species. Third, tra-2 encodes a transmembrane receptor that acts upstream of fem-3 in C. nigoni. Outside of the germ line, tra-2 mutations in all species cause a similar pattern of partial masculinization. However, heterozygosity for tra-2 does not alter germ cell fates in C. nigoni, as it can in sensitized backgrounds of 2 hermaphroditic species of Caenorhabditis. Finally, the epistatic relationships point to a simple, linear germline pathway in which tra-2 regulates fem-3 which regulates tra-1, unlike the more complex relationships seen in hermaphrodite germ cell development. Taking these results together, the regulation of sex determination is more robust and streamlined in the male/female species C. nigoni than in related species that make self-fertile hermaphrodites, a conclusion supported by studies of interspecies hybrids using sex determination mutations. Thus, we infer that the origin of self-fertility not only required mutations that activated the spermatogenesis program in XX germ lines, but prior to these there must have been mutations that decanalized the sex determination process, allowing for subsequent changes to germ cell fates.
Collapse
Affiliation(s)
- Jonathan P Harbin
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
| | - Yongquan Shen
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
| | - Shin-Yi Lin
- Department of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Kevin Kemper
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
| | - Eric S Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ronald E Ellis
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
- Department of Molecular Biology, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
2
|
McCauley MA, Milligan WR, Lin J, Penley MJ, Quinn LM, Morran LT. An empirical test of Baker's law: dispersal favors increased rates of self-fertilization. Evolution 2025; 79:432-441. [PMID: 39660484 DOI: 10.1093/evolut/qpae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Baker's law is the observation that recently dispersed populations are more likely to be self-fertilizing than populations at the range core. The explanatory hypothesis is that dispersal favors self-fertilization due to reproductive assurance. Caenorhabditis elegans nematodes reproduce via either self-fertilization or outcrossing and frequently disperse in small numbers to new bacterial food sources. While C. elegans males facilitate outcrossing, males and outcrossing are rare in natural C. elegans populations. Here, we use experimental evolution to test if frequent dispersal selects for the invasion of self-fertilization into predominantly outcrossing populations. C. elegans dispersal often occurs in the dauer alternative life stage. Therefore, we tested the effects of dispersal on rates of self-fertilization in populations exposed to dauer-inducing conditions and populations maintained under standard lab conditions. Overall, we found that populations required to disperse to new food sources rapidly evolved substantially elevated rates of self-fertilization compared to populations that were not required to disperse in both dauer and non-dauer populations. Our results demonstrate that frequent dispersal can readily favor the evolution of increased selfing rates in C. elegans populations, regardless of life stage. These data provide a potential mechanism to explain the dearth of outcrossing in natural populations of C. elegans.
Collapse
Affiliation(s)
- Michelle A McCauley
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, GA, United States
| | | | - Julie Lin
- Department of Biology, Emory University, Atlanta, GA, United States
| | - McKenna J Penley
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Lilja M Quinn
- Department of Biology, Washington University, St. Louis, MO, United States
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Adams S, Tandonnet S, Pires-daSilva A. Balancing selfing and outcrossing: the genetics and cell biology of nematodes with three sexual morphs. Genetics 2025; 229:iyae173. [PMID: 39548861 PMCID: PMC11796466 DOI: 10.1093/genetics/iyae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024] Open
Abstract
Trioecy, a rare reproductive system where hermaphrodites, females, and males coexist, is found in certain algae, plants, and animals. Though it has evolved independently multiple times, its rarity suggests it may be an unstable or transitory evolutionary strategy. In the well-studied Caenorhabditis elegans, attempts to engineer a trioecious strain have reverted to the hermaphrodite/male system, reinforcing this view. However, these studies did not consider the sex-determination systems of naturally stable trioecious species. The discovery of free-living nematodes of the Auanema genus, which have naturally stable trioecy, provides an opportunity to study these systems. In Auanema, females produce only oocytes, while hermaphrodites produce both oocytes and sperm for self-fertilization. Crosses between males and females primarily produce daughters (XX hermaphrodites and females), while male-hermaphrodite crosses result in sons only. These skewed sex ratios are due to X-chromosome drive during spermatogenesis, where males produce only X-bearing sperm through asymmetric cell division. The stability of trioecy in Auanema is influenced by maternal control over sex determination and environmental cues. These factors offer insights into the genetic and environmental dynamics that maintain trioecy, potentially explaining its evolutionary stability in certain species.
Collapse
Affiliation(s)
- Sally Adams
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sophie Tandonnet
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | | |
Collapse
|
4
|
Yoshida K, Witte H, Hatashima R, Sun S, Kikuchi T, Röseler W, Sommer RJ. Rapid chromosome evolution and acquisition of thermosensitive stochastic sex determination in nematode androdioecious hermaphrodites. Nat Commun 2024; 15:9649. [PMID: 39511185 PMCID: PMC11544036 DOI: 10.1038/s41467-024-53854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
The factors contributing to evolution of androdioecy, the coexistence of hermaphrodites and males such as in Caenorhabditis elegans, remains poorly known. However, nematodes exhibit androdioecy in at last 13 genera with the predatory genus Pristionchus having seven independent transitions towards androdioecy. Nonetheless, associated genomic architecture and sex determination mechanisms are largely known from Caenorhabditis. Here, studying 47 Pristionchus species, we observed repeated chromosome evolution which abolished the ancestral XX/XO sex chromosome system. Two phylogenetically unrelated androdioecious Pristionchus species have no genomic differences between sexes and mating hermaphrodites with males resulted in hermaphroditic offspring only. We demonstrate that stochastic sex determination is influenced by temperature in P. mayeri and P. entomophagus, and CRISPR engineering indicated a conserved role of the transcription factor TRA-1 in P. mayeri. Chromosome-level genome assemblies and subsequent genomic analysis of related Pristionchus species revealed stochastic sex determination to be derived from XY sex chromosome systems through sex chromosome-autosome fusions. Thus, rapid karyotype evolution, sex chromosome evolution and evolvable sex determination mechanisms are general features of this genus, and represent a dynamic background against which androdioecy has evolved recurrently. Future studies might indicate that stochastic sex determination is more common than currently appreciated.
Collapse
Affiliation(s)
- Kohta Yoshida
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan.
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ryo Hatashima
- School of Life Science and Technology, Institute of Science Tokyo, Meguro-ku, Tokyo, Japan
| | - Simo Sun
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Zhang H, Zhu Y, Xue D. Moderate embryonic delay of paternal mitochondrial elimination impairs mating and cognition and alters behaviors of adult animals. SCIENCE ADVANCES 2024; 10:eadp8351. [PMID: 39365857 PMCID: PMC11451536 DOI: 10.1126/sciadv.adp8351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Rapid elimination of paternal mitochondria following fertilization is a conserved event in most animals, but its physiological significance remains unclear. We find that modest delay of paternal mitochondrial elimination (PME) in Caenorhabditis elegans embryos unexpectedly impairs mating and cognition of adult animals and alters their locomotion behaviors. Delayed PME causes decreased adenosine triphosphate (ATP) levels in early embryos, which lead to impaired physiological functions of adult animals through an energy-sensing pathway mediated by an adenosine monophosphate (AMP)-activated protein kinase, AAK-2, and a forkhead box class O (FOXO) transcription factor, DAF-16. Treatment of PME-delayed animals with MK-4, a subtype of vitamin K2 that can improve mitochondrial ATP production, restores ATP levels in early embryos, and rescues physiological defects of adult animals. Our results suggest that moderate PME delay during embryo development adversely affects crucial physiological functions in adults, which could be evolutionarily disadvantageous. These observations provide mechanistic explanations for the need to swiftly remove paternal mitochondria early during embryo development.
Collapse
Affiliation(s)
| | | | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
6
|
Shi J, Sheng D, Guo J, Zhou F, Wu S, Tang H. Identification of BiP as a temperature sensor mediating temperature-induced germline sex reversal in C. elegans. EMBO J 2024; 43:4020-4048. [PMID: 39134659 PMCID: PMC11405683 DOI: 10.1038/s44318-024-00197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 09/18/2024] Open
Abstract
Sex determination in animals is not only determined by karyotype but can also be modulated by environmental cues like temperature via unclear transduction mechanisms. Moreover, in contrast to earlier views that sex may exclusively be determined by either karyotype or temperature, recent observations suggest that these factors rather co-regulate sex, posing another mechanistic mystery. Here, we discovered that certain wild-isolated and mutant C. elegans strains displayed genotypic germline sex determination (GGSD), but with a temperature-override mechanism. Further, we found that BiP, an ER chaperone, transduces temperature information into a germline sex-governing signal, thereby enabling the coexistence of GGSD and temperature-dependent germline sex determination (TGSD). At the molecular level, increased ER protein-folding requirements upon increased temperatures lead to BiP sequestration, resulting in ERAD-dependent degradation of the oocyte fate-driving factor, TRA-2, thus promoting male germline fate. Remarkably, experimentally manipulating BiP or TRA-2 expression allows to switch between GGSD and TGSD. Physiologically, TGSD allows C. elegans hermaphrodites to maintain brood size at warmer temperatures. Moreover, BiP can also influence germline sex determination in a different, non-hermaphroditic nematode species. Collectively, our findings identify thermosensitive BiP as a conserved temperature sensor in TGSD, and provide mechanistic insights into the transition between GGSD and TGSD.
Collapse
Affiliation(s)
- Jing Shi
- Fudan University, 200433, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Danli Sheng
- Fudan University, 200433, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Jie Guo
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Fangyuan Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Shaofeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Hongyun Tang
- Fudan University, 200433, Shanghai, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China.
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Shen Y, Lin SY, Harbin J, Amin R, Vassalotti A, Romanowski J, Schmidt E, Tierney A, Ellis RE. Rewiring the Sex-Determination Pathway During the Evolution of Self-Fertility. Mol Biol Evol 2024; 41:msae101. [PMID: 38880992 PMCID: PMC11180601 DOI: 10.1093/molbev/msae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Although evolution is driven by changes in how regulatory pathways control development, we know little about the molecular details underlying these transitions. The TRA-2 domain that mediates contact with TRA-1 is conserved in Caenorhabditis. By comparing the interaction of these proteins in two species, we identified a striking change in how sexual development is controlled. Identical mutations in this domain promote oogenesis in Caenorhabditis elegans but promote spermatogenesis in Caenorhabditis briggsae. Furthermore, the effects of these mutations involve the male-promoting gene fem-3 in C. elegans but are independent of fem-3 in C. briggsae. Finally, reciprocal mutations in these genes show that C. briggsae TRA-2 binds TRA-1 to prevent expression of spermatogenesis regulators. By contrast, in C. elegans TRA-1 sequesters TRA-2 in the germ line, allowing FEM-3 to initiate spermatogenesis. Thus, we propose that the flow of information within the sex determination pathway has switched directions during evolution. This result has important implications for how evolutionary change can occur.
Collapse
Affiliation(s)
- Yongquan Shen
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Shin-Yi Lin
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Jonathan Harbin
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Richa Amin
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Allison Vassalotti
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Joseph Romanowski
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Emily Schmidt
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Alexis Tierney
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Ronald E Ellis
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering and Science, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
8
|
Albarqi MMY, Ryder SP. The role of RNA-binding proteins in orchestrating germline development in Caenorhabditis elegans. Front Cell Dev Biol 2023; 10:1094295. [PMID: 36684428 PMCID: PMC9846511 DOI: 10.3389/fcell.2022.1094295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
RNA passed from parents to progeny controls several aspects of early development. The germline of the free-living nematode Caenorhabditis elegans contains many families of evolutionarily conserved RNA-binding proteins (RBPs) that target the untranslated regions of mRNA transcripts to regulate their translation and stability. In this review, we summarize what is known about the binding specificity of C. elegans germline RNA-binding proteins and the mechanisms of mRNA regulation that contribute to their function. We examine the emerging role of miRNAs in translational regulation of germline and embryo development. We also provide an overview of current technology that can be used to address the gaps in our understanding of RBP regulation of mRNAs. Finally, we present a hypothetical model wherein multiple 3'UTR-mediated regulatory processes contribute to pattern formation in the germline to ensure the proper and timely localization of germline proteins and thus a functional reproductive system.
Collapse
|
9
|
Wang N, Yin Z, Zhao Y, Wang J, Pei Y, Ji P, Daly P, Li Z, Dou D, Wei L. An F-box protein attenuates fungal xylanase-triggered immunity by destabilizing LRR-RLP NbEIX2 in a SOBIR1-dependent manner. THE NEW PHYTOLOGIST 2022; 236:2202-2215. [PMID: 36151918 DOI: 10.1111/nph.18509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Receptor-like proteins (RLPs) lacking the cytoplasmic kinase domain play crucial roles in plant growth, development and immunity. However, what remains largely elusive is whether RLP protein levels are fine-tuned by E3 ubiquitin ligases, which are employed by receptor-like kinases for signaling attenuation. Nicotiana benthamiana NbEIX2 is a leucine-rich repeat RLP (LRR-RLP) that mediates fungal xylanase-triggered immunity. Here we show that NbEIX2 associates with an F-box protein NbPFB1, which promotes NbEIX2 degradation likely by forming an SCF E3 ubiquitin ligase complex, and negatively regulates NbEIX2-mediated immune responses. NbEIX2 undergoes ubiquitination and proteasomal degradation in planta. Interestingly, NbEIX2 without its cytoplasmic tail is still associated with and destabilized by NbPFB1. In addition, NbPFB1 also associates with and destabilizes NbSOBIR1, a co-receptor of LRR-RLPs, and fails to promote NbEIX2 degradation in the sobir1 mutant. Our findings reveal a distinct model of NbEIX2 degradation, in which an F-box protein destabilizes NbEIX2 indirectly in a SOBIR1-dependent manner.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhiyuan Yin
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yaning Zhao
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinghao Wang
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Yong Pei
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peiyun Ji
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhengpeng Li
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, 223300, Huaian, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| |
Collapse
|
10
|
Pan J, Ahmad MZ, Zhu S, Chen W, Yao J, Li Y, Fang S, Li T, Yeboah A, He L, Zhang Y. Identification, Classification and Characterization Analysis of FBXL Gene in Cotton. Genes (Basel) 2022; 13:genes13122194. [PMID: 36553463 PMCID: PMC9777894 DOI: 10.3390/genes13122194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
F-box/LR (FBXL), Leucine-rich repeats in F-box proteins, belongs to the Skp1-Cullin1-F-box protein (SCF) E3 ligase family. FBXL genes play important roles in plant growth, such as plant hormones, responses to environmental stress, and floral organ development. Here, a total of 518 FBXL genes were identified and analyzed in six plant species. Phylogenetic analysis showed that AtFBXLs, VvFBXLs, and GrFBXLs were clustered into three subfamilies (Ⅰ-Ⅲ). Based on the composition of the F-box domain and carboxyl-terminal amino acid sequence, FBXL proteins were classified into three types (Type-A/-B/-C). Whole-genome duplication (WGD) along with tandem duplications and segmental contributed to the expansion of this gene family. The result indicates that four cotton species are also divided into three subfamilies. FBXLs in cotton were classified into three clades by phylogenetic and structural analyses. Furthermore, expression analyses indicated that the expression patterns of GhFBXLs in different cotton tissues were different. The highly expressed of GH_A07G2363 in 5-8 mm anthers, indicates that this gene might play a role in the reproductive process, providing candidate genes for future studies on cotton fertility materials. This study provides an original functional opinion and a useful interpretation of the FBXL protein family in cotton.
Collapse
Affiliation(s)
- Jingwen Pan
- College of Agronomy, Tarim University, Alar 843300, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Zulfiqar Ahmad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Akwasi Yeboah
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liangrong He
- College of Agronomy, Tarim University, Alar 843300, China
- Correspondence: (L.H.); (Y.Z.)
| | - Yongshan Zhang
- College of Agronomy, Tarim University, Alar 843300, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Correspondence: (L.H.); (Y.Z.)
| |
Collapse
|
11
|
Miwa T, Ohtani K, Inoue K, Sakamoto H. The germ cell-specific TAP-like protein NXF-2 forms a novel granular structure and is required for tra-2 3'UTR-dependent mRNA export in Caenorhabditis elegans. Genes Cells 2022; 27:621-628. [PMID: 35950937 DOI: 10.1111/gtc.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
Abstract
TAP is a general mRNA export receptor and is highly conserved among eukaryotes. The nematode Caenorhabditis elegans has another TAP-like protein, NXF-2, but little is known about its function. In this study, we show that NXF-2 is specifically expressed in germ cells and forms a novel granular structure that is different from that of P granules and that NXF-2 granules are anchored to the nuclear periphery in the mitotic region of the hermaphrodite gonad. In contrast, NXF-2 granules are released within the whole cytoplasm in the meiotic region, where the feminization gene tra-2 starts to function. Both inhibition of XPO-1 (an ortholog of the export receptor CRM1) and mutation of the nuclear export signal of NXF-2 caused the release of NXF-2 granules from the nuclear periphery, indicating that anchoring of NXF-2 granules depends on XPO-1 function. Moreover, inhibition of NXF-2 resulted in a substantial nuclear accumulation of the reporter mRNA carrying the tra-2 3'UTR. These results suggest that, together with XPO-1, NXF-2 exports and anchors tra-2 mRNA to the nuclear periphery to avoid precocious translation until the germ cells reach the meiotic region, thereby contributing to the regulation of tra-2 mRNA expression. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Takashi Miwa
- Biology, Kobe University Graduate School of Science Faculty of Science, Grad. Sch. Sci. Tech.1-1 Rokkodai, Nada-ku, Kobe Hyogo, Japan
| | - Keigo Ohtani
- Biology, Kobe University Graduate School of Science Faculty of Science, Grad. Sch. Sci. Tech.1-1 Rokkodai, Nada-ku, Kobe Hyogo, Japan
| | - Kunio Inoue
- Biology, Kobe University Graduate School of Science Faculty of Science, Grad. Sch. Sci. Tech.1-1 Rokkodai, Nada-ku, Kobe Hyogo, Japan
| | - Hiroshi Sakamoto
- Biology, Kobe University Graduate School of Science Faculty of Science, Grad. Sch. Sci. Tech.1-1 Rokkodai, Nada-ku, Kobe Hyogo, Japan
| |
Collapse
|
12
|
Evolution of sexual systems, sex chromosomes and sex-linked gene transcription in flatworms and roundworms. Nat Commun 2022; 13:3239. [PMID: 35688815 PMCID: PMC9187692 DOI: 10.1038/s41467-022-30578-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Many species with separate male and female individuals (termed ‘gonochorism’ in animals) have sex-linked genome regions. Here, we investigate evolutionary changes when genome regions become completely sex-linked, by analyses of multiple species of flatworms (Platyhelminthes; among which schistosomes recently evolved gonochorism from ancestral hermaphroditism), and roundworms (Nematoda) which have undergone independent translocations of different autosomes. Although neither the evolution of gonochorism nor translocations fusing ancestrally autosomal regions to sex chromosomes causes inevitable loss of recombination, we document that formerly recombining regions show genomic signatures of recombination suppression in both taxa, and become strongly genetically degenerated, with a loss of most genes. Comparisons with hermaphroditic flatworm transcriptomes show masculinisation and some defeminisation in schistosome gonad gene expression. We also find evidence that evolution of sex-linkage in nematodes is accompanied by transcriptional changes and dosage compensation. Our analyses also identify sex-linked genes that could assist future research aimed at controlling some of these important parasites. Transitions between hermaphroditic and separate sexes are relatively understudied in animals compared to pants. Here, Wang et al. reconstruct the evolution of separate sexes in the flatworms and complex changes of sex chromosomes in the roundworms.
Collapse
|
13
|
Antoł W, Palka JK, Sychta K, Dudek K, Prokop ZM. Gene conversion restores selfing in experimentally evolving C. elegans populations with fog-2 loss-of-function mutation. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000569. [PMID: 35601754 PMCID: PMC9121179 DOI: 10.17912/micropub.biology.000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022]
Abstract
We have discovered a new case of gene conversion restoring ability of self-fertilization in obligatory outcrossing
Caenorhabditis elegans
populations. The
fog-2(q71)
mutation, used to transform the nematodes’ mating system from mostly self-fertilization to obligatory outcrossing, was spontaneously removed by replacing a fragment of
fog-2
gene with a fragment of its paralog,
ftr-1
. This has occurred spontaneously in experimental evolution with large populations, evolving with
fog-2(q71)
mutation for over a hundred generations, without addition mutagens or other factors promoting mutation accumulation. A converted
fog-2
allele restoring hermaphrodite sperm production was detected in five experimental populations. This raises the question about stability of obligatory outcrossing populations in long-term experiments.
Collapse
Affiliation(s)
- Weronika Antoł
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
,
Correspondence to: Weronika Antoł (
)
| | - Joanna K. Palka
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
| | - Karolina Sychta
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
,
Polish Academy of Sciences, Institute of Systematics and Evolution of Animals, Poland
| | - Katarzyna Dudek
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
| | - Zofia M. Prokop
- Jagiellonian University in Kraków, Institute of Environmental Sciences, Poland
| |
Collapse
|
14
|
Bever BW, Dietz ZP, Sullins JA, Montoya AM, Bergthorsson U, Katju V, Estes S. Mitonuclear Mismatch is Associated With Increased Male Frequency, Outcrossing, and Male Sperm Size in Experimentally-Evolved C. elegans. Front Genet 2022; 13:742272. [PMID: 35360860 PMCID: PMC8961728 DOI: 10.3389/fgene.2022.742272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
We provide a partial test of the mitonuclear sex hypothesis with the first controlled study of how male frequencies and rates of outcrossing evolve in response to mitonuclear mismatch by allowing replicate lineages of C. elegans nematodes containing either mitochondrial or nuclear mutations of electron transport chain (ETC) genes to evolve under three sexual systems: facultatively outcrossing (wildtype), obligately selfing, and obligately outcrossing. Among facultatively outcrossing lines, we found evolution of increased male frequency in at least one replicate line of all four ETC mutant backgrounds tested—nuclear isp-1, mitochondrial cox-1 and ctb-1, and an isp-1 IV; ctb-1M mitonuclear double mutant—and confirmed for a single line set (cox-1) that increased male frequency also resulted in successful outcrossing. We previously found the same result for lines evolved from another nuclear ETC mutant, gas-1. For several lines in the current experiment, however, male frequency declined to wildtype levels (near 0%) in later generations. Male frequency did not change in lines evolved from a wildtype control strain. Additional phenotypic assays of lines evolved from the mitochondrial cox-1 mutant indicated that evolution of high male frequency was accompanied by evolution of increased male sperm size and mating success with tester females, but that it did not translate into increased mating success with coevolved hermaphrodites. Rather, hermaphrodites’ self-crossed reproductive fitness increased, consistent with sexually antagonistic coevolution. In accordance with evolutionary theory, males and sexual outcrossing may be most beneficial to populations evolving from a state of low ancestral fitness (gas-1, as previously reported) and less beneficial or deleterious to those evolving from a state of higher ancestral fitness (cox-1). In support of this idea, the obligately outcrossing fog-2 V; cox-1 M lines exhibited no fitness evolution compared to their ancestor, while facultatively outcrossing lines showed slight upward evolution of fitness, and all but one of the obligately selfing xol-1 X; cox-1 M lines evolved substantially increased fitness—even beyond wildtype levels. This work provides a foundation to directly test the effect of reproductive mode on the evolutionary dynamics of mitonuclear genomes, as well as whether compensatory mutations (nuclear or mitochondrial) can rescue populations from mitochondrial dysfunction.
Collapse
Affiliation(s)
- Brent W. Bever
- Department of Biology, Portland State University, Portland, OR, United States
| | - Zachary P. Dietz
- Department of Biology, Portland State University, Portland, OR, United States
| | - Jennifer A. Sullins
- Department of Biology, Portland State University, Portland, OR, United States
| | - Ariana M. Montoya
- Department of Biology, Portland State University, Portland, OR, United States
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Suzanne Estes
- Department of Biology, Portland State University, Portland, OR, United States
- *Correspondence: Suzanne Estes,
| |
Collapse
|
15
|
Baudrimont A, Paouneskou D, Mohammad A, Lichtenberger R, Blundon J, Kim Y, Hartl M, Falk S, Schedl T, Jantsch V. Release of CHK-2 from PPM-1.D anchorage schedules meiotic entry. SCIENCE ADVANCES 2022; 8:eabl8861. [PMID: 35171669 PMCID: PMC8849337 DOI: 10.1126/sciadv.abl8861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/22/2021] [Indexed: 05/13/2023]
Abstract
Transition from the stem/progenitor cell fate to meiosis is mediated by several redundant posttranscriptional regulatory pathways in Caenorhabditis elegans. Interfering with all three branches causes tumorous germ lines. SCFPROM-1 comprises one branch and mediates a scheduled degradation step at entry into meiosis. prom-1 mutants show defects in the timely initiation of meiotic prophase I events, resulting in high rates of embryonic lethality. Here, we identify the phosphatase PPM-1.D/Wip1 as crucial substrate for PROM-1. We report that PPM-1.D antagonizes CHK-2 kinase, a key regulator for meiotic prophase initiation, including DNA double-strand breaks, chromosome pairing, and synaptonemal complex formation. We propose that PPM-1.D controls the amount of active CHK-2 via both catalytic and noncatalytic activities; notably, noncatalytic regulation seems to be crucial at meiotic entry. PPM-1.D sequesters CHK-2 at the nuclear periphery, and programmed SCFPROM-1-mediated degradation of PPM-1.D liberates the kinase and promotes meiotic entry.
Collapse
Affiliation(s)
- Antoine Baudrimont
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Dimitra Paouneskou
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Ariz Mohammad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Raffael Lichtenberger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Joshua Blundon
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Yumi Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | - Sebastian Falk
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
16
|
Ellis RE. Sex Determination in Nematode Germ Cells. Sex Dev 2022:1-18. [PMID: 35172320 PMCID: PMC9378769 DOI: 10.1159/000520872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Animal germ cells differentiate as sperm or as oocytes. These sexual fates are controlled by complex regulatory pathways to ensure that the proper gametes are made at the appropriate times. SUMMARY Nematodes like Caenorhabditis elegans and its close relatives are ideal models for studying how this regulation works, because the XX animals are self-fertile hermaphrodites that produce both sperm and oocytes. In these worms, germ cells use the same signal transduction pathway that functions in somatic cells. This pathway determines the activity of the transcription factor TRA-1, a Gli protein that can repress male genes. However, the pathway is extensively modified in germ cells, largely by the action of translational regulators like the PUF proteins. Many of these modifications play critical roles in allowing the XX hermaphrodites to make sperm in an otherwise female body. Finally, TRA-1 cooperates with chromatin regulators in the germ line to control the activity of fog-1 and fog-3, which are essential for spermatogenesis. FOG-1 and FOG-3 work together to determine germ cell fates by blocking the translation of oogenic transcripts. Key Messages: Although there is great diversity in how germ cell fates are controlled in other animals, many of the key nematode genes are conserved, and the critical role of translational regulators may be universal.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey, USA
| |
Collapse
|
17
|
Reevaluation of the role of LIP-1 as an ERK/MPK-1 dual specificity phosphatase in the C. elegans germline. Proc Natl Acad Sci U S A 2022; 119:2113649119. [PMID: 35022236 PMCID: PMC8784128 DOI: 10.1073/pnas.2113649119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
The RAS–ERK pathway is critical for metazoan development. In development, ERK activity is regulated by a balance of phosphorylation of ERK by MEK (MAPK kinase) and dephosphorylation by DUSPs (dual specificity phosphatases). LIP-1, a DUSP6/7 family member, was previously suggested to regulate MPK-1/ERK activity by dephosphorylating MPK-1 in the Caenorhabditis elegans germline, based on LIP-1's mutant phenotype in the germline and its DUSP role in vulval development. However, our investigations demonstrate that LIP-1 does not function as an MPK-1 DUSP in the germline and likely regulates germline functions through distinct targets. Our results present a cautionary note about misinterpreting similar mutant phenotypes caused by mutations in different genes and assuming that genes function similarly in different tissues. The fidelity of a signaling pathway depends on its tight regulation in space and time. Extracellular signal-regulated kinase (ERK) controls wide-ranging cellular processes to promote organismal development and tissue homeostasis. ERK activation depends on a reversible dual phosphorylation on the TEY motif in its active site by ERK kinase (MEK) and dephosphorylation by DUSPs (dual specificity phosphatases). LIP-1, a DUSP6/7 homolog, was proposed to function as an ERK (MPK-1) DUSP in the Caenorhabditis elegans germline primarily because of its phenotype, which morphologically mimics that of a RAS/let-60 gain-of-function mutant (i.e., small oocyte phenotype). Our investigations, however, reveal that loss of lip-1 does not lead to an increase in MPK-1 activity in vivo. Instead, we show that loss of lip-1 leads to 1) a decrease in MPK-1 phosphorylation, 2) lower MPK-1 substrate phosphorylation, 3) phenocopy of mpk-1 reduction-of-function (rather than gain-of-function) allele, and 4) a failure to rescue mpk-1–dependent germline or fertility defects. Moreover, using diverse genetic mutants, we show that the small oocyte phenotype does not correlate with increased ectopic MPK-1 activity and that ectopic increase in MPK-1 phosphorylation does not necessarily result in a small oocyte phenotype. Together, these data demonstrate that LIP-1 does not function as an MPK-1 DUSP in the C. elegans germline. Our results caution against overinterpretation of the mechanistic underpinnings of orthologous phenotypes, since they may be a result of independent mechanisms, and provide a framework for characterizing the distinct molecular targets through which LIP-1 may mediate its several germline functions.
Collapse
|
18
|
Wang A, Chen W, Tao S. Genome-wide characterization, evolution, structure, and expression analysis of the F-box genes in Caenorhabditis. BMC Genomics 2021; 22:889. [PMID: 34895149 PMCID: PMC8665587 DOI: 10.1186/s12864-021-08189-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/19/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND F-box proteins represent a diverse class of adaptor proteins of the ubiquitin-proteasome system (UPS) that play critical roles in the cell cycle, signal transduction, and immune response by removing or modifying cellular regulators. Among closely related organisms of the Caenorhabditis genus, remarkable divergence in F-box gene copy numbers was caused by sizeable species-specific expansion and contraction. Although F-box gene number expansion plays a vital role in shaping genomic diversity, little is known about molecular evolutionary mechanisms responsible for substantial differences in gene number of F-box genes and their functional diversification in Caenorhabditis. Here, we performed a comprehensive evolution and underlying mechanism analysis of F-box genes in five species of Caenorhabditis genus, including C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei. RESULTS Herein, we identified and characterized 594, 192, 377, 39, 1426 F-box homologs encoding putative F-box proteins in the genome of C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei, respectively. Our work suggested that extensive species-specific tandem duplication followed by a small amount of gene loss was the primary mechanism responsible for F-box gene number divergence in Caenorhabditis genus. After F-box gene duplication events occurred, multiple mechanisms have contributed to gene structure divergence, including exon/intron gain/loss, exonization/pseudoexonization, exon/intron boundaries alteration, exon splits, and intron elongation by tandem repeats. Based on high-throughput RNA sequencing data analysis, we proposed that F-box gene functions have diversified by sub-functionalization through highly divergent stage-specific expression patterns in Caenorhabditis species. CONCLUSIONS Massive species-specific tandem duplications and occasional gene loss drove the rapid evolution of the F-box gene family in Caenorhabditis, leading to complex gene structural variation and diversified functions affecting growth and development within and among Caenorhabditis species. In summary, our findings outline the evolution of F-box genes in the Caenorhabditis genome and lay the foundation for future functional studies.
Collapse
Affiliation(s)
- Ailan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi China
- Geneis (Beijing) Co., Beijing, China
| | - Wei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
19
|
Van Goor J, Shakes DC, Haag ES. Fisher vs. the Worms: Extraordinary Sex Ratios in Nematodes and the Mechanisms that Produce Them. Cells 2021; 10:1793. [PMID: 34359962 PMCID: PMC8303164 DOI: 10.3390/cells10071793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023] Open
Abstract
Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two "seminal" contributions of G. A. Parker.
Collapse
Affiliation(s)
- Justin Van Goor
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| | - Diane C. Shakes
- Department of Biology, William and Mary, Williamsburg, VA 23187, USA;
| | - Eric S. Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
20
|
Sadat MA, Ullah MW, Bashar KK, Hossen QMM, Tareq MZ, Islam MS. Genome-wide identification of F-box proteins in Macrophomina phaseolina and comparison with other fungus. J Genet Eng Biotechnol 2021; 19:46. [PMID: 33761027 PMCID: PMC7991009 DOI: 10.1186/s43141-021-00143-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
Background In fungi, like other eukaryotes, protein turnover is an important cellular process for the controlling of various cellular functions. The ubiquitin-proteasome pathway degrades some selected intracellular proteins and F-box proteins are one of the important components controlling protein degradation. F-box proteins are well studied in different model plants however, their functions in the fungi are not clear yet. This study aimed to identify the genes involved in protein degradation for disease development in the Macrophomina phaseolina fungus. Results In this research, in silico studies were done to understand the distribution of F-box proteins in pathogenic fungi including Macrophomina phaseolina fungus. Genome-wide analysis indicates that M. phaseolina fungus contained thirty-one F-box proteins throughout its chromosomes. In addition, there are 17, 37, 16, and 21 F-box proteins have been identified from Puccinia graminis, Colletotrichum graminicola, Ustilago maydis, and Phytophthora infestans, respectively. Analyses revealed that selective fungal genomes contain several additional functional domains along with F-box domain. Sequence alignment showed the substitution of amino acid in several F-box proteins; however, gene duplication was not found among these proteins. Phylogenetic analysis revealed that F-box proteins having similar functional domain was highly diverse form each other showing the possibility of various function. Analysis also found that MPH_00568 and MPH_05531 were closely related to rice blast fungus F-box protein MGG_00768 and MGG_13065, respectively, may play an important role for blast disease development. Conclusion This genome-wide analysis of F-box proteins will be useful for characterization of candidate F-box proteins to understand the molecular mechanisms leading to disease development of M. phaseolina in the host plants. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00143-0.
Collapse
Affiliation(s)
- Md Abu Sadat
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh.
| | - Md Wali Ullah
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Kazi Khayrul Bashar
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Quazi Md Mosaddeque Hossen
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Zablul Tareq
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| | - Md Shahidul Islam
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207, Bangladesh
| |
Collapse
|
21
|
Hwang JE, Hwang SG, Jung IJ, Han SM, Ahn JW, Kim JB. Overexpression of rice F-box protein OsFBX322 confers increased sensitivity to gamma irradiation in Arabidopsis. Genet Mol Biol 2019; 43:e20180273. [PMID: 31479093 PMCID: PMC7251472 DOI: 10.1590/1678-4685-gmb-2018-0273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/25/2019] [Indexed: 11/30/2022] Open
Abstract
Ionizing radiation has a substantial effect on physiological and biochemical
processes in plants via induction of transcriptional changes and diverse genetic
alterations. Previous microarray analysis showed that rice
OsFBX322, which encodes a rice F-box protein, was
downregulated in response to three types of ionizing radiation: gamma
irradiation, ion beams, and cosmic rays. In order to characterize the
radiation-responsive genes in rice, OsFBX322 was selected for
further analysis. OsFBX322 expression patterns in response to
radiation were confirmed using quantitative RT-PCR. Transient expression of a
GFP-OsFBX322 fusion protein in tobacco leaf epidermis indicated that OsFBX322 is
localized to the nucleus. To determine the effect of OsFBX322
expression on radiation response, OsFBX322 was overexpressed in
Arabidopsis. Transgenic overexpression lines were more
sensitive to gamma irradiation than control plants. These results suggest that
OsFBX322 plays a negative role in the defense response to
radiation in plants. In addition, we obtained four co-expression genes of
OsFBX322 by specific co-expression networks using the
ARANCE. Quantitative RT-PCR showed that the four genes were also downregulated
after exposure to the three types of radiation. These results imply that the
co-expressed genes may serve as key regulators in the radiation response pathway
in plants.
Collapse
Affiliation(s)
- Jung Eun Hwang
- National Institute of Ecology, Research Center for Endangered Species, Division of Restoration Research, Yeongyang, Republic of Korea
| | - Sun-Goo Hwang
- Kangwon Natl University, Department of Applied Plant Sciences, Plant Genomics Lab, Chuncheon, Republic of Korea
| | - In Jung Jung
- Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup, Republic of Korea
| | - Sung Min Han
- Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup, Republic of Korea
| | - Joon-Woo Ahn
- Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup, Republic of Korea
| | - Jin-Baek Kim
- Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup, Republic of Korea
| |
Collapse
|
22
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
23
|
Multi-modal regulation of C. elegans hermaphrodite spermatogenesis by the GLD-1-FOG-2 complex. Dev Biol 2018; 446:193-205. [PMID: 30599151 DOI: 10.1016/j.ydbio.2018.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 01/26/2023]
Abstract
Proper germ cell sex determination in Caenorhabditis nematodes requires a network of RNA-binding proteins (RBPs) and their target mRNAs. In some species, changes in this network enabled limited XX spermatogenesis, and thus self-fertility. In C. elegans, one of these selfing species, the global sex-determining gene tra-2 is regulated in germ cells by a conserved RBP, GLD-1, via the 3' untranslated region (3'UTR) of its transcript. A C. elegans-specific GLD-1 cofactor, FOG-2, is also required for hermaphrodite sperm fate, but how it modifies GLD-1 function is unknown. Germline feminization in gld-1 and fog-2 null mutants has been interpreted as due to cell-autonomous elevation of TRA-2 translation. Consistent with the proposed role of FOG-2 in translational control, the abundance of nearly all GLD-1 target mRNAs (including tra-2) is unchanged in fog-2 mutants. Epitope tagging reveals abundant TRA-2 expression in somatic tissues, but an undetectably low level in wild-type germ cells. Loss of gld-1 function elevates germline TRA-2 expression to detectable levels, but loss of fog-2 function does not. A simple quantitative model of tra-2 activity constrained by these results can successfully sort genotypes into normal or feminized groups. Surprisingly, fog-2 and gld-1 activity enable the sperm fate even when GLD-1 cannot bind to the tra-2 3' UTR. This suggests the GLD-1-FOG-2 complex regulates uncharacterized sites within tra-2, or other mRNA targets. Finally, we quantify the RNA-binding capacities of dominant missense alleles of GLD-1 that act genetically as "hyper-repressors" of tra-2 activity. These variants bind RNA more weakly in vitro than does wild-type GLD-1. These results indicate that gld-1 and fog-2 regulate germline sex via multiple interactions, and that our understanding of the control and evolution of germ cell sex determination in the C. elegans hermaphrodite is far from complete.
Collapse
|
24
|
Poush JA, Blouin NA, Di Bona KR, Lažetić V, Fay DS. Regulation of germ cell development by ARI1 family ubiquitin ligases in C. elegans. Sci Rep 2018; 8:17737. [PMID: 30531803 PMCID: PMC6288150 DOI: 10.1038/s41598-018-35691-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/09/2018] [Indexed: 11/25/2022] Open
Abstract
RING-between-RING (RBR) E3 ubiquitin ligases are implicated in various developmental processes, and mutations in genes encoding RBR proteins HHARI/ARIH1 and Parkin are associated with human diseases. Here we show by phylogenetic analysis that the ARI1 family has undergone a dramatic expansion within the Caenorhabditis clade in recent history, a characteristic shared by some genes involved in germline development. We then examined the effects of deleting all ARI1 family members in the nematode Caenorhabditis elegans, which to our knowledge represents the first complete knockout of ARI1 function in a metazoan. Hermaphrodites that lacked or had strongly reduced ARI1 activity had low fecundity and were partially defective in initiation of oocyte differentiation. We provide evidence that the C. elegans ARI1s likely function downstream or in parallel to FBF-1 and FBF-2, two closely related RNA-binding proteins that are required for the switch from spermatogenesis to oogenesis during late larval development. Previous studies have shown that the E2 enzymes UBC-18/UBCH7 and UBC-3/CDC34 can functionally collaborate with ARI1 family members. Our data indicated that UBC-18, but not UBC-3, specifically cooperates with the ARI1s in germline development. These findings provide new insights into the functions of RING-between-RING proteins and Ariadne E3s during development.
Collapse
Affiliation(s)
- Julian A Poush
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Nicolas A Blouin
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
- Wyoming INBRE Bioinformatics Core, Laramie, USA
| | - Kristin R Di Bona
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
25
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
26
|
Angeles-Albores D, Puckett Robinson C, Williams BA, Wold BJ, Sternberg PW. Reconstructing a metazoan genetic pathway with transcriptome-wide epistasis measurements. Proc Natl Acad Sci U S A 2018; 115:E2930-E2939. [PMID: 29531064 PMCID: PMC5879656 DOI: 10.1073/pnas.1712387115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA-sequencing (RNA-seq) is commonly used to identify genetic modules that respond to perturbations. In single cells, transcriptomes have been used as phenotypes, but this concept has not been applied to whole-organism RNA-seq. Also, quantifying and interpreting epistatic effects using expression profiles remains a challenge. We developed a single coefficient to quantify transcriptome-wide epistasis that reflects the underlying interactions and which can be interpreted intuitively. To demonstrate our approach, we sequenced four single and two double mutants of Caenorhabditis elegans From these mutants, we reconstructed the known hypoxia pathway. In addition, we uncovered a class of 56 genes with HIF-1-dependent expression that have opposite changes in expression in mutants of two genes that cooperate to negatively regulate HIF-1 abundance; however, the double mutant of these genes exhibits suppression epistasis. This class violates the classical model of HIF-1 regulation but can be explained by postulating a role of hydroxylated HIF-1 in transcriptional control.
Collapse
Affiliation(s)
- David Angeles-Albores
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Carmie Puckett Robinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Brian A Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Barbara J Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125;
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
27
|
Angeles-Albores D, Leighton DHW, Tsou T, Khaw TH, Antoshechkin I, Sternberg PW. The Caenorhabditis elegans Female-Like State: Decoupling the Transcriptomic Effects of Aging and Sperm Status. G3 (BETHESDA, MD.) 2017; 7:2969-2977. [PMID: 28751504 PMCID: PMC5592924 DOI: 10.1534/g3.117.300080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022]
Abstract
Understanding genome and gene function in a whole organism requires us to fully comprehend the life cycle and the physiology of the organism in question. Caenorhabditis elegans XX animals are hermaphrodites that exhaust their sperm after 3 d of egg-laying. Even though C. elegans can live for many days after cessation of egg-laying, the molecular physiology of this state has not been as intensely studied as other parts of the life cycle, despite documented changes in behavior and metabolism. To study the effects of sperm depletion and aging of C. elegans during the first 6 d of adulthood, we measured the transcriptomes of first-day adult hermaphrodites and sixth-day sperm-depleted adults, and, at the same time points, mutant fog-2(lf) worms that have a feminized germline phenotype. We found that we could separate the effects of biological aging from sperm depletion. For a large subset of genes, young adult fog-2(lf) animals had the same gene expression changes as sperm-depleted sixth-day wild-type hermaphrodites, and these genes did not change expression when fog-2(lf) females reached the sixth day of adulthood. Taken together, this indicates that changing sperm status causes a change in the internal state of the worm, which we call the female-like state. Our data provide a high-quality picture of the changes that happen in global gene expression throughout the period of early aging in the worm.
Collapse
Affiliation(s)
- David Angeles-Albores
- Department of Biology and Biological Engineering, and Howard Hughes Medical Institute, Caltech, Pasadena, California 91125
| | - Daniel H W Leighton
- Department of Biology and Biological Engineering, and Howard Hughes Medical Institute, Caltech, Pasadena, California 91125
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095
| | - Tiffany Tsou
- Department of Biology and Biological Engineering, and Howard Hughes Medical Institute, Caltech, Pasadena, California 91125
| | - Tiffany H Khaw
- Department of Biology and Biological Engineering, and Howard Hughes Medical Institute, Caltech, Pasadena, California 91125
| | - Igor Antoshechkin
- Department of Biology and Biological Engineering, Caltech, Pasadena, California 91125
| | - Paul W Sternberg
- Department of Biology and Biological Engineering, and Howard Hughes Medical Institute, Caltech, Pasadena, California 91125
| |
Collapse
|
28
|
Tang H, Han M. Fatty Acids Regulate Germline Sex Determination through ACS-4-Dependent Myristoylation. Cell 2017; 169:457-469.e13. [PMID: 28431246 DOI: 10.1016/j.cell.2017.03.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/03/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
Abstract
Fat metabolism has been linked to fertility and reproductive adaptation in animals and humans, and environmental sex determination potentially plays a role in the process. To investigate the impact of fatty acids (FA) on sex determination and reproductive development, we examined and observed an impact of FA synthesis and mobilization by lipolysis in somatic tissues on oocyte fate in Caenorhabditis elegans. The subsequent genetic analysis identified ACS-4, an acyl-CoA synthetase and its FA-CoA product, as key germline factors that mediate the role of FA in promoting oocyte fate through protein myristoylation. Further tests indicated that ACS-4-dependent protein myristoylation perceives and translates the FA level into regulatory cues that modulate the activities of MPK-1/MAPK and key factors in the germline sex-determination pathway. These findings, including a similar role of ACS-4 in a male/female species, uncover a likely conserved mechanism by which FA, an environmental factor, regulates sex determination and reproductive development.
Collapse
Affiliation(s)
- Hongyun Tang
- Howard Hughes Medical Institute and Department of MCDB of the University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Min Han
- Howard Hughes Medical Institute and Department of MCDB of the University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
29
|
Revisiting Suppression of Interspecies Hybrid Male Lethality in Caenorhabditis Nematodes. G3-GENES GENOMES GENETICS 2017; 7:1211-1214. [PMID: 28209763 PMCID: PMC5386869 DOI: 10.1534/g3.117.039479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Within the nematode genus Caenorhabditis, Caenorhabditis briggsae and C. nigoni are among the most closely related species known. They differ in sexual mode, with C. nigoni retaining the ancestral XO male-XX female outcrossing system, while C. briggsae recently evolved self-fertility and an XX-biased sex ratio. Wild-type C. briggsae and C. nigoni can produce fertile hybrid XX female progeny, but XO progeny are either 100% inviable (when C. briggsae is the mother) or viable but sterile (when C. nigoni is the mother). A recent study provided evidence suggesting that loss of the Cbr-him-8 meiotic regulator in C. briggsae hermaphrodites allowed them to produce viable and fertile hybrid XO male progeny when mated to C. nigoni Because such males would be useful for a variety of genetic experiments, we sought to verify this result. Preliminary crosses with wild-type C. briggsae hermaphrodites occasionally produced fertile males, but they could not be confirmed to be interspecies hybrids. Using an RNA interference (RNAi) protocol that eliminates any possibility of self-progeny in Cbr-him-8 hermaphrodites, we found sterile males bearing the C. nigoni X chromosome, but no fertile males bearing the C. briggsae X, as in wild-type crosses. Our results suggest that the apparent rescue of XO hybrid viability and fertility is due to incomplete purging of self-sperm prior to mating.
Collapse
|
30
|
Plesnar-Bielak A, Labocha MK, Kosztyła P, Woch KR, Banot WM, Sychta K, Skarboń M, Prus MA, Prokop ZM. Fitness Effects of Thermal Stress Differ Between Outcrossing and Selfing Populations in Caenorhabditis elegans. Evol Biol 2017; 44:356-364. [PMID: 28890581 PMCID: PMC5569660 DOI: 10.1007/s11692-017-9413-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/23/2017] [Indexed: 11/03/2022]
Abstract
The maintenance of males and outcrossing is widespread, despite considerable costs of males. By enabling recombination between distinct genotypes, outcrossing may be advantageous during adaptation to novel environments and if so, it should be selected for under environmental challenge. However, a given environmental change may influence fitness of male, female, and hermaphrodite or asexual individuals differently, and hence the relationship between reproductive system and dynamics of adaptation to novel conditions may not be driven solely by the level of outcrossing and recombination. This has important implications for studies investigating the evolution of reproductive modes in the context of environmental changes, and for the extent to which their findings can be generalized. Here, we use Caenorhabditis elegans-a free-living nematode species in which hermaphrodites (capable of selfing but not cross-fertilizing each other) coexist with males (capable of fertilizing hermaphrodites)-to investigate the response of wild type as well as obligatorily outcrossing and obligatorily selfing lines to stressfully increased ambient temperature. We found that thermal stress affects fitness of outcrossers much more drastically than that of selfers. This shows that apart from the potential for recombination, the selective pressures imposed by the same environmental change can differ between populations expressing different reproductive systems and affect their adaptive potential.
Collapse
Affiliation(s)
- Agata Plesnar-Bielak
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marta K. Labocha
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Paulina Kosztyła
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna R. Woch
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Weronika M. Banot
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Karolina Sychta
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Magdalena Skarboń
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Monika A. Prus
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Zofia M. Prokop
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
31
|
Lee MH, Mamillapalli SS, Keiper BD, Cha DS. A systematic mRNA control mechanism for germline stem cell homeostasis and cell fate specification. BMB Rep 2016; 49:93-8. [PMID: 26303971 PMCID: PMC4915122 DOI: 10.5483/bmbrep.2016.49.2.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 11/20/2022] Open
Abstract
Germline stem cells (GSCs) are the best understood adult stem cell types in the nematode Caenorhabditis elegans, and have provided an important model system for studying stem cells and their cell fate in vivo, in mammals. In this review, we propose a mechanism that controls GSCs and their cell fate through selective activation, repression and mobilization of the specific mRNAs. This mechanism is acutely controlled by known signal transduction pathways (e.g., Notch signaling and Ras-ERK MAPK signaling pathways) and P granule (analogous to mammalian germ granule)-associated mRNA regulators (FBF-1, FBF-2, GLD-1, GLD-2, GLD-3, RNP-8 and IFE-1). Importantly, all regulators are highly conserved in many multi-cellular animals. Therefore, GSCs from a simple animal may provide broad insight into vertebrate stem cells (e.g., hematopoietic stem cells) and their cell fate specification. [BMB Reports 2016; 49(2): 93-98]
Collapse
Affiliation(s)
- Myon-Hee Lee
- Department of Medicine, Hematology/Oncology Division, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Srivalli Swathi Mamillapalli
- Department of Medicine, Hematology/Oncology Division, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Dong Seok Cha
- Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonju 55338, Korea
| |
Collapse
|
32
|
Ellis RE. "The persistence of memory"-Hermaphroditism in nematodes. Mol Reprod Dev 2016; 84:144-157. [PMID: 27291983 DOI: 10.1002/mrd.22668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
Self-fertility has evolved many times in nematodes. This transition often produces an androdioecious species, with XX hermaphrodites and XO males. Although these hermaphrodites resemble females in most respects, early germ cells differentiate as sperm, and late ones as oocytes. The sperm then receive an activation signal, populate the spermathecae, and are stored for later use in self-fertilization. These traits are controlled by complex modifications to the sex-determination and sperm activation pathways, which have arisen independently during the evolution of each hermaphroditic species. This transformation in reproductive strategy then promotes other major changes in the development, evolution, and population structure of these animals. Mol. Reprod. Dev. 84: 144-157, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey
| |
Collapse
|
33
|
Zimmerman SM, Hinkson IV, Elias JE, Kim SK. Reproductive Aging Drives Protein Accumulation in the Uterus and Limits Lifespan in C. elegans. PLoS Genet 2015; 11:e1005725. [PMID: 26656270 PMCID: PMC4676719 DOI: 10.1371/journal.pgen.1005725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/13/2015] [Indexed: 11/26/2022] Open
Abstract
Aging in Caenorhabditis elegans is characterized by widespread physiological and molecular changes, but the mechanisms that determine the rate at which these changes occur are not well understood. In this study, we identify a novel link between reproductive aging and somatic aging in C. elegans. By measuring global age-related changes in the proteome, we identify a previously uncharacterized group of secreted proteins in the adult uterus that dramatically increase in abundance with age. This accumulation is blunted in animals with an extended reproductive period and accelerated in sterile animals lacking a germline. Uterine proteins are not removed in old post-reproductive animals or in young vulvaless worms, indicating that egg-laying is necessary for their rapid removal in wild-type young animals. Together, these results suggest that age-induced infertility contributes to extracellular protein accumulation in the uterus with age. Finally, we show that knocking down multiple age-increased proteins simultaneously extends lifespan. These results provide a mechanistic example of how the cessation of reproduction contributes to detrimental changes in the soma, and demonstrate how the timing of reproductive decline can influence the rate of aging. To understand the process of aging at the molecular level in C. elegans, we measured changes in protein abundance with age, determined whether these age-related protein changes lead to dysfunction in old animals, and have elucidated one of the upstream pathways responsible for these aging changes. We found that egg-laying in young worms permits removal of a novel class of proteins present in the uterus. When the reproductive period ends, the removal of uterine proteins stops, causing them to accumulate to toxic levels. This shows that the timing of reproductive decline influences the rate of somatic aging. The concept that the reproductive period has a direct role in specifying the rate of aging of the soma likely applies to other species as well.
Collapse
Affiliation(s)
- Stephanie M. Zimmerman
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Izumi V. Hinkson
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Joshua E. Elias
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Stuart K. Kim
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Zhou K, Huang B, Zou M, Lu D, He S, Wang G. Genome-wide identification of lineage-specific genes within Caenorhabditis elegans. Genomics 2015; 106:242-8. [PMID: 26188256 DOI: 10.1016/j.ygeno.2015.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 11/19/2022]
Abstract
With the rapid growth of sequencing technology, a number of genomes and transcriptomes of various species have been sequenced, contributing to the study of lineage-specific genes (LSGs). We identified two sets of LSGs using BLAST: one included Caenorhabditis elegans species-specific genes (1423, SSGs), and the other consisted of Caenorhabditis genus-specific genes (4539, GSGs). The subsequent characterization and analysis of the SSGs and GSGs showed that they have significant differences in evolution and that most LSGs were generated by gene duplication and integration of transposable elements (TEs). We then performed temporal expression profiling and protein function prediction and observed that many SSGs and GSGs are expressed and that genes involved with sex determination, specific stress, immune response, and morphogenesis are over-represented, suggesting that these specific genes may be related to the Caenorhabditis nematodes' special ability to survive in severe and extreme environments.
Collapse
Affiliation(s)
- Kun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| | - Beibei Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| | - Ming Zou
- Huazhong Agriculture University, Wuhan 430070, China.
| | - Dandan Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Guoxiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
35
|
Beadell AV, Haag ES. Evolutionary Dynamics of GLD-1-mRNA complexes in Caenorhabditis nematodes. Genome Biol Evol 2014; 7:314-35. [PMID: 25502909 PMCID: PMC4316625 DOI: 10.1093/gbe/evu272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2014] [Indexed: 12/17/2022] Open
Abstract
Given the large number of RNA-binding proteins and regulatory RNAs within genomes, posttranscriptional regulation may be an underappreciated aspect of cis-regulatory evolution. Here, we focus on nematode germ cells, which are known to rely heavily upon translational control to regulate meiosis and gametogenesis. GLD-1 belongs to the STAR-domain family of RNA-binding proteins, conserved throughout eukaryotes, and functions in Caenorhabditis elegans as a germline-specific translational repressor. A phylogenetic analysis across opisthokonts shows that GLD-1 is most closely related to Drosophila How and deuterostome Quaking, both implicated in alternative splicing. We identify messenger RNAs associated with C. briggsae GLD-1 on a genome-wide scale and provide evidence that many participate in aspects of germline development. By comparing our results with published C. elegans GLD-1 targets, we detect nearly 100 that are conserved between the two species. We also detected several hundred Cbr-GLD-1 targets whose homologs have not been reported to be associated with C. elegans GLD-1 in either of two independent studies. Low expression in C. elegans may explain the failure to detect most of them, but a highly expressed subset are strong candidates for Cbr-GLD-1-specific targets. We examine GLD-1-binding motifs among targets conserved in C. elegans and C. briggsae and find that most, but not all, display evidence of shared ancestral binding sites. Our work illustrates both the conservative and the dynamic character of evolution at the posttranslational level of gene regulation, even between congeners.
Collapse
Affiliation(s)
- Alana V Beadell
- Program in Behavior, Evolution, Ecology, and Systematics, University of Maryland, College Park Present address: Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Eric S Haag
- Program in Behavior, Evolution, Ecology, and Systematics, University of Maryland, College Park Department of Biology, University of Maryland, College Park
| |
Collapse
|
36
|
Chen X, Shen Y, Ellis RE. Dependence of the sperm/oocyte decision on the nucleosome remodeling factor complex was acquired during recent Caenorhabditis briggsae evolution. Mol Biol Evol 2014; 31:2573-85. [PMID: 24987105 PMCID: PMC4166919 DOI: 10.1093/molbev/msu198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The major families of chromatin remodelers have been conserved throughout eukaryotic evolution. Because they play broad, pleiotropic roles in gene regulation, it was not known if their functions could change rapidly. Here, we show that major alterations in the use of chromatin remodelers are possible, because the nucleosome remodeling factor (NURF) complex has acquired a unique role in the sperm/oocyte decision of the nematode Caenorhabditis briggsae. First, lowering the activity of C. briggsae NURF-1 or ISW-1, the core components of the NURF complex, causes germ cells to become oocytes rather than sperm. This observation is based on the analysis of weak alleles and null mutations that were induced with TALENs and on RNA interference. Second, qRT-polymerase chain reaction data show that the C. briggsae NURF complex promotes the expression of Cbr-fog-1 and Cbr-fog-3, two genes that control the sperm/oocyte decision. This regulation occurs in the third larval stage and affects the expression of later spermatogenesis genes. Third, double mutants reveal that the NURF complex and the transcription factor TRA-1 act independently on Cbr-fog-1 and Cbr-fog-3. TRA-1 binds both promoters, and computer analyses predict that these binding sites are buried in nucleosomes, so we suggest that the NURF complex alters chromatin structure to allow TRA-1 access to Cbr-fog-1 and Cbr-fog-3. Finally, lowering NURF activity by mutation or RNA interference does not affect this trait in other nematodes, including the sister species C. nigoni, so it must have evolved recently. We conclude that altered chromatin remodeling could play an important role in evolutionary change.
Collapse
Affiliation(s)
- Xiangmei Chen
- Department of Molecular Biology, Rowan University-SOM Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey
| | - Yongquan Shen
- Department of Molecular Biology, Rowan University-SOM
| | | |
Collapse
|
37
|
Paz-Gómez D, Villanueva-Chimal E, Navarro RE. The DEAD Box RNA helicase VBH-1 is a new player in the stress response in C. elegans. PLoS One 2014; 9:e97924. [PMID: 24844228 PMCID: PMC4028217 DOI: 10.1371/journal.pone.0097924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/25/2014] [Indexed: 12/29/2022] Open
Abstract
For several years, DEAD box RNA helicase Vasa (DDX4) has been used as a bona fide germline marker in different organisms. C. elegans VBH-1 is a close homolog of the Vasa protein, which plays an important role in gametogenesis, germ cell survival and embryonic development. Here, we show that VBH-1 protects nematodes from heat shock and oxidative stress. Using the germline-defective mutant glp-4(bn2) we found that a potential somatic expression of vbh-1 might be important for stress survival. We also show that the VBH-1 paralog LAF-1 is important for stress survival, although this protein is not redundant with its counterpart. Furthermore, we observed that the mRNAs of the heat shock proteins hsp-1 and sip-1 are downregulated when vbh-1 or laf-1 are silenced. Previously, we reported that in C. elegans, VBH-1 was primarily expressed in P granules of germ cells and in the cytoplasm of all blastomeres. Here we show that during stress, VBH-1 co-localizes with CGH-1 in large aggregates in the gonad core and oocytes; however, VBH-1 aggregates do not overlap with CGH-1 foci in early embryos under the same conditions. These data demonstrate that, in addition to the previously described role for this protein in the germline, VBH-1 plays an important role during the stress response in C. elegans through the potential direct or indirect regulation of stress response mRNAs.
Collapse
Affiliation(s)
- Daniel Paz-Gómez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Emmanuel Villanueva-Chimal
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Rosa E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- * E-mail:
| |
Collapse
|
38
|
Verster AJ, Ramani AK, McKay SJ, Fraser AG. Comparative RNAi screens in C. elegans and C. briggsae reveal the impact of developmental system drift on gene function. PLoS Genet 2014; 10:e1004077. [PMID: 24516395 PMCID: PMC3916228 DOI: 10.1371/journal.pgen.1004077] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/18/2013] [Indexed: 01/27/2023] Open
Abstract
Although two related species may have extremely similar phenotypes, the genetic networks underpinning this conserved biology may have diverged substantially since they last shared a common ancestor. This is termed Developmental System Drift (DSD) and reflects the plasticity of genetic networks. One consequence of DSD is that some orthologous genes will have evolved different in vivo functions in two such phenotypically similar, related species and will therefore have different loss of function phenotypes. Here we report an RNAi screen in C. elegans and C. briggsae to identify such cases. We screened 1333 genes in both species and identified 91 orthologues that have different RNAi phenotypes. Intriguingly, we find that recently evolved genes of unknown function have the fastest evolving in vivo functions and, in several cases, we identify the molecular events driving these changes. We thus find that DSD has a major impact on the evolution of gene function and we anticipate that the C. briggsae RNAi library reported here will drive future studies on comparative functional genomics screens in these nematodes.
Collapse
Affiliation(s)
- Adrian J. Verster
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Arun K. Ramani
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sheldon J. McKay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Andrew G. Fraser
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
39
|
Pickett CL, Dietrich N, Chen J, Xiong C, Kornfeld K. Mated progeny production is a biomarker of aging in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2013; 3:2219-32. [PMID: 24142929 PMCID: PMC3852384 DOI: 10.1534/g3.113.008664] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/07/2013] [Indexed: 11/18/2022]
Abstract
The relationships between reproduction and aging are important for understanding the mechanisms of aging and evaluating evolutionary theories of aging. To investigate the effects of progeny production on reproductive and somatic aging, we conducted longitudinal studies of Caenorhabditis elegans hermaphrodites. For mated wild-type animals that were not sperm limited and survived past the end of the reproductive period, high levels of cross-progeny production were positively correlated with delayed reproductive and somatic aging. In this group of animals, individuals that generated more cross progeny also reproduced and lived longer than individuals that generated fewer cross progeny. These results indicate that progeny production does not accelerate reproductive or somatic aging. This longitudinal study demonstrated that cumulative cross progeny production through day four is an early-stage biomarker that is a positive predictor of longevity. Furthermore, in mated animals, high levels of early cross progeny production were positively correlated with high levels of late cross progeny production, indicating that early progeny production does not accelerate reproductive aging. The relationships between progeny production and aging were further evaluated by comparing self-fertile hermaphrodites that generated relatively few self progeny with mated hermaphrodites that generated many cross progeny. The timing of age-related somatic degeneration was similar in these groups, suggesting progeny production does not accelerate somatic aging. These studies rigorously define relationships between progeny production, reproductive aging, and somatic aging and identify new biomarkers of C. elegans aging. These results indicate that some mechanisms or pathways control age-related degeneration of both reproductive and somatic tissues in C. elegans.
Collapse
Affiliation(s)
- Christopher L. Pickett
- Department of Developmental, Biology Washington University School of Medicine, St. Louis, Missouri 63110
| | - Nicholas Dietrich
- Department of Developmental, Biology Washington University School of Medicine, St. Louis, Missouri 63110
| | - Junfang Chen
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kerry Kornfeld
- Department of Developmental, Biology Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
40
|
Nelson DE, Randle SJ, Laman H. Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins. Open Biol 2013; 3:130131. [PMID: 24107298 PMCID: PMC3814724 DOI: 10.1098/rsob.130131] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases. To date, 69 FBPs have been identified in humans, but ubiquitinated substrates have only been identified for a few, with the majority of FBPs remaining ‘orphans’. In recent years, a growing body of work has identified non-canonical, SCF-independent roles for about 12% of the human FBPs. These atypical FBPs affect processes as diverse as transcription, cell cycle regulation, mitochondrial dynamics and intracellular trafficking. Here, we provide a general review of FBPs, with a particular emphasis on these expanded functions. We review Fbxo7 as an exemplar of this special group as it has well-defined roles in both SCF and non-SCF complexes. We review its function as a cell cycle regulator, via its ability to stabilize p27 protein and Cdk6 complexes, and as a proteasome regulator, owing to its high affinity binding to PI31. We also highlight recent advances in our understanding of Fbxo7 function in Parkinson's disease, where it functions in the regulation of mitophagy with PINK1 and Parkin. We postulate that a few extraordinary FBPs act as platforms that seamlessly segue their canonical and non-canonical functions to integrate different cellular pathways and link their regulation.
Collapse
Affiliation(s)
- David E Nelson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
41
|
When females produce sperm: genetics of C. elegans hermaphrodite reproductive choice. G3-GENES GENOMES GENETICS 2013; 3:1851-9. [PMID: 23979940 PMCID: PMC3789810 DOI: 10.1534/g3.113.007914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Reproductive behaviors have manifold consequences on evolutionary processes. Here, we explore mechanisms underlying female reproductive choice in the nematode Caenorhabditis elegans, a species in which females have evolved the ability to produce their own self-fertilizing sperm, thereby allowing these "hermaphrodites" the strategic choice to self-reproduce or outcross with males. We report that hermaphrodites of the wild-type laboratory reference strain N2 favor self-reproduction, whereas a wild isolate CB4856 (HW) favors outcrossing. To characterize underlying neural mechanisms, we show that N2 hermaphrodites deficient in mechanosensation or chemosensation (e.g., mec-3 and osm-6 mutants) exhibit high mating frequency, implicating hermaphrodite perception of males as a requirement for low mating frequency. Within chemosensory networks, we find opposing roles for different sets of neurons that express the cyclic GMP-gated nucleotide channel, suggesting both positive and negative sensory-mediated regulation of hermaphrodite mating frequency. We also show that the ability to self-reproduce negatively regulates hermaphrodite mating. To map genetic variation, we created recombinant inbred lines and identified two QTL that explain a large portion of N2 × HW variation in hermaphrodite mating frequency. Intriguingly, we further show that ∼40 wild isolates representing C. elegans global diversity exhibit extensive and continuous variation in hermaphrodite reproductive outcome. Together, our findings demonstrate that C. elegans hermaphrodites actively regulate the choice between selfing and crossing, highlight the existence of natural variation in hermaphrodite choice, and lay the groundwork for molecular dissection of this evolutionarily important trait.
Collapse
|
42
|
Pickett CL, Kornfeld K. Age-related degeneration of the egg-laying system promotes matricidal hatching in Caenorhabditis elegans. Aging Cell 2013; 12:544-53. [PMID: 23551912 PMCID: PMC4020343 DOI: 10.1111/acel.12079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 11/29/2022] Open
Abstract
The identification and characterization of age-related degenerative changes is a critical goal because it can elucidate mechanisms of aging biology and contribute to understanding interventions that promote longevity. Here, we document a novel, age-related degenerative change in C. elegans hermaphrodites, an important model system for the genetic analysis of longevity. Matricidal hatching--intra-uterine hatching of progeny that causes maternal death--displayed an age-related increase in frequency and affected ~70% of mated, wild-type hermaphrodites. The timing and incidence of matricidal hatching were largely independent of the levels of early and total progeny production and the duration of male exposure. Thus, matricidal hatching appears to reflect intrinsic age-related degeneration of the egg-laying system rather than use-dependent damage accumulation. Consistent with this model, mutations that extend longevity by causing dietary restriction significantly delayed matricidal hatching, indicating age-related degeneration of the egg-laying system is controlled by nutrient availability. To identify the underlying tissue defect, we analyzed serotonin signaling that triggers vulval muscle contractions. Mated hermaphrodites displayed an age-related decline in the ability to lay eggs in response to exogenous serotonin, indicating that vulval muscles and/or a further downstream function that is necessary for egg laying degenerate in an age-related manner. By characterizing a new, age-related degenerative event displayed by C. elegans hermaphrodites, these studies contribute to understanding a frequent cause of death in mated hermaphrodites and establish a model of age-related reproductive complications that may be relevant to the birthing process in other animals such as humans.
Collapse
Affiliation(s)
| | - Kerry Kornfeld
- Corresponding Author: Department of Developmental Biology, 660 South Euclid Ave., Campus Box 8103, Washington University School of Medicine, St. Louis, MO 63110, Telephone: (314) 747-1480, Fax: (314) 362-7058,
| |
Collapse
|
43
|
Correa RL, Bruckner FP, de Souza Cascardo R, Alfenas-Zerbini P. The Role of F-Box Proteins during Viral Infection. Int J Mol Sci 2013; 14:4030-49. [PMID: 23429191 PMCID: PMC3588083 DOI: 10.3390/ijms14024030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/14/2012] [Accepted: 01/17/2013] [Indexed: 01/10/2023] Open
Abstract
The F-box domain is a protein structural motif of about 50 amino acids that mediates protein–protein interactions. The F-box protein is one of the four components of the SCF (SKp1, Cullin, F-box protein) complex, which mediates ubiquitination of proteins targeted for degradation by the proteasome, playing an essential role in many cellular processes. Several discoveries have been made on the use of the ubiquitin–proteasome system by viruses of several families to complete their infection cycle. On the other hand, F-box proteins can be used in the defense response by the host. This review describes the role of F-box proteins and the use of the ubiquitin–proteasome system in virus–host interactions.
Collapse
Affiliation(s)
- Régis Lopes Correa
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-970, Brazil; E-Mails: (R.L.C.); (R.S.C.)
| | - Fernanda Prieto Bruckner
- Department of Microbiology/BIOAGRO, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; E-Mail:
| | - Renan de Souza Cascardo
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-970, Brazil; E-Mails: (R.L.C.); (R.S.C.)
- Department of Microbiology/BIOAGRO, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; E-Mail:
| | - Poliane Alfenas-Zerbini
- Department of Microbiology/BIOAGRO, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-31-3899-2955; Fax: +55-31-3899-2864
| |
Collapse
|
44
|
Mitosis-meiosis and sperm-oocyte fate decisions are separable regulatory events. Proc Natl Acad Sci U S A 2013; 110:3411-6. [PMID: 23401507 DOI: 10.1073/pnas.1300928110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Germ cell fate decisions are poorly understood, despite their central role in reproduction. One fundamental question has been whether germ cells are regulated to enter the meiotic cell cycle (i.e., mitosis-meiosis decision) and to be sperm or oocyte (i.e., sperm-oocyte decision) through one or two cell fate choices. If a single decision is used, a male-specific or female-specific meiotic entry would lead necessarily toward spermatogenesis or oogenesis, respectively. If two distinct decisions are used, meiotic entry should be separable from specification as sperm or oocyte. Here, we investigate the relationship of these two decisions with tools uniquely available in the nematode Caenorhabditis elegans. Specifically, we used a temperature-sensitive Notch allele to drive germ-line stem cells into the meiotic cell cycle, followed by chemical inhibition of the Ras/ERK pathway to reprogram the sperm-oocyte decision. We found that germ cells already in meiotic prophase can nonetheless be sexually transformed from a spermatogenic to an oogenic fate. This finding cleanly uncouples the mitosis-meiosis decision from the sperm-oocyte decision. In addition, we show that chemical reprogramming occurs in a germ-line region where germ cells normally transition from the mitotic to the meiotic cell cycle and that it dramatically changes the abundance of key sperm-oocyte fate regulators in meiotic germ cells. We conclude that the C. elegans mitosis-meiosis and sperm-oocyte decisions are separable regulatory events and suggest that this fundamental conclusion will hold true for germ cells throughout the animal kingdom.
Collapse
|
45
|
Zanetti S, Puoti A. Sex Determination in the Caenorhabditis elegans Germline. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:41-69. [DOI: 10.1007/978-1-4614-4015-4_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Using Caenorhabditis to Explore the Evolution of the Germ Line. GERM CELL DEVELOPMENT IN C. ELEGANS 2013; 757:405-25. [DOI: 10.1007/978-1-4614-4015-4_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Translational control in the Caenorhabditis elegans germ line. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:205-47. [PMID: 22872479 DOI: 10.1007/978-1-4614-4015-4_8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Translational control is a prevalent form of gene expression regulation in the Caenorhabditis elegans germ line. Linking the amount of protein synthesis to mRNA quantity and translational accessibility in the cell cytoplasm provides unique advantages over DNA-based controls for developing germ cells. This mode of gene expression is especially exploited in germ cell fate decisions and during oogenesis, when the developing oocytes stockpile hundreds of different mRNAs required for early embryogenesis. Consequently, a dense web of RNA regulators, consisting of diverse RNA-binding proteins and RNA-modifying enzymes, control the translatability of entire mRNA expression programs. These RNA regulatory networks are tightly coupled to germ cell developmental progression and are themselves under translational control. The underlying molecular mechanisms and RNA codes embedded in the mRNA molecules are beginning to be understood. Hence, the C. elegans germ line offers fertile grounds for discovering post-transcriptional mRNA regulatory mechanisms and emerges as great model for a systems level understanding of translational control during development.
Collapse
|
48
|
Duan Y, Li S, Chen Z, Zheng L, Diao Z, Zhou Y, Lan T, Guan H, Pan R, Xue Y, Wu W. Dwarf and deformed flower 1, encoding an F-box protein, is critical for vegetative and floral development in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:829-42. [PMID: 22897567 DOI: 10.1111/j.1365-313x.2012.05126.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent studies have shown that F-box proteins constitute a large family in eukaryotes, and play pivotal roles in regulating various developmental processes in plants. However, their functions in monocots are still obscure. In this study, we characterized a recessive mutant dwarf and deformed flower 1-1 (ddf1-1) in Oryza sativa (rice). The mutant is abnormal in both vegetative and reproductive development, with significant size reduction in all organs except the spikelet. DDF1 controls organ size by regulating both cell division and cell expansion. In the ddf1-1 spikelet, the specification of floral organs in whorls 2 and 3 is altered, with most lodicules and stamens being transformed into glume-like organs and pistil-like organs, respectively, but the specification of lemma/palea and pistil in whorls 1 and 4 is not affected. DDF1 encodes an F-box protein anchored in the nucleolus, and is expressed in almost all vegetative and reproductive tissues. Consistent with the mutant floral phenotype, DDF1 positively regulates B-class genes OsMADS4 and OsMADS16, and negatively regulates pistil specification gene DL. In addition, DDF1 also negatively regulates the Arabidopsis LFY ortholog APO2, implying a functional connection between DDF1 and APO2. Collectively, these results revealed that DDF1, as a newly identified F-box gene, is a crucial genetic factor with pleiotropic functions for both vegetative growth and floral organ specification in rice. These findings provide additional insights into the molecular mechanism controlling monocot vegetative and reproductive development.
Collapse
Affiliation(s)
- Yuanlin Duan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
A specific set of exon junction complex subunits is required for the nuclear retention of unspliced RNAs in Caenorhabditis elegans. Mol Cell Biol 2012; 33:444-56. [PMID: 23149939 DOI: 10.1128/mcb.01298-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The exon junction complex (EJC) is highly conserved in many organisms and is involved in various steps of mRNA metabolism. During the course of investigating the role of EJC in the germ line sex determination of the nematode Caenorhabditis elegans, we found that depletion of one of the three core subunits (Y14, MAG-1, and eukaryotic translation initiation factor 4III [eIF4AIII]) or one auxiliary subunit (UAP56) of EJC resulted in the cytoplasmic leakage of unspliced RNAs from almost all of the C. elegans protein-coding genes examined thus far. This leakage was also observed with the depletion of several splicing factors, including SF3b, IBP160, and PRP19, all of which genetically interacted with Y14. We also found that Y14 physically interacts with both pre-mRNA and spliceosomal U snRNAs, especially U2 snRNA, and that the interaction was abolished when both IBP160 and PRP19 were depleted. Our results strongly suggest that a specific set of EJC subunits is recruited onto introns and interacts with components of the spliceosome, including U2 snRNP, to provide a critical signal for the surveillance and nuclear retention of unspliced RNAs in C. elegans.
Collapse
|
50
|
Katju V. In with the old, in with the new: the promiscuity of the duplication process engenders diverse pathways for novel gene creation. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:341932. [PMID: 23008799 PMCID: PMC3449122 DOI: 10.1155/2012/341932] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/03/2012] [Indexed: 01/26/2023]
Abstract
The gene duplication process has exhibited far greater promiscuity in the creation of paralogs with novel exon-intron structures than anticipated even by Ohno. In this paper I explore the history of the field, from the neo-Darwinian synthesis through Ohno's formulation of the canonical model for the evolution of gene duplicates and culminating in the present genomic era. I delineate the major tenets of Ohno's model and discuss its failure to encapsulate the full complexity of the duplication process as revealed in the era of genomics. I discuss the diverse classes of paralogs originating from both DNA- and RNA-mediated duplication events and their evolutionary potential for assuming radically altered functions, as well as the degree to which they can function unconstrained from the pressure of gene conversion. Lastly, I explore theoretical population-genetic considerations of how the effective population size (N(e)) of a species may influence the probability of emergence of genes with radically altered functions.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|