1
|
Baccas M, Ganesan V, Leung A, Pineiro LR, McKillop AN, Liu J. SEM-2/SoxC regulates multiple aspects of C. elegans postembryonic mesoderm development. PLoS Genet 2025; 21:e1011361. [PMID: 39836649 PMCID: PMC11785321 DOI: 10.1371/journal.pgen.1011361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/31/2025] [Accepted: 11/05/2024] [Indexed: 01/23/2025] Open
Abstract
Development of multicellular organisms requires well-orchestrated interplay between cell-intrinsic transcription factors and cell-cell signaling. One set of highly conserved transcription factors that plays diverse roles in development is the SoxC group. C. elegans contains a sole SoxC protein, SEM-2. SEM-2 is essential for embryonic development, and for specifying the sex myoblast (SM) fate in the postembryonic mesoderm, the M lineage. We have identified a novel partial loss-of-function sem-2 allele that has a proline to serine change in the C-terminal tail of the highly conserved DNA-binding domain. Detailed analyses of mutant animals harboring this point mutation uncovered new functions of SEM-2 in the M lineage. First, SEM-2 functions antagonistically with LET-381, the sole C. elegans FoxF/C forkhead transcription factor, to regulate dorsoventral patterning of the M lineage. Second, in addition to specifying the SM fate, SEM-2 is essential for the proliferation and diversification of the SM lineage. Finally, SEM-2 appears to directly regulate the expression of hlh-8, which encodes a basic helix-loop-helix Twist transcription factor and plays critical roles in proper patterning of the M lineage. Our data, along with previous studies, suggest an evolutionarily conserved relationship between SoxC and Twist proteins. Furthermore, our work identified new interactions in the gene regulatory network (GRN) underlying C. elegans postembryonic development and adds to the general understanding of the structure-function relationship of SoxC proteins.
Collapse
Affiliation(s)
- Marissa Baccas
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Vanathi Ganesan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Amy Leung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Lucas R. Pineiro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Alexandra N. McKillop
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
2
|
Baccas M, Ganesan V, Leung A, Pineiro L, McKillop AN, Liu J. SEM-2/SoxC regulates multiple aspects of C. elegans postembryonic mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602042. [PMID: 39005444 PMCID: PMC11245110 DOI: 10.1101/2024.07.04.602042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Development of multicellular organisms requires well-orchestrated interplay between cell-intrinsic transcription factors and cell-cell signaling. One set of highly conserved transcription factors that plays diverse roles in development is the SoxC group. C. elegans contains a sole SoxC protein, SEM-2. SEM-2 is essential for embryonic development, and for specifying the sex myoblast (SM) fate in the postembryonic mesoderm, the M lineage. We have identified a novel partial loss-of-function sem-2 allele that has a proline to serine change in the C-terminal tail of the highly conserved DNA-binding domain. Detailed analyses of mutant animals harboring this point mutation uncovered new functions of SEM-2 in the M lineage. First, SEM-2 functions antagonistically with LET-381, the sole C. elegans FoxF/C forkhead transcription factor, to regulate dorsoventral patterning of the M lineage. Second, in addition to specifying the SM fate, SEM-2 is essential for the proliferation and diversification of the SM lineage. Finally, SEM-2 appears to directly regulate the expression of hlh-8, which encodes a basic helix-loop-helix Twist transcription factor and plays critical roles in proper patterning of the M lineage. Our data, along with previous studies, suggest an evolutionarily conserved relationship between SoxC and Twist proteins. Furthermore, our work identified new interactions in the gene regulatory network (GRN) underlying C. elegans postembryonic development and adds to the general understanding of the structure-function relationship of SoxC proteins.
Collapse
Affiliation(s)
- Marissa Baccas
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Vanathi Ganesan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Amy Leung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Lucas Pineiro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
3
|
Ferguson CA, Firulli BA, Zoia M, Osterwalder M, Firulli AB. Identification and characterization of Hand2 upstream genomic enhancers active in developing stomach and limbs. Dev Dyn 2024; 253:215-232. [PMID: 37551791 PMCID: PMC11365009 DOI: 10.1002/dvdy.646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The bHLH transcription factor HAND2 plays important roles in the development of the embryonic heart, face, limbs, and sympathetic and enteric nervous systems. To define how and when HAND2 regulates these developmental systems, requires understanding the transcriptional regulation of Hand2. RESULTS Remarkably, Hand2 is flanked by an extensive upstream gene desert containing a potentially diverse enhancer landscape. Here, we screened the regulatory interval 200 kb proximal to Hand2 for putative enhancers using evolutionary conservation and histone marks in Hand2-expressing tissues. H3K27ac signatures across embryonic tissues pointed to only two putative enhancer regions showing deep sequence conservation. Assessment of the transcriptional enhancer potential of these elements using transgenic reporter lines uncovered distinct in vivo enhancer activities in embryonic stomach and limb mesenchyme, respectively. Activity of the identified stomach enhancer was restricted to the developing antrum and showed expression within the smooth muscle and enteric neurons. Surprisingly, the activity pattern of the limb enhancer did not overlap Hand2 mRNA but consistently yielded a defined subectodermal anterior expression pattern within multiple transgenic lines. CONCLUSIONS Together, these results start to uncover the diverse regulatory potential inherent to the Hand2 upstream regulatory interval.
Collapse
Affiliation(s)
- Chloe A. Ferguson
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Beth A. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
4
|
Gruss MJ, O’Callaghan C, Donnellan M, Corsi AK. A Twist-Box domain of the C. elegans Twist homolog, HLH-8, plays a complex role in transcriptional regulation. Genetics 2023; 224:iyad066. [PMID: 37067863 PMCID: PMC10411555 DOI: 10.1093/genetics/iyad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
TWIST1 is a basic helix-loop-helix (bHLH) transcription factor in humans that functions in mesoderm differentiation. TWIST1 primarily regulates genes as a transcriptional repressor often through TWIST-Box domain-mediated protein-protein interactions. The TWIST-Box also can function as an activation domain requiring 3 conserved, equidistant amino acids (LXXXFXXXR). Autosomal dominant mutations in TWIST1, including 2 reported in these conserved amino acids (F187L and R191M), lead to craniofacial defects in Saethre-Chotzen syndrome (SCS). Caenorhabditis elegans has a single TWIST1 homolog, HLH-8, that functions in the differentiation of the muscles responsible for egg laying and defecation. Null alleles in hlh-8 lead to severely egg-laying defective and constipated animals due to defects in the corresponding muscles. TWIST1 and HLH-8 share sequence identity in their bHLH regions; however, the domain responsible for the transcriptional activity of HLH-8 is unknown. Sequence alignment suggests that HLH-8 has a TWIST-Box LXXXFXXXR motif; however, its function also is unknown. CRISPR/Cas9 genome editing was utilized to generate a domain deletion and several missense mutations, including those analogous to SCS patients, in the 3 conserved HLH-8 amino acids to investigate their functional role. The TWIST-Box alleles did not phenocopy hlh-8 null mutants. The strongest phenotype detected was a retentive (Ret) phenotype with late-stage embryos in the hermaphrodite uterus. Further, GFP reporters of HLH-8 downstream target genes (arg-1::gfp and egl-15::gfp) revealed tissue-specific, target-specific, and allele-specific defects. Overall, the TWIST-Box in HLH-8 is partially required for the protein's transcriptional activity, and the conserved amino acids contribute unequally to the domain's function.
Collapse
Affiliation(s)
- Michael J Gruss
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Colleen O’Callaghan
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Molly Donnellan
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Ann K Corsi
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| |
Collapse
|
5
|
Kim S, Twigg SR, Scanlon VA, Chandra A, Hansen TJ, Alsubait A, Fenwick AL, McGowan SJ, Lord H, Lester T, Sweeney E, Weber A, Cox H, Wilkie AO, Golden A, Corsi AK. Localized TWIST1 and TWIST2 basic domain substitutions cause four distinct human diseases that can be modeled in Caenorhabditis elegans. Hum Mol Genet 2017; 26:2118-2132. [PMID: 28369379 PMCID: PMC5438873 DOI: 10.1093/hmg/ddx107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Twist transcription factors, members of the basic helix-loop-helix family, play crucial roles in mesoderm development in all animals. Humans have two paralogous genes, TWIST1 and TWIST2, and mutations in each gene have been identified in specific craniofacial disorders. Here, we describe a new clinical entity, Sweeney-Cox syndrome, associated with distinct de novo amino acid substitutions (p.Glu117Val and p.Glu117Gly) at a highly conserved glutamic acid residue located in the basic DNA binding domain of TWIST1, in two subjects with frontonasal dysplasia and additional malformations. Although about one hundred different TWIST1 mutations have been reported in patients with the dominant haploinsufficiency Saethre-Chotzen syndrome (typically associated with craniosynostosis), substitutions uniquely affecting the Glu117 codon were not observed previously. Recently, subjects with Barber-Say and Ablepharon-Macrostomia syndromes were found to harbor heterozygous missense substitutions in the paralogous glutamic acid residue in TWIST2 (p.Glu75Ala, p.Glu75Gln and p.Glu75Lys). To study systematically the effects of these substitutions in individual cells of the developing mesoderm, we engineered all five disease-associated alleles into the equivalent Glu29 residue encoded by hlh-8, the single Twist homolog present in Caenorhabditis elegans. This allelic series revealed that different substitutions exhibit graded severity, in terms of both gene expression and cellular phenotype, which we incorporate into a model explaining the various human disease phenotypes. The genetic analysis favors a predominantly dominant-negative mechanism for the action of amino acid substitutions at this highly conserved glutamic acid residue and illustrates the value of systematic mutagenesis of C. elegans for focused investigation of human disease processes.
Collapse
Affiliation(s)
- Sharon Kim
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen R.F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Victoria A. Scanlon
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Aditi Chandra
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler J. Hansen
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arwa Alsubait
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Aimee L. Fenwick
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Simon J. McGowan
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Helen Lord
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LE, UK
| | - Tracy Lester
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LE, UK
| | - Elizabeth Sweeney
- Department of Clinical Genetics, Liverpool Women’s NHS Foundation Trust, Liverpool L8 7SS, UK
| | - Astrid Weber
- Department of Clinical Genetics, Liverpool Women’s NHS Foundation Trust, Liverpool L8 7SS, UK
| | - Helen Cox
- Clinical Genetics Unit, Birmingham Women’s NHS Foundation Trust, Birmingham Women’s Hospital, Birmingham B15 2TG, UK
| | - Andrew O.M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann K. Corsi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
6
|
Bouard C, Terreux R, Tissier A, Jacqueroud L, Vigneron A, Ansieau S, Puisieux A, Payen L. Destabilization of the TWIST1/E12 complex dimerization following the R154P point-mutation of TWIST1: an in silico approach. BMC STRUCTURAL BIOLOGY 2017; 17:6. [PMID: 28521820 PMCID: PMC5437649 DOI: 10.1186/s12900-017-0076-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/02/2017] [Indexed: 11/24/2022]
Abstract
Background The bHLH transcription factor TWIST1 plays a key role in the embryonic development and in tumorigenesis. Some loss-of-function mutations of the TWIST1 gene have been shown to cause an autosomal dominant craniosynostosis, known as the Saethre-Chotzen syndrome (SCS). Although the functional impacts of many TWIST1 mutations have been experimentally reported, little is known on the molecular mechanisms underlying their loss-of-function. In a previous study, we highlighted the predictive value of in silico molecular dynamics (MD) simulations in deciphering the molecular function of TWIST1 residues. Results Here, since the substitution of the arginine 154 amino acid by a glycine residue (R154G) is responsible for the SCS phenotype and the substitution of arginine 154 by a proline experimentally decreases the dimerizing ability of TWIST1, we investigated the molecular impact of this point mutation using MD approaches. Consistently, MD simulations highlighted a clear decrease in the stability of the α-helix during the dimerization of the mutated R154P TWIST1/E12 dimer compared to the wild-type TE complex, which was further confirmed in vitro using immunoassays. Conclusions Our study demonstrates that MD simulations provide a structural explanation for the loss-of-function associated with the SCS TWIST1 mutation and provides a proof of concept of the predictive value of these MD simulations. This in silico methodology could be used to determine reliable pharmacophore sites, leading to the application of docking approaches in order to identify specific inhibitors of TWIST1 complexes. Electronic supplementary material The online version of this article (doi:10.1186/s12900-017-0076-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Bouard
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Raphael Terreux
- Université de Lyon1, ISPB, Lyon, 69008, France.,Pole Rhône-Alpes de Bioinformatique - Lyon Gerland (PRABI-LG), Lyon, 69007, France.,CNRS UMR 5305, Lyon, France
| | - Agnès Tissier
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Laurent Jacqueroud
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Arnaud Vigneron
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Stéphane Ansieau
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France
| | - Alain Puisieux
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France.,LabEX DEVweCAN, Lyon, France.,UNIV UMR1052, Lyon, 69008, France.,Centre Léon Bérard, Lyon, 69373, France.,Université de Lyon1, ISPB, Lyon, 69008, France.,Institut Universitaire de France, Paris, 75231, France
| | - Léa Payen
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France. .,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, 69373, France. .,LabEX DEVweCAN, Lyon, France. .,UNIV UMR1052, Lyon, 69008, France. .,Centre Léon Bérard, Lyon, 69373, France. .,Université de Lyon1, ISPB, Lyon, 69008, France. .,Laboratoire de Biochimie et Biologie Moléculaire (CHLS), Hospices Civils de Lyon, Lyon, 69003, France.
| |
Collapse
|
7
|
Bouard C, Terreux R, Honorat M, Manship B, Ansieau S, Vigneron AM, Puisieux A, Payen L. Deciphering the molecular mechanisms underlying the binding of the TWIST1/E12 complex to regulatory E-box sequences. Nucleic Acids Res 2016; 44:5470-89. [PMID: 27151200 PMCID: PMC4914114 DOI: 10.1093/nar/gkw334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/13/2016] [Indexed: 12/29/2022] Open
Abstract
The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers.
Collapse
Affiliation(s)
- Charlotte Bouard
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France Université de Lyon1, ISPB, Lyon 69008, France
| | - Raphael Terreux
- Université de Lyon1, ISPB, Lyon 69008, France Institut de Biochimie des protéines IBCP, Lyon 69007, France CNRS UMR 5305, Lyon 69007, France
| | - Mylène Honorat
- Institut de Biochimie des protéines IBCP, Lyon 69007, France
| | | | - Stéphane Ansieau
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France
| | - Arnaud M Vigneron
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France
| | - Alain Puisieux
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France Université de Lyon1, ISPB, Lyon 69008, France Institut Universitaire de France, Paris 75231, France
| | - Léa Payen
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France LabEX DEVweCAN, Lyon, France UNIV UMR1052, Lyon 69008, France Centre Léon Bérard, Lyon 69373, France Université de Lyon1, ISPB, Lyon 69008, France Hospices Civils de Lyon, Laboratoire de Biochimie et Biologie Moléculaire du CHLS, Lyon 69003, France
| |
Collapse
|
8
|
Kuntz SG, Williams BA, Sternberg PW, Wold BJ. Transcription factor redundancy and tissue-specific regulation: evidence from functional and physical network connectivity. Genome Res 2012; 22:1907-19. [PMID: 22730465 PMCID: PMC3460186 DOI: 10.1101/gr.133306.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two major transcriptional regulators of Caenorhabditis elegans bodywall muscle (BWM) differentiation, hlh-1 and unc-120, are expressed in muscle where they are known to bind and regulate several well-studied muscle-specific genes. Simultaneously mutating both factors profoundly inhibits formation of contractile BWM. These observations were consistent with a simple network model in which the muscle regulatory factors drive tissue-specific transcription by binding selectively near muscle-specific targets to activate them. We tested this model by measuring the number, identity, and tissue-specificity of functional regulatory targets for each factor. Some joint regulatory targets (218) are BWM-specific and enriched for nearby HLH-1 binding. However, contrary to the simple model, the majority of genes regulated by one or both muscle factors are also expressed significantly in non-BWM tissues. We also mapped global factor occupancy by HLH-1, and created a genetic interaction map that identifies hlh-1 collaborating transcription factors. HLH-1 binding did not predict proximate regulatory action overall, despite enrichment for binding among BWM-specific positive regulatory targets of hlh-1. We conclude that these tissue-specific factors contribute much more broadly to the transcriptional output of muscle tissue than previously thought, offering a partial explanation for widespread HLH-1 occupancy. We also identify a novel regulatory connection between the BWM-specific hlh-1 network and the hlh-8/twist nonstriated muscle network. Finally, our results suggest a molecular basis for synthetic lethality in which hlh-1 and unc-120 mutant phenotypes are mutually buffered by joint additive regulation of essential target genes, with additional buffering suggested via newly identified hlh-1 interacting factors.
Collapse
Affiliation(s)
- Steven G Kuntz
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
9
|
Das A, Crump JG. Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest. PLoS Genet 2012; 8:e1002710. [PMID: 22589745 PMCID: PMC3349740 DOI: 10.1371/journal.pgen.1002710] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/28/2012] [Indexed: 11/18/2022] Open
Abstract
Cranial neural crest cells (CNCCs) have the remarkable capacity to generate both the non-ectomesenchyme derivatives of the peripheral nervous system and the ectomesenchyme precursors of the vertebrate head skeleton, yet how these divergent lineages are specified is not well understood. Whereas studies in mouse have indicated that the Twist1 transcription factor is important for ectomesenchyme development, its role and regulation during CNCC lineage decisions have remained unclear. Here we show that two Twist1 genes play an essential role in promoting ectomesenchyme at the expense of non-ectomesenchyme gene expression in zebrafish. Twist1 does so by promoting Fgf signaling, as well as potentially directly activating fli1a expression through a conserved ectomesenchyme-specific enhancer. We also show that Id2a restricts Twist1 activity to the ectomesenchyme lineage, with Bmp activity preferentially inducing id2a expression in non-ectomesenchyme precursors. We therefore propose that the ventral migration of CNCCs away from a source of Bmps in the dorsal ectoderm promotes ectomesenchyme development by relieving Id2a-dependent repression of Twist1 function. Together our model shows how the integration of Bmp inhibition at its origin and Fgf activation along its migratory route would confer temporal and spatial specificity to the generation of ectomesenchyme from the neural crest.
Collapse
Affiliation(s)
| | - J. Gage Crump
- Broad CIRM Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Philogene MC, Small SGM, Wang P, Corsi AK. Distinct Caenorhabditis elegans HLH-8/twist-containing dimers function in the mesoderm. Dev Dyn 2012; 241:481-92. [PMID: 22275075 DOI: 10.1002/dvdy.23734] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The Caenorhabditis elegans basic helix-loop-helix (bHLH) factor HLH-8, the single Twist ortholog in the nematode genome, plays important roles in mesoderm development, including M lineage patterning and differentiation of vulval and enteric muscles. HLH-8 cooperates with HLH-2, the bHLH E/Daughterless ortholog, to regulate downstream target genes, but it is not known whether HLH-2 is an obligate partner for all HLH-8 functions. RESULTS Using hlh-2 loss-of-function alleles and RNAi, we discovered that HLH-2 is required in the vulval muscles but not in M patterning or enteric muscle development. Additionally, we found that expressing tethered HLH-8/HLH-8 dimers in hlh-8 null animals rescued M patterning and enteric but not vulval muscle development. CONCLUSIONS These results support a model whereby HLH-8/HLH-8 homodimers function in M lineage patterning and enteric muscles and HLH-8/HLH-2 heterodimers function in the M-derived vulval muscles. Interestingly, the different dimers function in the same M lineage cells and the switch in dimer function coincides with vulval muscle differentiation. The use of distinct Twist dimers is evolutionarily conserved, and C. elegans provides a paradigm for future dissection of differential promoter regulation by these dimers at a single cell resolution.
Collapse
Affiliation(s)
- Mary C Philogene
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | | | | | |
Collapse
|
11
|
Meyers SG, Corsi AK. C. elegans twist gene expression in differentiated cell types is controlled by autoregulation through intron elements. Dev Biol 2010; 346:224-36. [PMID: 20691175 PMCID: PMC2945437 DOI: 10.1016/j.ydbio.2010.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
The temporospatial regulation of genes encoding transcription factors is important during development. The hlh-8 gene encodes the C. elegans mesodermal transcription factor CeTwist. Elements in the hlh-8 promoter restrict gene expression to predominantly undifferentiated cells of the M lineage. We have discovered that hlh-8 expression in differentiated mesodermal cells is controlled by two well-conserved E box elements in the large first intron. Additionally, we found that these elements are bound in vitro by CeTwist and its transcription factor partner, CeE/DA. The E box driven expression is eliminated or diminished in an hlh-8 null allele or in hlh-2 (CeE/DA) RNAi, respectively. Expression of hlh-8 is also diminished in animals harboring an hlh-8 intron deletion allele. Altogether, our results support a model in which hlh-8 is initially expressed in the undifferentiated M lineage cells via promoter elements and then the CeTwist activates its own expression further (autoregulation) in differentiated cells derived from the M lineage via the intron elements. This model provides a mechanism for how a transcription factor may regulate distinct target genes in cells both before and after initiating the differentiation program. The findings could also be relevant to understanding human Twist gene regulation, which is currently not well understood.
Collapse
Affiliation(s)
- Stephany G. Meyers
- Department of Biology, The Catholic University of America, Washington, D.C. 20064
| | - Ann K. Corsi
- Department of Biology, The Catholic University of America, Washington, D.C. 20064
| |
Collapse
|
12
|
Cakouros D, Raices RM, Gronthos S, Glackin C. Twist-ing cell fate: Mechanistic insights into the role of twist in lineage specification/differentiation and tumorigenesis. J Cell Biochem 2010; 110:1288-98. [DOI: 10.1002/jcb.22651] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Lee SU, Song HO, Lee W, Singaravelu G, Yu JR, Park WY. Identification and characterization of a putative basic helix-loop-helix (bHLH) transcription factor interacting with calcineurin in C. elegans. Mol Cells 2009; 28:455-61. [PMID: 19855932 DOI: 10.1007/s10059-009-0145-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/31/2009] [Indexed: 11/26/2022] Open
Abstract
Calcineurin is a Ca(2+)/Calmodulin activated Ser/Thr phosphatase that is well conserved from yeast to human. It is composed of catalytic subunit A (CnA) and regulatory subunit B (CnB). C. elegans homolog of CnA and CnB has been annotated to tax-6 and cnb-1, respectively and in vivo function of both genes has been intensively studied. In C. elegans, calcineurin play roles in various signaling pathways such as fertility, movement, body size regulation and serotonin-mediated egg laying. In order to understand additional signaling pathway(s) in which calcineurin functions, we screened for binding proteins of TAX-6 and found a novel binding protein, HLH-11. The HLH-11, a member of basic helix-loop-helix (bHLH) proteins, is a putative counterpart of human AP4 transcription factor. Previously bHLH transcription factors have been implicated to regulate many developmental processes such as cell proliferation and differentiation, sex determination and myogenesis. However, the in vivo function of hlh-11 is largely unknown. Here, we show that hlh-11 is expressed in pharynx, intestine, nerve cords, anal depressor and vuvla muscles where calcineurin is also expressed. Mutant analyses reveal that hlh-11 may have role(s) in regulating body size and reproduction. More interestingly, genetic epistasis suggests that hlh-11 may function to regulate serotonin-mediated egg laying at the downstream of tax-6.
Collapse
Affiliation(s)
- Soo-Ung Lee
- Department of Environmental and Tropical Medicine, Konkuk University School of Medicine, Seoul 143-701, Korea
| | | | | | | | | | | |
Collapse
|
14
|
Wong MC, Castanon I, Baylies MK. Daughterless dictates Twist activity in a context-dependent manner during somatic myogenesis. Dev Biol 2008; 317:417-29. [PMID: 18407256 DOI: 10.1016/j.ydbio.2008.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 01/22/2008] [Accepted: 02/05/2008] [Indexed: 11/25/2022]
Abstract
Somatic myogenesis in Drosophila relies on the reiterative activity of the basic helix-loop-helix transcriptional regulator, Twist (Twi). How Twi directs multiple cell fate decisions over the course of mesoderm and muscle development is unclear. Previous work has shown that Twi is regulated by its dimerization partner: Twi homodimers activate genes necessary for somatic myogenesis, whereas Twi/Daughterless (Da) heterodimers lead to the repression of these genes. Here, we examine the nature of Twi/Da heterodimer repressive activity. Analysis of the Da protein structure revealed a Da repression (REP) domain, which is required for Twi/Da-mediated repression of myogenic genes, such as Dmef2, both in tissue culture and in vivo. This domain is crucial for the allocation of mesodermal cells to distinct fates, such as heart, gut and body wall muscle. By contrast, the REP domain is not required in vivo during later stages of myogenesis, even though Twi activity is required for muscles to achieve their final pattern and morphology. Taken together, we present evidence that the repressive activity of the Twi/Da dimer is dependent on the Da REP domain and that the activity of the REP domain is sensitive to tissue context and developmental timing.
Collapse
Affiliation(s)
- Ming-Ching Wong
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | | | | |
Collapse
|
15
|
Laursen KB, Mielke E, Iannaccone P, Füchtbauer EM. Mechanism of transcriptional activation by the proto-oncogene Twist1. J Biol Chem 2007; 282:34623-33. [PMID: 17893140 DOI: 10.1074/jbc.m707085200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian Twist1, a master regulator in development and a key factor in tumorigenesis, is known to repress transcription by several mechanisms and is therefore considered to mediate its function mainly through inhibition. A role of Twist1 as transactivator has also been reported but, so far, without providing a mechanism for such an activity. Here we show that heterodimeric complexes of Twist1 and E12 mediate E-box-dependent transcriptional activation. We identify a novel Twist1 transactivation domain that coactivates together with the less potent E12 transactivation domain. We found three specific residues in the highly conserved WR domain to be essential for the transactivating function of murine Twist1 and suggest an alpha-helical structure of the transactivation domain.
Collapse
|
16
|
Gort EH, van Haaften G, Verlaan I, Groot AJ, Plasterk RHA, Shvarts A, Suijkerbuijk KPM, van Laar T, van der Wall E, Raman V, van Diest PJ, Tijsterman M, Vooijs M. The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha. Oncogene 2007; 27:1501-10. [PMID: 17873906 DOI: 10.1038/sj.onc.1210795] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that play a crucial role in oxygen homeostasis. Intratumoral hypoxia and genetic alterations lead to HIF activity, which is a hallmark of solid cancer and is associated with poor clinical outcome. HIF activity is regulated by an evolutionary conserved mechanism involving oxygen-dependent HIFalpha protein degradation. To identify novel components of the HIF pathway, we performed a genome-wide RNA interference screen in Caenorhabditis elegans, to suppress HIF-dependent phenotypes, like egg-laying defects and hypoxia survival. In addition to hif-1 (HIFalpha) and aha-1 (HIFbeta), we identified hlh-8, gska-3 and spe-8. The hlh-8 gene is homologous to the human oncogene TWIST1. We show that TWIST1 expression in human cancer cells is enhanced by hypoxia in a HIF-2alpha-dependent manner. Furthermore, intronic hypoxia response elements of TWIST1 are regulated by HIF-2alpha, but not HIF-1alpha. These results identify TWIST1 as a direct target gene of HIF-2alpha, which may provide insight into the acquired metastatic capacity of hypoxic tumors.
Collapse
Affiliation(s)
- E H Gort
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhao J, Wang P, Corsi AK. The C. elegans Twist target gene, arg-1, is regulated by distinct E box promoter elements. Mech Dev 2007; 124:377-89. [PMID: 17369030 PMCID: PMC1913944 DOI: 10.1016/j.mod.2007.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 01/19/2007] [Accepted: 01/31/2007] [Indexed: 11/23/2022]
Abstract
Proper metazoan mesoderm development requires the function of a basic helix-loop-helix (bHLH) transcription factor, Twist. Twist-containing dimers regulate the expression of target genes by binding to E box promoter elements containing the site CANNTG. In Caenorhabditis elegans, CeTwist functions in a subset of mesodermal cells. Our study focuses on how CeTwist controls the expression of its target gene, arg-1. We find that a 385bp promoter region of arg-1, which contains three different E box elements, is sufficient for maintaining the full CeTwist-dependent expression pattern. Interestingly, the expression of arg-1 in different tissues is regulated distinctly, and each of the three E boxes plays a unique role in the regulation. The first and the third E boxes (E1 and E3) are required for expression in a distinct subset of the mesodermal tissues where arg-1 is normally expressed, and the second E box (E2) is required for expression in the full set of those tissues. The essential role of E2 in arg-1 regulation is correlated with the finding that E2 binds with greater affinity than E1 or E3 to CeTwist dimers. A potential role for additional transcription factors in mesodermal gene regulation is suggested by the discovery of a novel site that is also required for arg-1 expression in a subset of the tissues but is not bound in vitro by CeTwist. On the basis of these results, we propose a model of CeTwist gene regulation in which expression is controlled by tissue-specific binding of distinct sets of E boxes.
Collapse
Affiliation(s)
| | | | - Ann K. Corsi
- *Author for correspondence: , Phone: 202-319-5274, Fax: 202-319-5721
| |
Collapse
|
18
|
Corsi AK. A biochemist's guide to Caenorhabditis elegans. Anal Biochem 2006; 359:1-17. [PMID: 16942745 PMCID: PMC1855192 DOI: 10.1016/j.ab.2006.07.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/11/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Ann K Corsi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
19
|
Wang P, Zhao J, Corsi AK. Identification of novel target genes of CeTwist and CeE/DA. Dev Biol 2006; 293:486-98. [PMID: 16480708 DOI: 10.1016/j.ydbio.2005.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 10/03/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
Twist, a basic helix-loop-helix (bHLH) transcription factor, plays an important role in mesoderm development in many organisms, including C. elegans where CeTwist is required to direct cell fate specifications of a subset of mesodermal cells. Although several target genes of CeTwist have been identified, how this protein accomplishes its function is unclear. In addition, several human genes whose mutations cause different syndromes of craniosynostosis (premature fusion of cranial sutures) have homologues in the CeTwist pathway. Identification of novel target genes of CeTwist will shed more light on the functions of CeTwist in mesoderm development, and the corresponding human homologues will be good candidates for related syndromes with unidentified mutated genes. In our study, both CeTwist and its heterodimeric partner, CeE/DA, were overexpressed from the inducible heat-shock promoter, and potential target genes were detected with Affymetrix oligonucleotide microarrays. Using transcriptional GFP reporters, we found 11 genes were expressed in cells coincident with known CeTwist target gene products. Based on subsequent validation experiments, 9 genes were defined as novel CeTwist and CeE/DA targets. Human homologues of two of these genes might be involved in craniofacial diseases, which further validates C. elegans as a good model organism for providing insights into these disorders.
Collapse
Affiliation(s)
- Peng Wang
- Department of Biology, Catholic University of America, Washington, DC 20064, USA
| | | | | |
Collapse
|
20
|
Firulli BA, Krawchuk D, Centonze VE, Vargesson N, Virshup DM, Conway SJ, Cserjesi P, Laufer E, Firulli AB. Altered Twist1 and Hand2 dimerization is associated with Saethre-Chotzen syndrome and limb abnormalities. Nat Genet 2005; 37:373-81. [PMID: 15735646 PMCID: PMC2568820 DOI: 10.1038/ng1525] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Accepted: 01/10/2005] [Indexed: 02/06/2023]
Abstract
Autosomal dominant mutations in the gene encoding the basic helix-loop-helix transcription factor Twist1 are associated with limb and craniofacial defects in humans with Saethre-Chotzen syndrome. The molecular mechanism underlying these phenotypes is poorly understood. We show that ectopic expression of the related basic helix-loop-helix factor Hand2 phenocopies Twist1 loss of function in the limb and that the two factors have a gene dosage-dependent antagonistic interaction. Dimerization partner choice by Twist1 and Hand2 can be modulated by protein kinase A- and protein phosphatase 2A-regulated phosphorylation of conserved helix I residues. Notably, multiple Twist1 mutations associated with Saethre-Chotzen syndrome alter protein kinase A-mediated phosphorylation of Twist1, suggesting that misregulation of Twist1 dimerization through either stoichiometric or post-translational mechanisms underlies phenotypes of individuals with Saethre-Chotzen syndrome.
Collapse
Affiliation(s)
- Beth A Firulli
- Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children, Department of Pediatrics, Indiana Medical School, 1044 W. Walnut R4 371, Indianapolis, Indiana 46202-5225, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|