1
|
Guntur AR, Smith JE, Brahmandam A, DeBauche P, Cronmiller C, Lundell MJ. ZFH-2 is required for Drosophila ovarian follicle development and is expressed at the band/interband boundaries of polytene chromosomes. Dev Biol 2023; 504:1-11. [PMID: 37666353 DOI: 10.1016/j.ydbio.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The transcription factor ZFH-2 has well-documented roles in Drosophila neurogenesis and other developmental processes. Here we provide the first evidence that ZFH-2 has a role in oogenesis. We demonstrate that ZFH-2 is expressed in the wild-type ovary and that a loss of zfh-2 function produces a mutant ovary phenotype where egg chambers are reduced in number and fused. We also show that a loss of zfh-2 function can suppress a daughterless loss-of-function ovary phenotype suggesting a possible genetic relationship between these two genes in the ovary. We also show that ZFH-2 is located at the boundary between bands and interbands on polytene chromosomes and that at a subset of these sites ZFH-2 colocalizes with the insulator/promoter cofactor CP190.
Collapse
Affiliation(s)
- Ananya R Guntur
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - John E Smith
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA, 22904, USA
| | - Archana Brahmandam
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Phillip DeBauche
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Claire Cronmiller
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA, 22904, USA
| | - Martha J Lundell
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
2
|
Duque P, Vieira CP, Bastos B, Vieira J. The evolution of vitamin C biosynthesis and transport in animals. BMC Ecol Evol 2022; 22:84. [PMID: 35752765 PMCID: PMC9233358 DOI: 10.1186/s12862-022-02040-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/17/2022] [Indexed: 12/25/2022] Open
Abstract
Background Vitamin C (VC) is an indispensable antioxidant and co-factor for optimal function and development of eukaryotic cells. In animals, VC can be synthesized by the organism, acquired through the diet, or both. In the single VC synthesis pathway described in animals, the penultimate step is catalysed by Regucalcin, and the last step by l-gulonolactone oxidase (GULO). The GULO gene has been implicated in VC synthesis only, while Regucalcin has been shown to have multiple functions in mammals. Results Both GULO and Regucalcin can be found in non-bilaterian, protostome and deuterostome species. Regucalcin, as here shown, is involved in multiple functions such as VC synthesis, calcium homeostasis, and the oxidative stress response in both Deuterostomes and Protostomes, and in insects in receptor-mediated uptake of hexamerin storage proteins from haemolymph. In Insecta and Nematoda, however, there is no GULO gene, and in the latter no Regucalcin gene, but species from these lineages are still able to synthesize VC, implying at least one novel synthesis pathway. In vertebrates, SVCT1, a gene that belongs to a family with up to five members, as here shown, is the only gene involved in the uptake of VC in the gut. This specificity is likely the result of a subfunctionalization event that happened at the base of the Craniata subphylum. SVCT-like genes present in non-Vertebrate animals are likely involved in both VC and nucleobase transport. It is also shown that in lineages where GULO has been lost, SVCT1 is now an essential gene, while in lineages where SVCT1 gene has been lost, GULO is now an essential gene. Conclusions The simultaneous study, for the first time, of GULO, Regucalcin and SVCTs evolution provides a clear picture of VC synthesis/acquisition and reveals very different selective pressures in different animal taxonomic groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02040-7.
Collapse
|
3
|
Waddell EA, Viveiros JM, Robinson EL, Sharoni MA, Latcheva NK, Marenda DR. Extramacrochaetae promotes branch and bouton number via the sequestration of daughterless in the cytoplasm of neurons. Dev Neurobiol 2019; 79:805-818. [PMID: 31581354 DOI: 10.1002/dneu.22720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/18/2019] [Accepted: 09/28/2019] [Indexed: 11/09/2022]
Abstract
The Class I basic helix-loop-helix (bHLH) proteins are highly conserved transcription factors that are ubiquitously expressed. A wealth of literature on Class I bHLH proteins has shown that these proteins must homodimerize or heterodimerize with tissue-specific HLH proteins in order to bind DNA at E-box consensus sequences to control tissue-specific transcription. Due to its ubiquitous expression, Class I bHLH proteins are also extensively regulated posttranslationally, mostly through dimerization. Previously, we reported that in addition to its role in promoting neurogenesis, the Class I bHLH protein daughterless also functions in mature neurons to restrict axon branching and synapse number. Here, we show that part of the molecular logic that specifies how daughterless functions in neurogenesis is also conserved in neurons. We show that the Type V HLH protein extramacrochaetae (Emc) binds to and represses daughterless function by sequestering daughterless to the cytoplasm. This work provides initial insights into the mechanisms underlying the function of daughterless and Emc in neurons while providing a novel understanding of how Emc functions to restrict daughterless activity within the cell.
Collapse
Affiliation(s)
- Edward A Waddell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | | | - Erin L Robinson
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Michal A Sharoni
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Nina K Latcheva
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Daniel R Marenda
- Department of Biology, Drexel University, Philadelphia, Pennsylvania.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Khare S, Nick JA, Zhang Y, Galeano K, Butler B, Khoshbouei H, Rayaprolu S, Hathorn T, Ranum LPW, Smithson L, Golde TE, Paucar M, Morse R, Raff M, Simon J, Nordenskjöld M, Wirdefeldt K, Rincon-Limas DE, Lewis J, Kaczmarek LK, Fernandez-Funez P, Nick HS, Waters MF. A KCNC3 mutation causes a neurodevelopmental, non-progressive SCA13 subtype associated with dominant negative effects and aberrant EGFR trafficking. PLoS One 2017; 12:e0173565. [PMID: 28467418 PMCID: PMC5414954 DOI: 10.1371/journal.pone.0173565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/23/2017] [Indexed: 11/19/2022] Open
Abstract
The autosomal dominant spinocerebellar ataxias (SCAs) are a diverse group of neurological disorders anchored by the phenotypes of motor incoordination and cerebellar atrophy. Disease heterogeneity is appreciated through varying comorbidities: dysarthria, dysphagia, oculomotor and/or retinal abnormalities, motor neuron pathology, epilepsy, cognitive impairment, autonomic dysfunction, and psychiatric manifestations. Our study focuses on SCA13, which is caused by several allelic variants in the voltage-gated potassium channel KCNC3 (Kv3.3). We detail the clinical phenotype of four SCA13 kindreds that confirm causation of the KCNC3R423H allele. The heralding features demonstrate congenital onset with non-progressive, neurodevelopmental cerebellar hypoplasia and lifetime improvement in motor and cognitive function that implicate compensatory neural mechanisms. Targeted expression of human KCNC3R423H in Drosophila triggers aberrant wing veins, maldeveloped eyes, and fused ommatidia consistent with the neurodevelopmental presentation of patients. Furthermore, human KCNC3R423H expression in mammalian cells results in altered glycosylation and aberrant retention of the channel in anterograde and/or endosomal vesicles. Confirmation of the absence of plasma membrane targeting was based on the loss of current conductance in cells expressing the mutant channel. Mechanistically, genetic studies in Drosophila, along with cellular and biophysical studies in mammalian systems, demonstrate the dominant negative effect exerted by the mutant on the wild-type (WT) protein, which explains dominant inheritance. We demonstrate that ocular co-expression of KCNC3R423H with Drosophila epidermal growth factor receptor (dEgfr) results in striking rescue of the eye phenotype, whereas KCNC3R423H expression in mammalian cells results in aberrant intracellular retention of human epidermal growth factor receptor (EGFR). Together, these results indicate that the neurodevelopmental consequences of KCNC3R423H may be mediated through indirect effects on EGFR signaling in the developing cerebellum. Our results therefore confirm the KCNC3R423H allele as causative for SCA13, through a dominant negative effect on KCNC3WT and links with EGFR that account for dominant inheritance, congenital onset, and disease pathology.
Collapse
Affiliation(s)
- Swati Khare
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Jerelyn A. Nick
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Yalan Zhang
- Department of Pharmacology, Yale University, New Haven, CT, United States of America
| | - Kira Galeano
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Brittany Butler
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Habibeh Khoshbouei
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Sruti Rayaprolu
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Tyisha Hathorn
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| | - Laura P. W. Ranum
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| | - Lisa Smithson
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Todd E. Golde
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Martin Paucar
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Richard Morse
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| | - Michael Raff
- Genomics Institute, Multicare Health System, Tacoma, WA, United States of America
| | - Julie Simon
- Genomics Institute, Multicare Health System, Tacoma, WA, United States of America
| | - Magnus Nordenskjöld
- Department of Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Karin Wirdefeldt
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Diego E. Rincon-Limas
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Jada Lewis
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Leonard K. Kaczmarek
- Department of Pharmacology, Yale University, New Haven, CT, United States of America
| | - Pedro Fernandez-Funez
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Harry S. Nick
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| | - Michael F. Waters
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
5
|
Bukharina TA, Golubyatnikov VP, Furman DP. Gene network controlling the morphogenesis of D. melanogaster macrochaetes: An expanded model of the central regulatory circuit. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416050040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Tamberg L, Sepp M, Timmusk T, Palgi M. Introducing Pitt-Hopkins syndrome-associated mutations of TCF4 to Drosophila daughterless. Biol Open 2015; 4:1762-71. [PMID: 26621827 PMCID: PMC4736037 DOI: 10.1242/bio.014696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pitt-Hopkins syndrome (PTHS) is caused by haploinsufficiency of Transcription factor 4 (TCF4), one of the three human class I basic helix-loop-helix transcription factors called E-proteins. Drosophila has a single E-protein, Daughterless (Da), homologous to all three mammalian counterparts. Here we show that human TCF4 can rescue Da deficiency during fruit fly nervous system development. Overexpression of Da or TCF4 specifically in adult flies significantly decreases their survival rates, indicating that these factors are crucial even after development has been completed. We generated da transgenic fruit fly strains with corresponding missense mutations R578H, R580W, R582P and A614V found in TCF4 of PTHS patients and studied the impact of these mutations in vivo. Overexpression of wild type Da as well as human TCF4 in progenitor tissues induced ectopic sensory bristles and the rough eye phenotype. By contrast, overexpression of DaR580W and DaR582P that disrupt DNA binding reduced the number of bristles and induced the rough eye phenotype with partial lack of pigmentation, indicating that these act dominant negatively. Compared to the wild type, DaR578H and DaA614V were less potent in induction of ectopic bristles and the rough eye phenotype, respectively, suggesting that these are hypomorphic. All studied PTHS-associated mutations that we introduced into Da led to similar effects in vivo as the same mutations in TCF4 in vitro. Consequently, our Drosophila models of PTHS are applicable for further studies aiming to unravel the molecular mechanisms of this disorder. Summary: Introducing mutations of the TCF4 gene found in human patients into its fly orthologue daughterless allows the generation of Drosophila models for research into Pitt-Hopkins syndrome.
Collapse
Affiliation(s)
- Laura Tamberg
- Laboratory of Molecular Neurobiology, Department of Gene Technology, Tallinn University of Technology, Akadeemia Rd.15, Tallinn 12618, Estonia
| | - Mari Sepp
- Laboratory of Molecular Neurobiology, Department of Gene Technology, Tallinn University of Technology, Akadeemia Rd.15, Tallinn 12618, Estonia
| | - Tõnis Timmusk
- Laboratory of Molecular Neurobiology, Department of Gene Technology, Tallinn University of Technology, Akadeemia Rd.15, Tallinn 12618, Estonia
| | - Mari Palgi
- Laboratory of Molecular Neurobiology, Department of Gene Technology, Tallinn University of Technology, Akadeemia Rd.15, Tallinn 12618, Estonia
| |
Collapse
|
7
|
Golubyatnikov VP, Bukharina TA, Furman DP. A model study of the morphogenesis of D. melanogaster mechanoreceptors: the central regulatory circuit. J Bioinform Comput Biol 2015; 13:1540006. [PMID: 25666652 DOI: 10.1142/s0219720015400065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Macrochaetes (large bristles) are sensor organs of the Drosophila peripheral nervous system with a function of mechanoreceptors. An adult mechanoreceptor comprises four specialized cells: shaft (trichogen), socket (tormogen), neuron, and glial cell (thecogen). All these cells originate from a single cell, the so-called sensor organ precursor (SOP) cell. Separation of the SOP cell from the encompassing cells of the imaginal disc initiates a multistage process of sensory organ development. A characteristic feature of the SOP cell is the highest amount of the proneural proteins AS-C as compared with the encompassing ectodermal cells. The accumulation of proneural proteins and maintenance of their amount in the SOP cell at a necessary level is provided by the gene network with the achaete-scute gene complex (AS-C) as its key component. The activity of this complex is controlled by the central regulatory circuit (CRC). The CRC comprises the genes hairy, senseless (sens), charlatan (chn), scratch (scrt), daughterless (da), extramacrochaete (emc), and groucho (gro), coding for the transcription factors involved in the system of direct links and feedbacks and implementation of activation-repression relationships between the CRC components. The gene phyllopod (phyl), involved in degradation of the AS-C proteins, is also associated with the CRC functioning. In this paper, we propose a mathematical model for the CRC functioning as a regulator of the amount of proneural AS-C proteins in the SOP cell taking into account their degradation. The modeling has demonstrated that a change in the amount of proneural proteins in the SOP cell is stepwise rather than strictly monotonic. This prediction can be tested experimentally.
Collapse
Affiliation(s)
- Vladimir P Golubyatnikov
- Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, av. Akad. Koptyuga 4, Novosibirsk 630090, Russia , Novosibirsk State University, ul. Pirogova 2, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
8
|
Shaposhnikov M, Proshkina E, Shilova L, Zhavoronkov A, Moskalev A. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes. Sci Rep 2015; 5:15299. [PMID: 26477511 PMCID: PMC4609912 DOI: 10.1038/srep15299] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022] Open
Abstract
DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster.
Collapse
Affiliation(s)
- Mikhail Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russia
| | - Ekaterina Proshkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russia
| | - Lyubov Shilova
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, Johns Hopkins University, ETC, B301, Baltimore, MD, 21218, USA
| | - Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
9
|
Das S, Chen QB, Saucier JD, Drescher B, Zong Y, Morgan S, Forstall J, Meriwether A, Toranzo R, Leal SM. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc. Mech Dev 2013; 130:577-601. [PMID: 23962751 DOI: 10.1016/j.mod.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 12/20/2022]
Abstract
We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis.
Collapse
Affiliation(s)
- Sudeshna Das
- The Department of Biological Sciences, University of Southern Mississippi, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Distefano GM, Gangemi AJ, Khandelwal PJ, Saunders AJ, Marenda DR. Drosophila lilliputian is required for proneural gene expression in retinal development. Dev Dyn 2012; 241:553-62. [PMID: 22275119 DOI: 10.1002/dvdy.23738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Proper neurogenesis in the developing Drosophila retina requires the regulated expression of the basic helix-loop-helix (bHLH) proneural transcription factors Atonal (Ato) and Daughterless (Da). Factors that control the timing and spatial expression of these bHLH proneural genes in the retina are required for the proper formation and function of the adult eye and nervous system. RESULTS Here we report that lilliputian (lilli), the Drosophila homolog of the FMR2/AF4 family of proteins, regulates the transcription of ato and da in the developing fly retina. We find that lilli controls ato expression at multiple enhancer elements. We also find that lilli contributes to ato auto-regulation in the morphogenetic furrow by first regulating the expression of da prior to ato. We show that FMR2 regulates the ato and da homologs MATH5 and TCF12 in human cells, suggesting a conservation of this regulation from flies to humans. CONCLUSIONS We conclude that lilliputian is part of the genetic program that regulates the expression of proneural genes in the developing retina.
Collapse
Affiliation(s)
- Ginnene M Distefano
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
11
|
Bukharina TA, Golubyatnikov VP, Golubyatnikov IV, Furman DP. Model investigation of central regulatory contour of gene net of D. melanogaster macrochaete morphogenesis. Russ J Dev Biol 2012. [DOI: 10.1134/s106236041201002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
A network of broadly expressed HLH genes regulates tissue-specific cell fates. Cell 2012; 147:881-92. [PMID: 22078884 DOI: 10.1016/j.cell.2011.08.055] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 07/06/2011] [Accepted: 08/17/2011] [Indexed: 12/11/2022]
Abstract
Spatial and temporal expression of specific basic-helix-loop-helix (bHLH) transcription factors defines many types of cellular differentiation. We find that a distinct mechanism regulates the much broader expression of the heterodimer partners of these specific factors and impinges on differentiation. In Drosophila, a cross-interacting regulatory network links expression of the E protein Daughterless (Da), which heterodimerizes with bHLH proteins to activate them, with expression of the Id protein Extramacrochaetae (Emc), which antagonizes bHLH proteins. Coupled transcriptional feedback loops maintain the widespread Emc expression that restrains Da expression, opposing bHLH-dependent differentiation while enhancing growth and cell survival. Where extracellular signals repress emc, Da expression can increase. This defines regions of proneural ectoderm independently from the proneural bHLH genes. Similar regulation is found in multiple Drosophila tissues and in mammalian cells and therefore is likely to be a conserved general feature of developmental regulation by HLH proteins.
Collapse
|
13
|
Stall encodes an ADAMTS metalloprotease and interacts genetically with Delta in Drosophila ovarian follicle formation. Genetics 2009; 183:1027-40. [PMID: 19752215 DOI: 10.1534/genetics.109.107367] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ovarian follicle formation in Drosophila melanogaster requires stall (stl) gene function, both within and outside the ovary, for follicle individualization, stalk cell intercalation, and oocyte localization. We have identified the stl transcript as CG3622 and confirmed the presence of three alternatively spliced isoforms, contrary to current genome annotation. Here we show that the gene is expressed in both ovarian and brain tissues, which is consistent with previous evidence of an ovary nonautonomous function. On the basis of amino acid sequence, stl encodes a metalloprotease similar to the "a disintegrin and metalloprotease with thrombospondin" (ADAMTS) family. Although stl mutant ovaries fail to maintain the branched structure of the fusome and periodically show improperly localized oocytes, stl mutants do not alter oocyte determination. Within the ovary, stl is expressed in pupal basal stalks and in adult somatic cells of the posterior germarium and the follicular poles. Genetically, stl exhibits a strong mutant interaction with Delta (Dl), and Dl mutant ovaries show altered stl expression patterns. Additionally, a previously described genetic interactor, daughterless, also modulates stl expression in the somatic ovary and may do so directly in its capacity as a basic helix-loop-helix (bHLH) transcription factor. We propose a complex model of long-range extraovarian signaling through secretion or extracellular domain shedding, together with local intraovarian protein modification, to explain the dual sites of Stl metalloprotease function in oogenesis.
Collapse
|
14
|
Reduced fertility of Drosophila melanogaster hybrid male rescue (Hmr) mutant females is partially complemented by Hmr orthologs from sibling species. Genetics 2009; 181:1437-50. [PMID: 19153254 DOI: 10.1534/genetics.108.100057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gene Hybrid male rescue (Hmr) causes lethality in interspecific hybrids between Drosophila melanogaster and its sibling species. Hmr has functionally diverged for this interspecific phenotype because lethality is caused specifically by D. melanogaster Hmr but not by D. simulans or D. mauritiana Hmr. Hmr was identified by the D. melanogaster partial loss-of-function allele Hmr1, which suppresses hybrid lethality but has no apparent phenotype within pure-species D. melanogaster. Here we have investigated the possible function of Hmr in D. melanogaster females using stronger mutant alleles. Females homozygous for Hmr mutants have reduced viability posteclosion and significantly reduced fertility. We find that reduced fertility of Hmr mutants is caused by a reduction in the number of eggs laid as well as reduced zygotic viability. Cytological analysis reveals that ovarioles from Hmr mutant females express markers that distinguish various stages of wild-type oogenesis, but that developing egg chambers fail to migrate posteriorly. D. simulans and D. mauritiana Hmr+ partially complement the reduced fertility of a D. melanogaster Hmr mutation. This partial complementation contrasts with the complete functional divergence previously observed for the interspecific hybrid lethality phenotype. We also investigate here the molecular basis of hybrid rescue associated with a second D. melanogaster hybrid rescue allele, In(1)AB. We show that In(1)AB is mutant for Hmr function, likely due to a missense mutation in an evolutionarily conserved amino acid. Two independently discovered hybrid rescue mutations are therefore allelic.
Collapse
|
15
|
Wicks S, Bain N, Duttaroy A, Hilliker AJ, Phillips JP. Hypoxia rescues early mortality conferred by superoxide dismutase deficiency. Free Radic Biol Med 2009; 46:176-81. [PMID: 18983909 DOI: 10.1016/j.freeradbiomed.2008.09.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 09/26/2008] [Accepted: 09/29/2008] [Indexed: 02/08/2023]
Abstract
Oxidative stress is widely associated with disease and aging but the underlying mechanisms are incompletely understood. Here we show that the premature mortality of Drosophila deficient in superoxide scavengers, superoxide dismutase (SOD) 1 or SOD2, is rescued by chronic hypoxia. Strikingly, switching moribund SOD2-deficient adults from normoxia into hypoxia abruptly arrests their impending premature mortality and endows the survivors with a near-normal life span. This finding challenges the notion that irreversible oxidative damage initiated by unscavenged superoxide in the mitochondrial matrix underpins the premature mortality of SOD2-deficient adults. In contrast, switching moribund SOD1-deficient flies from normoxia into hypoxia fails to alter their mortality trajectory, suggesting that the deleterious effects of unscavenged superoxide in the cytoplasm/intermembrane space compartment are cumulative and largely irreversible. We conclude that cellular responses to superoxide-initiated oxidative stress are mediated through different compartment-specific pathways. Elucidating these pathways should provide novel insights into how aerobic cells manage oxidative stress in health, aging, and disease.
Collapse
Affiliation(s)
- Shawna Wicks
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | | | | | | | | |
Collapse
|
16
|
Identification of novel regulators of atonal expression in the developing Drosophila retina. Genetics 2008; 180:2095-110. [PMID: 18832354 DOI: 10.1534/genetics.108.093302] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Atonal is a Drosophila proneural protein required for the proper formation of the R8 photoreceptor cell, the founding photoreceptor cell in the developing retina. Proper expression and refinement of the Atonal protein is essential for the proper formation of the Drosophila adult eye. In vertebrates, expression of transcription factors orthologous to Drosophila Atonal (MATH5/Atoh7, XATH5, and ATH5) and their progressive restriction are also involved in specifying the retinal ganglion cell, the founding neural cell type in the mammalian retina. Thus, identifying factors that are involved in regulating the expression of Atonal during development are important to fully understand how retinal neurogenesis is accomplished. We have performed a chemical mutagenesis screen for autosomal dominant enhancers of a loss-of-function atonal eye phenotype. We report here the identification of five genes required for proper Atonal expression, three of which are novel regulators of Atonal expression in the Drosophila retina. We characterize the role of the daughterless, kismet, and roughened eye genes on atonal transcriptional regulation in the developing retina and show that each gene regulates atonal transcription differently within the context of retinal development. Our results provide additional insights into the regulation of Atonal expression in the developing Drosophila retina.
Collapse
|
17
|
Lim J, Jafar-Nejad H, Hsu YC, Choi KW. Novel function of the class I bHLH protein Daughterless in the negative regulation of proneural gene expression in the Drosophila eye. EMBO Rep 2008; 9:1128-33. [PMID: 18758436 DOI: 10.1038/embor.2008.166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 07/03/2008] [Accepted: 07/24/2008] [Indexed: 11/09/2022] Open
Abstract
Two types of basic helix-loop-helix (bHLH) family transcription factor have functions in neurogenesis. Class II bHLH proteins are expressed in tissue-specific patterns, whereas class I proteins are broadly expressed as general cofactors for class II proteins. Here, we show that the Drosophila class I factor Daughterless (Da) is upregulated by Hedgehog (Hh) and Decapentaplegic (Dpp) signalling during retinal neurogenesis. Our data suggest that Da is accumulated in the cells surrounding the neuronal precursor cells to repress the proneural gene atonal (ato), thereby generating a single R8 neuron from each proneural cluster. Upregulation of Da depends on Notch signalling, and, in turn, induces the expression of the Enhancer-of-split proteins for the repression of ato. We propose that the dual functions of Da--as a proneural and as an anti-proneural factor--are crucial for initial neural patterning in the eye.
Collapse
Affiliation(s)
- Janghoo Lim
- Department of Molecular and Cellular Biology, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
18
|
Furman DP, Bukharina TA. Genetic control of macrochaetae development in Drosophila melanogaster. Russ J Dev Biol 2008. [DOI: 10.1134/s1062360408040012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Tamai KK, Nishiwaki K. bHLH transcription factors regulate organ morphogenesis via activation of an ADAMTS protease in C. elegans. Dev Biol 2007; 308:562-71. [PMID: 17588558 DOI: 10.1016/j.ydbio.2007.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/26/2007] [Accepted: 05/18/2007] [Indexed: 11/20/2022]
Abstract
The ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family of secreted metalloproteases plays important roles in animal development and pathogenesis. However, transcriptional regulation of ADAMTS proteins during development remains largely unexplored. Here we show that basic helix-loop-helix (bHLH) transcription factors regulate the expression of an ADAMTS protease that is required for gonad development in Caenorhabditis elegans. Mutations in the gene mig-24 cause shortened and swollen gonad arms due to a defect in gonadal leader cell migration, although leader cell specification appears to occur normally. The MIG-24 protein is a bHLH transcription factor of the Achaete-Scute family and is specifically expressed in gonadal leader cells. MIG-24 can physically interact with HLH-2, an E/Daughterless family bHLH transcription factor and bind the promoter region of gon-1, which encodes an ADAMTS protease required for gonadal leader cell migration. Mutations or RNA interference of mig-24 and hlh-2 severely impaired gon-1 expression and forced expression of GON-1 in leader cells in mig-24 mutants partially rescued the gonadal elongation defect. We propose that, unlike most previously characterized Achaete-Scute transcription factors that are involved in cell fate specification, MIG-24 acts with HLH-2 in specified cells to control cell migration by activating the expression of the GON-1 ADAMTS protease.
Collapse
Affiliation(s)
- Katsuyuki K Tamai
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | |
Collapse
|
20
|
Pioro HL, Stollewerk A. The expression pattern of genes involved in early neurogenesis suggests distinct and conserved functions in the diplopod Glomeris marginata. Dev Genes Evol 2006; 216:417-30. [PMID: 16724224 DOI: 10.1007/s00427-006-0078-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
We have shown recently that the expression and function of proneural genes is conserved in chelicerates and myriapods, although groups of neural precursors are specified in the ventral neuroectoderm of these arthropod groups, rather than single cells as in insects and crustaceans. We present additional evidence that the pattern of neurogenesis seen in chelicerates and in previously analyzed myriapod species is representative of both arthropod groups, by analysing the formation of neural precursors in the diplopod Archispirostreptus sp. This raises the question as to what extent the genetic network has been modified to result in different modes of neurogenesis in the arthropod group. To find out which components of the neural genetic network might account for the different mode of neural precursor formation in chelicerates and myriapods, we identified genes in the diplopod Glomeris marginata that are known to be involved in early neurogenesis in Drosophila and studied their expression pattern. In Drosophila, early neurogenesis is controlled by proneural genes that encode HLH transcription factors. These genes belong to two major subfamilies, the achaete-scute group and the atonal group. Different proneural proteins activate both a common neural programme and distinct neuronal subtype-specific target genes. We show that the expression pattern of homologs of the Drosophila proneural genes daughterless, atonal, and Sox B1 are partially conserved in Glomeris mariginata. While the expression of the pan-neural gene snail is conserved in the ventral neuroectoderm of G. marginata, we found an additional expression domain in the ventral midline. We conclude that, although the components of the genetic network involved in specification of neural precursors seem to be conserved in chelicerates, myriapods, and Drosophila, the function of some of the genes might have changed during evolution.
Collapse
Affiliation(s)
- Hilary L Pioro
- Department of Genetics, University of Mainz, Johann-Joachim-Becherweg 32, 55099 Mainz, Germany.
| | | |
Collapse
|
21
|
Anderson PR, Kirby K, Hilliker AJ, Phillips JP. RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila. Hum Mol Genet 2005; 14:3397-405. [PMID: 16203742 DOI: 10.1093/hmg/ddi367] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mitochondrial iron chaperone, frataxin, plays a critical role in cellular iron homeostasis and the synthesis and regeneration of Fe-S centers. Genetic insufficiency for frataxin is associated with Friedreich's Ataxia in humans and confers loss of function of Fe-containing proteins including components of the respiratory chain and mitochondrial and cytosolic aconitases. Here, we report the use of RNA-interference (RNAi) to suppress frataxin in the multicellular eukaryote, Drosophila. Phenotypically, suppression of the Drosophila frataxin homologue (dfh) confers distinct phenotypes in larvae and adults, leading to giant long-lived larvae and to conditional short-lived adults. Deficiency of the DFH protein results in diminished activities of numerous heme- and iron-sulfur-containing enzymes, loss of intracellular iron homeostasis and increased susceptibility to iron toxicity. In parallel with the differential larval and adult phenotypes, our results indicate that dfh silencing differentially dysregulates ferritin expression in adults but not in larvae. Moreover, silencing of dfh in the peripheral nervous system, a specific focus of Friedreich's pathology, permits normal larval development but imposes a marked reduction in adult lifespan. In contrast, dfh silencing in motorneurons has no deleterious effect in either larvae or adults. Finally, overexpression of Sod1, Sod2 or Cat does not suppress the failure of DFH-deficient animals to successfully complete eclosion, suggesting a minimal role of oxidative stress in this phenotype. The robust developmental, biochemical and tissue-specific phenotypes conferred by DFH deficiency in Drosophila provide a platform for identifying genetic, nutritional and environmental factors, which ameliorate the symptoms arising from frataxin deficiency.
Collapse
Affiliation(s)
- Peter R Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Willard SS, Ozdowski EF, Jones NA, Cronmiller C. stall-mediated extrinsic control of ovarian follicle formation in Drosophila. Genetics 2005; 168:191-8. [PMID: 15454537 PMCID: PMC1448123 DOI: 10.1534/genetics.104.029918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Complex patterns of morphogenesis require intricate coordination of multiple, regulatory processes that control cellular identities, shapes, and behaviors, both locally and over vast distances in the developing organism or tissue. Studying Drosophila oogenesis as a model for tissue morphogenesis, we have discovered extraovarian regulation of follicle formation. Clonal analysis and ovary transplantation have demonstrated that long-range control of follicle individualization requires stall gene function in cells outside of the ovary. Although tissue nonautonomous regulation has been shown to govern follicle maturation and survival, this is the first report of an extraovarian pathway involved in normal follicle formation.
Collapse
Affiliation(s)
- Stacey S Willard
- Department of Biology, University of Virginia, Charlottesville 22904-4328, USA
| | | | | | | |
Collapse
|
23
|
Karp X, Greenwald I. Post-transcriptional regulation of the E/Daughterless ortholog HLH-2, negative feedback, and birth order bias during the AC/VU decision in C. elegans. Genes Dev 2004; 17:3100-11. [PMID: 14701877 PMCID: PMC305261 DOI: 10.1101/gad.1160803] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The anchor cell/ventral uterine precursor cell (AC/VU) decision in Caenorhabditis elegans is a canonical example of lin-12/Notch-mediated lateral specification. Two initially equivalent cells interact via the receptor LIN-12 and its ligand LAG-2, so that one becomes the AC and the other a VU. During this interaction, feedback loops amplify a small difference in lin-12 activity, limiting lin-12 transcription to the presumptive VU and lag-2 transcription to the presumptive AC. Here, we find that hlh-2 appears to be required for the VU fate and directly activates lag-2 transcription in the presumptive AC. HLH-2 appears to accumulate selectively in the presumptive AC prior to differential transcription of lin-12 or lag-2, and is therefore the earliest detectable difference between the two cells undergoing the AC/VU decision. The restricted accumulation of HLH-2 to the presumptive AC reflects post-transcriptional down-regulation of HLH-2 in the presumptive VU. Our observations suggest that hlh-2 is regulated as part of the negative feedback that down-regulates lag-2 transcription in the presumptive VU. Finally, we show that the AC/VU decision in an individual hermaphrodite is biased by the relative birth order of the two cells, so that the first-born cell is more likely to become the VU. We propose models to suggest how birth order, HLH-2 accumulation, and transcription of lag-2 may be linked during the AC/VU decision.
Collapse
Affiliation(s)
- Xantha Karp
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
24
|
Ik Tsen Heng J, Tan SS. The role of class I HLH genes in neural development--have they been overlooked? Bioessays 2003; 25:709-16. [PMID: 12815726 DOI: 10.1002/bies.10299] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Helix-loop-helix (HLH) genes encode for transcription factors affecting a whole variety of developmental programs, including neurogenesis. At least seven functional classes (denoted I to VII) of HLH genes exist, (1) with subclass members exhibiting homo- and heterodimerisation for proper DNA binding and transcriptional regulation of downstream target genes. In the developing nervous system, members of class II, V and VI have been most extensively studied concerning their roles in neural programming. In contrast, the function of class I proteins (such as E12 and E47) is poorly defined and the orthodox view relegates them to general dimerisation duties that are necessary for the activity of the other classes. However, closer scrutiny of the spatiotemporal expression patterns of class I factors, combined with recent biochemical evidence, would suggest that class I proteins possess specific functions during early neural differentiation. This essay supports this possibility, in addition to putting forward the hypothesis that, outside their general dimerisation activity, class I genes have independent roles in regulating neurogenesis.
Collapse
Affiliation(s)
- Julian Ik Tsen Heng
- Brain Development Group, The Howard Florey Institute, University of Melbourne, Parkville VIC 3010, Melbourne Australia
| | | |
Collapse
|
25
|
Kirby K, Hu J, Hilliker AJ, Phillips JP. RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc Natl Acad Sci U S A 2002; 99:16162-7. [PMID: 12456885 PMCID: PMC138582 DOI: 10.1073/pnas.252342899] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2002] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress has been widely implicated as an important factor in the aging process. Because mitochondrial respiration is the principal source of reactive oxygen within cells, the mitochondrially localized superoxide dismutase (SOD) 2 is thought to play an important front-line defensive role against aging-related oxidative stress. Although genetic studies with mutants deficient in SOD1, the predominantly cytosolic isoform of SOD, have been instrumental in elucidating the role of reactive oxygen metabolism in aging in Drosophila, the lack of available mutations in the Sod2 gene has hampered an equivalent analysis of the participation of this important antioxidant enzyme in the Drosophila aging model. Here we report that ablation of mitochondrial SOD2 through expression of a GAL4-regulated, inverted-repeat Sod2 RNA-interference transgene in an otherwise normal animal causes increased endogenous oxidative stress, resulting in loss of essential enzymatic components of the mitochondrial respiratory chain and the tricarboxylic acid cycle, enhances sensitivity to applied oxidative stress, and causes early-onset mortality in young adults. In sharp contrast, ablation of SOD2 has no overt effect on the development of larvae and pupae, which may reflect a fundamental transition in oxygen utilization andor reactive oxygen metabolism that occurs during metamorphosis from larval to adult life.
Collapse
Affiliation(s)
- Kim Kirby
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | |
Collapse
|