1
|
Kumar R, Chotaliya M, Vuppala S, Auradkar A, Palasamudrum K, Joshi R. Role of Homothorax in region specific regulation of Deformed in embryonic neuroblasts. Mech Dev 2015; 138 Pt 2:190-197. [PMID: 26409112 PMCID: PMC4678145 DOI: 10.1016/j.mod.2015.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 10/27/2022]
Abstract
The expression and regulation of Hox genes in developing central nervous system (CNS) lack important details like specific cell types where Hox genes are expressed and the transcriptional regulatory players involved in these cells. In this study we have investigated the expression and regulation of Drosophila Hox gene Deformed (Dfd) in specific cell types of embryonic CNS. Using Dfd neural autoregulatory enhancer we find that Dfd autoregulates itself in cells of mandibular neuromere. We have also investigated the role of a Hox cofactor Homothorax (Hth) for its role in regulating Dfd expression in CNS. We find that Hth exhibits a region specific role in controlling the expression of Dfd, but has no direct role in mandibular Dfd neural autoregulatory circuit. Our results also suggest that homeodomain of Hth is not required for regulating Dfd expression in embryonic CNS.
Collapse
Affiliation(s)
- Raviranjan Kumar
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), 4-1-714, Tuljaguda Complex, Nampally, Hyderabad-500001, India; Graduate Studies, Manipal University, Manipal 576104, India
| | - Maheshvari Chotaliya
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), 4-1-714, Tuljaguda Complex, Nampally, Hyderabad-500001, India
| | - Sruthakeerthi Vuppala
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), 4-1-714, Tuljaguda Complex, Nampally, Hyderabad-500001, India
| | - Ankush Auradkar
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), 4-1-714, Tuljaguda Complex, Nampally, Hyderabad-500001, India
| | - Kalyani Palasamudrum
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), 4-1-714, Tuljaguda Complex, Nampally, Hyderabad-500001, India
| | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), 4-1-714, Tuljaguda Complex, Nampally, Hyderabad-500001, India.
| |
Collapse
|
2
|
Saadaoui M, Litim-Mecheri I, Macchi M, Graba Y, Maurel-Zaffran C. A survey of conservation of sea spider and Drosophila Hox protein activities. Mech Dev 2015; 138 Pt 2:73-86. [PMID: 26238019 DOI: 10.1016/j.mod.2015.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 01/29/2023]
Abstract
Hox proteins have well-established functions in development and evolution, controlling the final morphology of bilaterian animals. The common phylogenetic origin of Hox proteins and the associated evolutionary diversification of protein sequences provide a unique framework to explore the relationship between changes in protein sequence and function. In this study, we aimed at questioning how sequence variation within arthropod Hox proteins influences function. This was achieved by exploring the functional impact of sequence conservation/divergence of the Hox genes, labial, Sex comb reduced, Deformed, Ultrabithorax and abdominalA from two distant arthropods, the sea spider and the well-studied Drosophila. Results highlight a correlation between sequence conservation within the homeodomain and the degree of functional conservation, and identify a novel functional domain in the Labial protein.
Collapse
Affiliation(s)
- Mehdi Saadaoui
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Campus de Luminy, Marseille, cedex 09 13288, France; Institut de Biologie de l'ENS, 46, rue d'Ulm, 75005 Paris, France
| | - Isma Litim-Mecheri
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Campus de Luminy, Marseille, cedex 09 13288, France; IGBMC, INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Meiggie Macchi
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Campus de Luminy, Marseille, cedex 09 13288, France
| | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Campus de Luminy, Marseille, cedex 09 13288, France
| | - Corinne Maurel-Zaffran
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Campus de Luminy, Marseille, cedex 09 13288, France
| |
Collapse
|
3
|
Marzese DM, Scolyer RA, Huynh JL, Huang SK, Hirose H, Chong KK, Kiyohara E, Wang J, Kawas NP, Donovan NC, Hata K, Wilmott JS, Murali R, Buckland ME, Shivalingam B, Thompson JF, Morton DL, Kelly DF, Hoon DS. Epigenome-wide DNA methylation landscape of melanoma progression to brain metastasis reveals aberrations on homeobox D cluster associated with prognosis. Hum Mol Genet 2014; 23:226-38. [PMID: 24014427 PMCID: PMC3857956 DOI: 10.1093/hmg/ddt420] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 07/29/2013] [Accepted: 08/26/2013] [Indexed: 12/19/2022] Open
Abstract
Melanoma brain metastasis (MBM) represents a frequent complication of cutaneous melanoma. Despite aggressive multi-modality therapy, patients with MBM often have a survival rate of <1 year. Alteration in DNA methylation is a major hallmark of tumor progression and metastasis; however, it remains largely unexplored in MBM. In this study, we generated a comprehensive DNA methylation landscape through the use of genome-wide copy number, DNA methylation and gene expression data integrative analysis of melanoma progression to MBM. A progressive genome-wide demethylation in low CpG density and an increase in methylation level of CpG islands according to melanoma progression were observed. MBM-specific partially methylated domains (PMDs) affecting key brain developmental processes were identified. Differentially methylated CpG sites between MBM and lymph node metastasis (LNM) from patients with good prognosis were identified. Among the most significantly affected genes were the HOX family members. DNA methylation of HOXD9 gene promoter affected transcript and protein expression and was significantly higher in MBM than that in early stages. A MBM-specific PMD was identified in this region. Low methylation level of this region was associated with active HOXD9 expression, open chromatin and histone modifications associated with active transcription. Demethylating agent induced HOXD9 expression in melanoma cell lines. The clinical relevance of this finding was verified in an independent large cohort of melanomas (n = 145). Patients with HOXD9 hypermethylation in LNM had poorer disease-free and overall survival. This epigenome-wide study identified novel methylated genes with functional and clinical implications for MBM patients.
Collapse
Affiliation(s)
| | - Richard A. Scolyer
- Departments of Tissue Oncology and Diagnostic Pathology and Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | | | | | | - Rajmohan Murali
- Department of Pathology
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY10065USA
| | | | | | - John F. Thompson
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, Sydney, NSW 2006, Australia
| | - Donald L. Morton
- Division of Surgical Oncology, John Wayne Cancer Institute (JWCI), 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Daniel F. Kelly
- Division of Surgical Oncology, John Wayne Cancer Institute (JWCI), 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
- Brain Tumor Center, Saint John's Health Center, Santa Monica, CA 90404, USA
| | | |
Collapse
|
4
|
Merabet S, Dard A. Tracking context-specific transcription factors regulating hox activity. Dev Dyn 2013; 243:16-23. [PMID: 23794379 DOI: 10.1002/dvdy.24002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hox proteins are key developmental regulators involved in almost every embryonic tissue for specifying cell fates along longitudinal axes or during organ formation. It is thought that the panoply of Hox activities relies on interactions with tissue-, stage-, and/or cell-specific transcription factors. High-throughput approaches in yeast or cell culture systems have shown that Hox proteins bind to various types of nuclear and cytoplasmic components, illustrating their remarkable potential to influence many different cell regulatory processes. However, these approaches failed to identify a relevant number of context-specific transcriptional partners, suggesting that these interactions are hard to uncover in non-physiological conditions. Here we discuss this problematic. RESULTS In this review, we present intrinsic Hox molecular signatures that are probably involved in multiple (yet specific) interactions with transcriptional partners. We also recapitulate the current knowledge on Hox cofactors, highlighting the difficulty to tracking context-specific cofactors through traditional large-scale approaches. CONCLUSION We propose experimental approaches that will allow a better characterisation of interaction networks underlying Hox contextual activities in the next future.
Collapse
|
5
|
Bami M, Episkopou V, Gavalas A, Gouti M. Directed neural differentiation of mouse embryonic stem cells is a sensitive system for the identification of novel Hox gene effectors. PLoS One 2011; 6:e20197. [PMID: 21637844 PMCID: PMC3102681 DOI: 10.1371/journal.pone.0020197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/20/2011] [Indexed: 12/19/2022] Open
Abstract
The evolutionarily conserved Hox family of homeodomain transcription factors plays fundamental roles in regulating cell specification along the anterior posterior axis during development of all bilaterian animals by controlling cell fate choices in a highly localized, extracellular signal and cell context dependent manner. Some studies have established downstream target genes in specific systems but their identification is insufficient to explain either the ability of Hox genes to direct homeotic transformations or the breadth of their patterning potential. To begin delineating Hox gene function in neural development we used a mouse ES cell based system that combines efficient neural differentiation with inducible Hoxb1 expression. Gene expression profiling suggested that Hoxb1 acted as both activator and repressor in the short term but predominantly as a repressor in the long run. Activated and repressed genes segregated in distinct processes suggesting that, in the context examined, Hoxb1 blocked differentiation while activating genes related to early developmental processes, wnt and cell surface receptor linked signal transduction and cell-to-cell communication. To further elucidate aspects of Hoxb1 function we used loss and gain of function approaches in the mouse and chick embryos. We show that Hoxb1 acts as an activator to establish the full expression domain of CRABPI and II in rhombomere 4 and as a repressor to restrict expression of Lhx5 and Lhx9. Thus the Hoxb1 patterning activity includes the regulation of the cellular response to retinoic acid and the delay of the expression of genes that commit cells to neural differentiation. The results of this study show that ES neural differentiation and inducible Hox gene expression can be used as a sensitive model system to systematically identify Hox novel target genes, delineate their interactions with signaling pathways in dictating cell fate and define the extent of functional overlap among different Hox genes.
Collapse
Affiliation(s)
- Myrto Bami
- Developmental Biology Laboratory, Biomedical Research Foundation of the
Academy of Athens (BRFAA), Athens, Greece
| | - Vasso Episkopou
- Mammalian Neurogenesis, MRC Clinical Sciences Centre, Imperial College
School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Anthony Gavalas
- Developmental Biology Laboratory, Biomedical Research Foundation of the
Academy of Athens (BRFAA), Athens, Greece
| | - Mina Gouti
- Developmental Biology Laboratory, Biomedical Research Foundation of the
Academy of Athens (BRFAA), Athens, Greece
| |
Collapse
|
6
|
In der Rieden PMJ, Jansen HJ, Durston AJ. XMeis3 is necessary for mesodermal Hox gene expression and function. PLoS One 2011; 6:e18010. [PMID: 21464931 PMCID: PMC3065463 DOI: 10.1371/journal.pone.0018010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/21/2011] [Indexed: 12/13/2022] Open
Abstract
Hox transcription factors provide positional information during patterning of the anteroposterior axis. Hox transcription factors can co-operatively bind with PBC-class co-factors, enhancing specificity and affinity for their appropriate binding sites. The nuclear localisation of these co-factors is regulated by the Meis-class of homeodomain proteins. During development of the zebrafish hindbrain, Meis3 has previously been shown to synergise with Hoxb1 in the autoregulation of Hoxb1. In Xenopus XMeis3 posteriorises the embryo upon ectopic expression. Recently, an early temporally collinear expression sequence of Hox genes was detected in Xenopus gastrula mesoderm (see intro. P3). There is evidence that this sequence sets up the embryo's later axial Hox expression pattern by time-space translation. We investigated whether XMeis3 is involved in regulation of this early mesodermal Hox gene expression. Here, we present evidence that XMeis3 is necessary for expression of Hoxd1, Hoxb4 and Hoxc6 in mesoderm during gastrulation. In addition, we show that XMeis3 function is necessary for the progression of gastrulation. Finally, we present evidence for synergy between XMeis3 and Hoxd1 in Hoxd1 autoregulation in mesoderm during gastrulation.
Collapse
|
7
|
Joshi R, Sun L, Mann R. Dissecting the functional specificities of two Hox proteins. Genes Dev 2010; 24:1533-45. [PMID: 20634319 DOI: 10.1101/gad.1936910] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hox proteins frequently select and regulate their specific target genes with the help of cofactors like Extradenticle (Exd) and Homothorax (Hth). For the Drosophila Hox protein Sex combs reduced (Scr), Exd has been shown to position a normally unstructured portion of Scr so that two basic amino acid side chains can insert into the minor groove of an Scr-specific DNA-binding site. Here we provide evidence that another Drosophila Hox protein, Deformed (Dfd), uses a very similar mechanism to achieve specificity in vivo, thus generalizing this mechanism. Furthermore, we show that subtle differences in the way Dfd and Scr recognize their specific binding sites, in conjunction with non-DNA-binding domains, influence whether the target gene is transcriptionally activated or repressed. These results suggest that the interaction between these DNA-binding proteins and the DNA-binding site determines the architecture of the Hox-cofactor-DNA ternary complex, which in turn determines whether the complex recruits coactivators or corepressors.
Collapse
Affiliation(s)
- Rohit Joshi
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| | | | | |
Collapse
|
8
|
Weiss A, Charbonnier E, Ellertsdóttir E, Tsirigos A, Wolf C, Schuh R, Pyrowolakis G, Affolter M. A conserved activation element in BMP signaling during Drosophila development. Nat Struct Mol Biol 2009; 17:69-76. [PMID: 20010841 DOI: 10.1038/nsmb.1715] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 10/08/2009] [Indexed: 12/25/2022]
Abstract
The transforming growth factor beta (TGF-beta) family member Decapentaplegic (Dpp) is a key regulator of patterning and growth in Drosophila development. Previous studies have identified a short DNA motif called the silencer element (SE), which recruits a trimeric Smad complex and the repressor Schnurri to downregulate target enhancers upon Dpp signaling. We have now isolated the minimal enhancer of the dad gene and discovered a short motif we termed the activating element (AE). The AE is similar to the SE and recruits the Smad proteins via a conserved mechanism. However, the AE and SE differ at important nucleotide positions. As a consequence, the AE does not recruit Schnurri but rather integrates repressive input by the default repressor Brinker and activating input by the Smad signal transducers Mothers against Dpp (Mad) and Medea via competitive DNA binding. The AE allows the identification of hitherto unknown direct Dpp targets and is functionally conserved in vertebrates.
Collapse
|
9
|
Stöbe P, Stein SMA, Habring-Müller A, Bezdan D, Fuchs AL, Hueber SD, Wu H, Lohmann I. Multifactorial regulation of a hox target gene. PLoS Genet 2009; 5:e1000412. [PMID: 19282966 PMCID: PMC2646128 DOI: 10.1371/journal.pgen.1000412] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 02/09/2009] [Indexed: 01/27/2023] Open
Abstract
Hox proteins play fundamental roles in controlling morphogenetic diversity along the anterior-posterior body axis of animals by regulating distinct sets of target genes. Within their rather broad expression domains, individual Hox proteins control cell diversification and pattern formation and consequently target gene expression in a highly localized manner, sometimes even only in a single cell. To achieve this high-regulatory specificity, it has been postulated that Hox proteins co-operate with other transcription factors to activate or repress their target genes in a highly context-specific manner in vivo. However, only a few of these factors have been identified. Here, we analyze the regulation of the cell death gene reaper (rpr) by the Hox protein Deformed (Dfd) and suggest that local activation of rpr expression in the anterior part of the maxillary segment is achieved through a combinatorial interaction of Dfd with at least eight functionally diverse transcriptional regulators on a minimal enhancer. It follows that context-dependent combinations of Hox proteins and other transcription factors on small, modular Hox response elements (HREs) could be responsible for the proper spatio-temporal expression of Hox targets. Thus, a large number of transcription factors are likely to be directly involved in Hox target gene regulation in vivo.
Collapse
Affiliation(s)
- Petra Stöbe
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sokrates M. A. Stein
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anette Habring-Müller
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Daniela Bezdan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Aurelia L. Fuchs
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- BIOQUANT Center, Heidelberg, Germany
| | - Stefanie D. Hueber
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Haijia Wu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ingrid Lohmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- BIOQUANT Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
10
|
Casas-Tinto S, Gomez-Velazquez M, Granadino B, Fernandez-Funez P. FoxK mediates TGF-beta signalling during midgut differentiation in flies. ACTA ACUST UNITED AC 2009; 183:1049-60. [PMID: 19075113 PMCID: PMC2600746 DOI: 10.1083/jcb.200808149] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inductive signals across germ layers are important for the development of the endoderm in vertebrates and invertebrates (Tam, P.P., M. Kanai-Azuma, and Y. Kanai. 2003. Curr. Opin. Genet. Dev. 13:393–400; Nakagoshi, H. 2005. Dev. Growth Differ. 47:383–392). In flies, the visceral mesoderm secretes signaling molecules that diffuse into the underlying midgut endoderm, where conserved signaling cascades activate the Hox gene labial, which is important for the differentiation of copper cells (Bienz, M. 1997. Curr. Opin. Genet. Dev. 7:683–688). We present here a Drosophila melanogaster gene of the Fox family of transcription factors, FoxK, that mediates transforming growth factor β (TGF-β) signaling in the embryonic midgut endoderm. FoxK mutant embryos fail to generate midgut constrictions and lack Labial in the endoderm. Our observations suggest that TGF-β signaling directly regulates FoxK through functional Smad/Mad-binding sites, whereas FoxK, in turn, regulates labial expression. We also describe a new cooperative activity of the transcription factors FoxK and Dfos/AP-1 that regulates labial expression in the midgut endoderm. This regulatory activity does not require direct labial activation by the TGF-β effector Mad. Thus, we propose that the combined activity of the TGF-β target genes FoxK and Dfos is critical for the direct activation of lab in the endoderm.
Collapse
Affiliation(s)
- Sergio Casas-Tinto
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
Hox proteins are well known for executing highly specific functions in vivo, but our understanding of the molecular mechanisms underlying gene regulation by these fascinating proteins has lagged behind. The premise of this review is that an understanding of gene regulation-by any transcription factor-requires the dissection of the cis-regulatory elements that they act upon. With this goal in mind, we review the concepts and ideas regarding gene regulation by Hox proteins and apply them to a curated list of directly regulated Hox cis-regulatory elements that have been validated in the literature. Our analysis of the Hox-binding sites within these elements suggests several emerging generalizations. We distinguish between Hox cofactors, proteins that bind DNA cooperatively with Hox proteins and thereby help with DNA-binding site selection, and Hox collaborators, proteins that bind in parallel to Hox-targeted cis-regulatory elements and dictate the sign and strength of gene regulation. Finally, we summarize insights that come from examining five X-ray crystal structures of Hox-cofactor-DNA complexes. Together, these analyses reveal an enormous amount of flexibility into how Hox proteins function to regulate gene expression, perhaps providing an explanation for why these factors have been central players in the evolution of morphological diversity in the animal kingdom.
Collapse
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
12
|
Abstract
Despite decades of research, morphogenesis along the various body axes remains one of the major mysteries in developmental biology. A milestone in the field was the realisation that a set of closely related regulators, called Hox genes, specifies the identity of body segments along the anterior-posterior (AP) axis in most animals. Hox genes have been highly conserved throughout metazoan evolution and code for homeodomain-containing transcription factors. Thus, they exert their function mainly through activation or repression of downstream genes. However, while much is known about Hox gene structure and molecular function, only a few target genes have been identified and studied in detail. Our knowledge of Hox downstream genes is therefore far from complete and consequently Hox-controlled morphogenesis is still poorly understood. Genome-wide approaches have facilitated the identification of large numbers of Hox downstream genes both in Drosophila and vertebrates, and represent a crucial step towards a comprehensive understanding of how Hox proteins drive morphological diversification. In this review, we focus on the role of Hox genes in shaping segmental morphologies along the AP axis in Drosophila, discuss some of the conclusions drawn from analyses of large target gene sets and highlight methods that could be used to gain a more thorough understanding of Hox molecular function. In addition, the mechanisms of Hox target gene regulation are considered with special emphasis on recent findings and their implications for Hox protein specificity in the context of the whole organism.
Collapse
Affiliation(s)
- Stefanie D Hueber
- Department of Molecular Biology, AG I. Lohmann, MPI for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
13
|
Gao S, Laughon A. Flexible interaction of Drosophila Smad complexes with bipartite binding sites. ACTA ACUST UNITED AC 2007; 1769:484-96. [PMID: 17610966 DOI: 10.1016/j.bbaexp.2007.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Revised: 04/24/2007] [Accepted: 05/29/2007] [Indexed: 01/11/2023]
Abstract
A subset of BMP-responsive enhancer elements are characterized by pairing of a GC-rich Smad1 binding site and an SBE-type Smad4 binding site. Such paired, or bipartite, sites are in some cases just 5 bp apart and thus might be contacted by a single Smad1-Smad4 complex. Other potential pairings are separated as much as 60 bp but it is not known whether such longer distances can be spanned by a Smad1-Smad4 complex, indeed binding of native Smad1-Smad4 complexes to any of these bipartite elements has yet to be reported. Here we report that a complex of the homologous Drosophila Smad proteins, Mad and Medea, is capable of concerted binding to GC-rich and SBE sites separated by as much as 20 bp. The wider the separation, the more severely binding affinity was reduced by shortening of the linker region that tethers the DNA binding domain of Medea. In contrast, length of the Mad linker did not affect the allowed distance between paired sites, rather it contributes specifically to Mad contact with the GC-rich site. Finally, we show that Smad1 and Smad4 can participate in binding to bipartite sites.
Collapse
Affiliation(s)
- Sheng Gao
- Laboratory of Genetics, University of Wisconsin, 425G Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
14
|
Chen PY, Chang WSW, Chou RH, Lai YK, Lin SC, Chi CY, Wu CW. Two non-homologous brain diseases-related genes, SERPINI1 and PDCD10, are tightly linked by an asymmetric bidirectional promoter in an evolutionarily conserved manner. BMC Mol Biol 2007; 8:2. [PMID: 17212813 PMCID: PMC1796892 DOI: 10.1186/1471-2199-8-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 01/09/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Despite of the fact that mammalian genomes are far more spacious than prokaryotic genomes, recent nucleotide sequencing data have revealed that many mammalian genes are arranged in a head-to-head orientation and separated by a small intergenic sequence. Extensive studies on some of these neighboring genes, in particular homologous gene pairs, have shown that these genes are often co-expressed in a symmetric manner and regulated by a shared promoter region. Here we report the identification of two non-homologous brain disease-related genes, with one coding for a serine protease inhibitor (SERPINI1) and the other for a programmed cell death-related gene (PDCD10), being tightly linked together by an asymmetric bidirectional promoter in an evolutionarily conserved fashion. This asymmetric bidirectional promoter, in cooperation with some cis-acting elements, is responsible for the co-regulation of the gene expression pattern as well as the tissue specificity of SERPINI1 and PDCD10. RESULTS While SERPINI1 is predominantly expressed in normal brain and down-regulated in brain tumors, PDCD10 is ubiquitously expressed in all normal tissues but its gene transcription becomes aberrant in different types of cancers. By measuring the luciferase activity in various cell lysates, their 851-bp intergenic sequence was shown to be capable of driving the reporter gene expression in either direction. A 175-bp fragment from nt 1 to 175 in the vicinity of PDCD10 was further determined to function as a minimal bidirectional promoter. A critical regulatory fragment, from nt 176-473 outside the minimal promoter in the intergenic region, was identified to contain a strong repressive element for SERPINI1 and an enhancer for PDCD10. These cis-acting elements may exist to help coordinate the expression and regulation of the two flanking genes. CONCLUSION For all non-homologous genes that have been described to be closely adjacent in the mammalian genomes, the intergenic region of the head-to-head PDCD10-SERPINI1 gene pair provides an interesting and informative example of a complex regulatory system that governs the expression of both genes not only through an asymmetric bidirectional promoter, but also through fine-tuned regulations with some cis-acting elements.
Collapse
Affiliation(s)
- Ping-Yen Chen
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
- Department of Life Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Wun-Shaing W Chang
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Ruey-Hwang Chou
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Yiu-Kay Lai
- Department of Life Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
- Department of Bioresources, Da-Yeh University, Changhua County 515, Taiwan, ROC
| | - Sheng-Chieh Lin
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chia-Yi Chi
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Cheng-Wen Wu
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| |
Collapse
|
15
|
de Jong DM, Hislop NR, Hayward DC, Reece-Hoyes JS, Pontynen PC, Ball EE, Miller DJ. Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a 'radiate' animal, the anthozoan cnidarian Acropora millepora. Dev Biol 2006; 298:632-43. [PMID: 16952346 DOI: 10.1016/j.ydbio.2006.07.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 07/26/2006] [Accepted: 07/26/2006] [Indexed: 12/01/2022]
Abstract
Cnidarians are animals with a single (oral/aboral) overt body axis and with origins that nominally predate bilaterality. To better understand the evolution of axial patterning mechanisms, we characterized genes from the coral, Acropora millepora (Class Anthozoa) that are considered to be unambiguous markers of the bilaterian anterior/posterior and dorsal/ventral axes. Homologs of Otx/otd and Emx/ems, definitive anterior markers across the Bilateria, are expressed at opposite ends of the Acropora larva; otxA-Am initially around the blastopore and later preferentially toward the oral end in the ectoderm, and emx-Am predominantly in putative neurons in the aboral half of the planula larva, in a domain overlapping that of cnox-2Am, a Gsh/ind gene. The Acropora homologs of Pax-3/7, NKX2.1/vnd and Msx/msh are expressed in axially restricted and largely non-overlapping patterns in larval ectoderm. In Acropora, components of both the D/V and A/P patterning systems of bilateral animals are therefore expressed in regionally restricted patterns along the single overt body axis of the planula larva, and two 'anterior' markers are expressed at opposite ends of the axis. Thus, although some specific gene functions appear to be conserved between cnidarians and higher animals, no simple relationship exists between axial patterning systems in the two groups.
Collapse
Affiliation(s)
- Danielle M de Jong
- Comparative Genomics Centre, Molecular Sciences Building 21, James Cook University, Townsville, Qld. 4811, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Cordier F, Hartmann B, Rogowski M, Affolter M, Grzesiek S. DNA Recognition by the Brinker Repressor – An Extreme Case of Coupling Between Binding and Folding. J Mol Biol 2006; 361:659-72. [PMID: 16876822 DOI: 10.1016/j.jmb.2006.06.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 11/22/2022]
Abstract
The Brinker (Brk) nuclear repressor is a major element of the Drosophila Decapentaplegic morphogen signaling pathway. Its N-terminal part has weak homology to the Antennapedia homeodomain and binds to GC-rich DNA sequences. We have investigated the conformation and dynamics of the N-terminal 101 amino acid residues of Brk in the absence and in the presence of cognate DNA by solution NMR spectroscopy. In the absence of DNA, Brk is unfolded and highly flexible throughout the entire backbone. Addition of cognate DNA induces the formation of a well-folded structure for residues R46 to R95. This structure consists of four helices forming a helix-turn-helix motif that differs from homeodomains, but has similarities to the Tc3 transposase, the Pax-6 Paired domain, and the human centromere-binding protein. The GC-rich DNA recognition can be explained by specific major groove hydrogen bonds from the N-terminal end of helix alpha3. The transition from a highly flexible, completely unfolded conformation in the absence of DNA to a well-formed structure in the complex presents a very extreme case of the "coupling of binding and folding" phenomenon.
Collapse
Affiliation(s)
- Florence Cordier
- Division of Structural Biology, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Barmina O, Gonzalo M, McIntyre LM, Kopp A. Sex- and segment-specific modulation of gene expression profiles in Drosophila. Dev Biol 2005; 288:528-44. [PMID: 16269142 DOI: 10.1016/j.ydbio.2005.09.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 09/28/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
Homeotic and sex-determining genes control a wide range of morphological traits by regulating the expression of different target genes in different tissues. The identity of most of these target genes remains unknown, and it is not even clear what fraction of the genome is regulated in a segment- and sex-specific manner. In this report, we examine segment- and sex-specific gene expression in Drosophila pupal legs. The first and second legs in Drosophila have clearly distinguishable bristle patterns. Bristle pattern in the first leg also differs between males and females, whereas the second leg has no overt sexual dimorphism. To identify the genes responsible for these differences, we compared transcriptional profiles between male and female first and second legs during early pupal development. The extent of sexually dimorphic gene expression parallels morphological differences: over 100 genes are expressed sex specifically in the first leg, whereas no sexual differences are seen in the second leg. Segmental differences are less extensive than sexual dimorphism and involve fewer than 14 genes. We have identified a novel gene, CG13857, that is expressed exclusively in the first leg in a pattern that suggests this gene may play an important role in specifying segment- and sex-specific bristle patterns.
Collapse
Affiliation(s)
- Olga Barmina
- Section of Evolution and Ecology, Center for Genetics and Development, University of California-Davis, One Shields Ave., Davis, CA 95616, USA
| | | | | | | |
Collapse
|
18
|
Negre B, Casillas S, Suzanne M, Sánchez-Herrero E, Akam M, Nefedov M, Barbadilla A, de Jong P, Ruiz A. Conservation of regulatory sequences and gene expression patterns in the disintegrating Drosophila Hox gene complex. Genome Res 2005; 15:692-700. [PMID: 15867430 PMCID: PMC1088297 DOI: 10.1101/gr.3468605] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 01/26/2005] [Indexed: 11/25/2022]
Abstract
Homeotic (Hox) genes are usually clustered and arranged in the same order as they are expressed along the anteroposterior body axis of metazoans. The mechanistic explanation for this colinearity has been elusive, and it may well be that a single and universal cause does not exist. The Hox-gene complex (HOM-C) has been rearranged differently in several Drosophila species, producing a striking diversity of Hox gene organizations. We investigated the genomic and functional consequences of the two HOM-C splits present in Drosophila buzzatii. Firstly, we sequenced two regions of the D. buzzatii genome, one containing the genes labial and abdominal A, and another one including proboscipedia, and compared their organization with that of D. melanogaster and D. pseudoobscura in order to map precisely the two splits. Then, a plethora of conserved noncoding sequences, which are putative enhancers, were identified around the three Hox genes closer to the splits. The position and order of these enhancers are conserved, with minor exceptions, between the three Drosophila species. Finally, we analyzed the expression patterns of the same three genes in embryos and imaginal discs of four Drosophila species with different Hox-gene organizations. The results show that their expression patterns are conserved despite the HOM-C splits. We conclude that, in Drosophila, Hox-gene clustering is not an absolute requirement for proper function. Rather, the organization of Hox genes is modular, and their clustering seems the result of phylogenetic inertia more than functional necessity.
Collapse
Affiliation(s)
- Bárbara Negre
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Huang H, Rastegar M, Bodner C, Goh SL, Rambaldi I, Featherstone M. MEIS C Termini Harbor Transcriptional Activation Domains That Respond to Cell Signaling. J Biol Chem 2005; 280:10119-27. [PMID: 15654074 DOI: 10.1074/jbc.m413963200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MEIS proteins form heteromeric DNA-binding complexes with PBX monomers and PBX.HOX heterodimers. We have shown previously that transcriptional activation by PBX.HOX is augmented by either protein kinase A (PKA) or the histone deacetylase inhibitor trichostatin A (TSA). To examine the contribution of MEIS proteins to this response, we used the chromatin immunoprecipitation assay to show that MEIS1 in addition to PBX1, HOXA1, and HOXB1 was recruited to a known PBX.HOX target, the Hoxb1 autoregulatory element following Hoxb1 transcriptional activation in P19 cells. Subsequent to TSA treatment, MEIS1 recruitment lagged behind that of HOX and PBX partners. MEIS1A also enhanced the transcriptional activation of a reporter construct bearing the Hoxb1 autoregulatory element after treatment with TSA. The MEIS1 homeodomain and protein-protein interaction with PBX contributed to this activity. We further mapped TSA-responsive and CREB-binding protein-dependent PKA-responsive transactivation domains to the MEIS1A and MEIS1B C termini. Fine mutation of the 56-residue MEIS1A C terminus revealed four discrete regions required for transcriptional activation function. All of the mutations impairing the response to TSA likewise reduced activation by PKA, implying a common mechanistic basis. C-terminal deletion of MEIS1 impaired transactivation without disrupting DNA binding or complex formation with HOX and PBX. Despite sequence similarity to MEIS and a shared ability to form heteromeric complexes with PBX and HOX partners, the PREP1 C terminus does not respond to TSA or PKA. Thus, MEIS C termini possess transcriptional regulatory domains that respond to cell signaling and confer functional differences between MEIS and PREP proteins.
Collapse
Affiliation(s)
- He Huang
- McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Pyrowolakis G, Hartmann B, Müller B, Basler K, Affolter M. A Simple Molecular Complex Mediates Widespread BMP-Induced Repression during Drosophila Development. Dev Cell 2004; 7:229-40. [PMID: 15296719 DOI: 10.1016/j.devcel.2004.07.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 06/04/2004] [Accepted: 06/15/2004] [Indexed: 01/03/2023]
Abstract
The spatial and temporal control of gene expression during the development of multicellular organisms is regulated to a large degree by cell-cell signaling. We have uncovered a simple mechanism through which Dpp, a TGFbeta/BMP superfamily member in Drosophila, represses many key developmental genes in different tissues. A short DNA sequence, a Dpp-dependent silencer element, is sufficient to confer repression of gene transcription upon Dpp receptor activation and nuclear translocation of Mad and Medea. Transcriptional repression does not require the cooperative action of cell type-specific transcription factors but relies solely on the capacity of the silencer element to interact with Mad and Medea and to subsequently recruit the zinc finger-containing repressor protein Schnurri. Our findings demonstrate how the Dpp pathway can repress key targets in a simple and tissue-unrestricted manner in vivo and hence provide a paradigm for the inherent capacity of a signaling system to repress transcription upon pathway activation.
Collapse
Affiliation(s)
- George Pyrowolakis
- Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Abstract
The conserved homeobox (Hox) gene cluster is neither conserved nor clustered in the nematode Caenorhabditis elegans. Instead, C. elegans has a reduced and dispersed gene complement that is the result the loss of Hox genes in stages throughout its evolutionary history. The roles of Hox genes in patterning the nematode body axis are also divergent, although there are tantalising remnants of ancient regulatory systems. Hox patterning also differs greatly between C. elegans and a second 'model' nematode, Pristionchus pacificus. The pattern of Hox gene evolution may be indicative of the move to deterministic developmental modes in nematodes.
Collapse
Affiliation(s)
- Aziz Aboobaker
- Institute of Cell, Animal and Population Biology, University of Edingburgh, Edingburgh, UK.
| | | |
Collapse
|
22
|
Wacker SA, McNulty CL, Durston AJ. The initiation of Hox gene expression in Xenopus laevis is controlled by Brachyury and BMP-4. Dev Biol 2004; 266:123-37. [PMID: 14729483 DOI: 10.1016/j.ydbio.2003.10.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hox genes encode a family of transcription factors that specify positional identities along the anterior-posterior (AP) axis during the development of vertebrate embryos. The earliest Hox expression in vertebrates is during gastrulation, at a position distant from the organiser or its equivalent. However, the mechanism that initiates this early expression is still not clear. Guided by the expression pattern, we identified upstream regulators in Xenopus laevis. The mesodermal transcription factor brachyury (Xbra) controls the early Hox expression domain in the animal-vegetal direction and the secreted growth factor BMP-4 limits it in the organiser/non-organiser direction. The overlap of these two signals, indicated by a Cartesian coordinate system, defines the initial Hox expression domain. We postulate that this system is a general mechanism for the activation of all Hox genes expressed during gastrulation.
Collapse
Affiliation(s)
- S A Wacker
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, 3584 CT Utrecht, The Netherlands
| | | | | |
Collapse
|
23
|
Benchabane H, Wrana JL. GATA- and Smad1-dependent enhancers in the Smad7 gene differentially interpret bone morphogenetic protein concentrations. Mol Cell Biol 2003; 23:6646-61. [PMID: 12944489 PMCID: PMC193708 DOI: 10.1128/mcb.23.18.6646-6661.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Smad7, an inhibitor of transforming growth factor beta superfamily signaling, is induced by bone morphogenetic protein (BMP) in an inhibitory feedback loop. Here, we identify multiple BMP response elements (BREs) in the Smad7 gene and demonstrate that they function differentially to interpret BMP signals in a cell type-specific manner. Two BREs (BRE-1 and -2) reside in the promoter region. One of these contains several conserved Smad1 and Smad4 binding sites that cooperate to mediate BMP-dependent induction, most likely in the absence of DNA binding partners. The third BRE (I-BRE) resides in the first intron and contains GATA factor binding sites. GATA-1, -5, or -6 is required for strong activation of I-BRE, and we show that they assemble with Smad1 on the I-BRE in living cells. Activation of the I-BRE is mediated by a specific region in GATA-5 and -6 but does not require direct physical interaction with Smad1. Comparison of I-BRE to BRE-1 showed that I-BRE is more responsive to low BMP concentrations. Moreover, analysis by chromatin immunoprecipitation experiments demonstrates that the endogenous I-BRE is occupied more robustly by endogenous Smad1 than is BRE-1. This correlates with regulation of the Smad7 gene, which is induced at lower BMP concentrations in GATA-expressing cell lines compared to non-GATA-expressing lines. These data thus define how cooperative and noncooperative Smad-dependent transcriptional regulation can function to interpret different BMP concentrations.
Collapse
Affiliation(s)
- Hassina Benchabane
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Room 1075, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | |
Collapse
|
24
|
Christiansen AE, Keisman EL, Ahmad SM, Baker BS. Sex comes in from the cold: the integration of sex and pattern. Trends Genet 2002; 18:510-6. [PMID: 12350340 DOI: 10.1016/s0168-9525(02)02769-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There has recently been a revolution in our understanding of how the Drosophila sex-determination hierarchy generates somatic sexual dimorphism. Most significantly, the sex hierarchy has been shown to modulate the activities of well-known signaling molecules (FGF, Wnt and TGF beta proteins) and transcription factors (BAB and DAC) to direct various sex-specific aspects of growth and differentiation. As some of the genes encoding these proteins are also the targets of Hox gene action, these and other findings are revealing the levels at which the sex determination and Hox patterning pathways are integrated to control growth, morphogenesis and differentiation.
Collapse
|
25
|
Merabet S, Catala F, Pradel J, Graba Y. A Green Fluorescent Protein Reporter Genetic Screen That Identifies Modifiers of Hox Gene Function in the Drosophila Embryo. Genetics 2002; 162:189-202. [PMID: 12242233 PMCID: PMC1462243 DOI: 10.1093/genetics/162.1.189] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Hox genes encode evolutionarily conserved transcription factors that play fundamental roles in the organization of the animal body plan. Molecular studies emphasize that unidentified genes contribute to the control of Hox activity. In this study, we describe a genetic screen designed to identify functions required for the control of the wingless (wg) and empty spiracles (ems) target genes by the Hox Abdominal-A and Abdominal-B proteins. A collection of chromosomal deficiencies were screened for their ability to modify GFP fluorescence patterns driven by Hox response elements (HREs) from wg and ems. We found 15 deficiencies that modify the activity of the ems HRE and 18 that modify the activity of the wg HRE. Many deficiencies cause ectopic activity of the HREs, suggesting that spatial restriction of transcriptional activity is an important level in the control of Hox gene function. Further analysis identified eight loci involved in the homeotic regulation of wg or ems. A majority of these modifier genes correspond to previously characterized genes, although not for their roles in the regulation of Hox targets. Five of them encode products acting in or in connection with signal transduction pathways, which suggests an extensive use of signaling in the control of Hox gene function.
Collapse
Affiliation(s)
- Samir Merabet
- Laboratoire de Génétique et Physiologie du Développement IBDM, CNRS, Université de la Méditerranée, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
26
|
Ebner A, Kiefer FN, Ribeiro C, Petit V, Nussbaumer U, Affolter M. Tracheal development in Drosophila melanogaster as a model system for studying the development of a branched organ. Gene 2002; 287:55-66. [PMID: 11992723 DOI: 10.1016/s0378-1119(01)00895-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development of the tracheal system of Drosophila melanogaster represents a paradigm for studying the molecular mechanisms involved in the formation of a branched tubular network. Tracheogenesis has been characterized at the morphological, cellular and genetic level and a series of successive, but linked events have been described as the basis for the formation of the complex network of tubules which extend over the entire organism. Tracheal cells stop to divide early in the process of tracheogenesis and the formation of the interconnected network requires highly controlled cell migration events and cell shape changes. A number of genes involved in these two processes have been identified but in order to obtain a more complete view of branching morphogenesis, many more genes carrying essential functions have to be isolated and characterized. Here, we provide a progress report on our attempts to identify further genes expressed in the tracheal system. We show that empty spiracles (ems), a head gap gene, is required for the formation of a specific tracheal branch, the visceral branch. We also identified a Sulfotransferase and a Multiple Inositol Polyphosphate phosphatase that are strongly upregulated in tracheal cells and discuss their possible involvement in tracheal development.
Collapse
Affiliation(s)
- Andreas Ebner
- Abteilung Zellbiologie, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Curtiss J, Halder G, Mlodzik M. Selector and signalling molecules cooperate in organ patterning. Nat Cell Biol 2002; 4:E48-51. [PMID: 11875444 DOI: 10.1038/ncb0302-e48] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell signalling is essential for a plethora of inductive interactions during organogenesis. Surprisingly, only a few different classes of signalling molecules mediate many inductive interactions, and these molecules are used reiteratively during development. This raises the question of how generic signals can trigger tissue-specific responses. Recent studies in Drosophila melanogaster indicate that signalling molecules cooperate with selector genes to specify particular body parts and organ types. Selector and signalling inputs are integrated at the level of cis-regulatory elements, where direct binding of both selector proteins and signal transducers is required to activate tissue-specific enhancer elements of target genes. Such enhancers include autoregulatory enhancers of the selector genes themselves, which drive the refinement of expression patterns of selector genes.
Collapse
Affiliation(s)
- Jennifer Curtiss
- Department of Molecular, Cell and Developmental Biology, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | | | | |
Collapse
|
28
|
Streit A, Kohler R, Marty T, Belfiore M, Takacs-Vellai K, Vigano MA, Schnabel R, Affolter M, Müller F. Conserved regulation of the Caenorhabditis elegans labial/Hox1 gene ceh-13. Dev Biol 2002; 242:96-108. [PMID: 11820809 DOI: 10.1006/dbio.2001.0544] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caenorhabditis elegans contains a set of six cluster-type homeobox (Hox) genes that are required during larval development. Some of them, but unlike in flies not all of them, are also required during embryogenesis. It has been suggested that the control of the embryonic expression of the worm Hox genes might differ from that of other species by being regulated in a lineal rather than a regional mode. Here, we present a trans-species analysis of the cis-regulatory region of ceh-13, the worm ortholog of the Drosophila labial and the vertebrate Hox1 genes, and find that the molecular mechanisms that regulate its expression may be similar to what has been found in species that follow a regulative, non-cell-autonomous mode of development. We have identified two enhancer fragments that are involved in different aspects of the embryonic ceh-13 expression pattern. We show that important features of comma-stage expression depend on an autoregulatory input that requires ceh-13 and ceh-20 functions. Our data show that the molecular nature of Hox1 class gene autoregulation has been conserved between worms, flies, and vertebrates. The second regulatory sequence is sufficient to drive correct early embryonic expression of ceh-13. Interestingly, this enhancer fragment acts as a response element of the Wnt/WG signaling pathway in Drosophila embryos.
Collapse
Affiliation(s)
- Adrian Streit
- Department of Biology, University of Fribourg, Pérolles, Fribourg, CH-1700, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pan L, Black TA, Shi Q, Jones CA, Petrovic N, Loudon J, Kane C, Sigmund CD, Gross KW. Critical roles of a cyclic AMP responsive element and an E-box in regulation of mouse renin gene expression. J Biol Chem 2001; 276:45530-8. [PMID: 11564732 DOI: 10.1074/jbc.m103010200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mouse As4.1 cells, obtained after transgene-targeted oncogenesis to induce neoplasia in renal renin expressing cells, express high levels of renin mRNA from their endogenous Ren-1(c) gene. We have previously identified a 242-base pair enhancer (coordinates -2866 to -2625 relative to the CAP site) upstream of the mouse Ren-1(c) gene. This enhancer, in combination with the proximal promoter (-117 to +6), activates transcription nearly 2 orders of magnitude in an orientation independent fashion. To further delimit sequences necessary for transcriptional activation, renin promoter-luciferase reporter gene constructs containing selected regions of the Ren-1(c) enhancer were analyzed after transfection into As4.1 cells. These results demonstrate that several regions are required for full enhancer activity. Sequences from -2699 to -2672, which are critical for the enhancer activity, contain a cyclic AMP responsive element (CRE) and an E-box. Electrophoretic mobility shift assays demonstrated that transcription factors CREB/CREM and USF1/USF2 in As4.1 cell nuclear extracts bind to oligonucleotides containing the Ren-1(c) CRE and E-box, respectively. These two elements are capable of synergistically activating transcription from the Ren-1(c) promoter. Moreover, mutation of either the CRE or E-box results in almost complete loss of enhancer activity, suggesting the critical roles these two elements play in regulating mouse Ren-1(c) gene expression. Although the Ren-1(c) gene contains a CRE, its expression is not induced by cAMP in As4.1 cells. This appears to reflect constitutive activation of protein kinase A in As4.1 cells since treatment with the protein kinase A inhibitor, H-89, caused a significant reduction in Ren-1(c) gene expression and this reduction is mediated through the CRE at -2699 to -2688.
Collapse
Affiliation(s)
- L Pan
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|