1
|
Liang Q, Peng T, Sun B, Tu J, Cheng X, Tian Y, Fan X, Yang D, Gaur U, Yang M. Gene expression patterns determine the differential numbers of dorsocentral macrochaetes between Musca domestica
and Drosophila melanogaster. Genesis 2018; 56:e23258. [DOI: 10.1002/dvg.23258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Qing Liang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province; Sichuan Agricultural University; Chengdu China
| | - Tingting Peng
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province; Sichuan Agricultural University; Chengdu China
| | - Boyuan Sun
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province; Sichuan Agricultural University; Chengdu China
| | - Jianbo Tu
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province; Sichuan Agricultural University; Chengdu China
| | - Xingyi Cheng
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province; Sichuan Agricultural University; Chengdu China
| | - Yuanliangzi Tian
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province; Sichuan Agricultural University; Chengdu China
| | - Xiaolan Fan
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province; Sichuan Agricultural University; Chengdu China
| | - Deying Yang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province; Sichuan Agricultural University; Chengdu China
| | - Uma Gaur
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province; Sichuan Agricultural University; Chengdu China
| | - Mingyao Yang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province; Sichuan Agricultural University; Chengdu China
| |
Collapse
|
2
|
Negre B, Simpson P. The achaete-scute complex in Diptera: patterns of noncoding sequence evolution. J Evol Biol 2015; 28:1770-81. [PMID: 26134680 PMCID: PMC4832353 DOI: 10.1111/jeb.12687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/29/2022]
Abstract
The achaete‐scute complex (AS‐C) has been a useful paradigm for the study of pattern formation and its evolution. achaete‐scute genes have duplicated and evolved distinct expression patterns during the evolution of cyclorraphous Diptera. Are the expression patterns in different species driven by conserved regulatory elements? If so, when did such regulatory elements arise? Here, we have sequenced most of the AS‐C of the fly Calliphora vicina (including the genes achaete, scute and lethal of scute) to compare noncoding sequences with known cis‐regulatory sequences in Drosophila. The organization of the complex is conserved with respect to Drosophila species. There are numerous small stretches of conserved noncoding sequence that, in spite of high sequence turnover, display binding sites for known transcription factors. Synteny of the blocks of conserved noncoding sequences is maintained suggesting not only conservation of the position of regulatory elements but also an origin prior to the divergence between these two species. We propose that some of these enhancers originated by duplication with their target genes.
Collapse
Affiliation(s)
- B Negre
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - P Simpson
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Schachat SR, Oliver JC, Monteiro A. Nymphalid eyespots are co-opted to novel wing locations following a similar pattern in independent lineages. BMC Evol Biol 2015; 15:20. [PMID: 25886182 PMCID: PMC4335541 DOI: 10.1186/s12862-015-0300-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation in the number of repeated traits, or serial homologs, has contributed greatly to animal body plan diversity. Eyespot color patterns of nymphalid butterflies, like arthropod and vertebrate limbs, are an example of serial homologs. These eyespot color patterns originated in a small number of wing sectors on the ventral hindwing surface and later appeared in novel wing sectors, novel wings, and novel wing surfaces. However, the details of how eyespots were co-opted to these novel wing locations are currently unknown. RESULTS We used a large data matrix of eyespot/presence absence data, previously assembled from photographs of contemporary species, to perform a phylogenetic investigation of eyespot origins in nine independent nymphalid lineages. To determine how the eyespot gene regulatory network acquired novel positional information, we used phylogenetic correlation analyses to test for non-independence in the origination of eyespots. We found consistent patterns of eyespot gene network redeployment in the nine lineages, where eyespots first redeployed from the ventral hindwing to the ventral forewing, then to new sectors within the ventral wing surface, and finally to the dorsal wing surface. Eyespots that appeared in novel wing sectors modified the positional information of their serial homolog ancestors in one of two ways: by changing the wing or surface identity while retaining sector identity, or by changing the sector identity while retaining wing and surface identity. CONCLUSIONS Eyespot redeployment to novel sectors, wings, and surfaces happened multiple times in different nymphalid subfamilies following a similar pattern. This indicates that parallel mutations altering expression of the eyespot gene regulatory network led to its co-option to novel wing locations over time.
Collapse
Affiliation(s)
- Sandra R Schachat
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA. .,Department of Paleobiology, Smithsonian Institution, Washington, DC, 20013, USA.
| | - Jeffrey C Oliver
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Antónia Monteiro
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, 06520, USA. .,Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore. .,Yale-NUS College, 138614, Singapore, Singapore.
| |
Collapse
|
4
|
Costa M, Calleja M, Alonso CR, Simpson P. The bristle patterning genes hairy and extramacrochaetae regulate the development of structures required for flight in Diptera. Dev Biol 2013; 388:205-15. [PMID: 24384389 PMCID: PMC3988846 DOI: 10.1016/j.ydbio.2013.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 11/11/2022]
Abstract
The distribution of sensory bristles on the thorax of Diptera (true flies) provides a useful model for the study of the evolution of spatial patterns. Large bristles called macrochaetes are arranged into species-specific stereotypical patterns determined via spatially discrete expression of the proneural genes achaete–scute (ac–sc). In Drosophila ac-sc expression is regulated by transcriptional activation at sites where bristle precursors develop and by repression outside of these sites. Three genes, extramacrochaetae (emc), hairy (h) and stripe (sr), involved in repression have been documented. Here we demonstrate that in Drosophila, the repressor genes emc and h, like sr, play an essential role in the development of structures forming part of the flight apparatus. In addition we find that, in Calliphora vicina a species diverged from D. melanogaster by about 100 Myr, spatial expression of emc, h and sr is conserved at the location of development of those structures. Based on these findings we argue, first, that the role emc, h and sr in development of the flight apparatus preceded their activities for macrochaete patterning; second, that species-specific variation in activation and repression of ac-sc expression is evolving in parallel to establish a unique distribution of macrochaetes in each species. The distribution of sensory bristles is a useful model to study spatial patterns. In Drosophila melanogaster the genes emc, h and sr repress bristle formation. In D. melanogaster emc and h are essential for flight apparatus development. Notably, in Calliphora vicina emc, h and sr are expressed in the flight apparatus. We argue that emc, h and sr had an early role in flight apparatus development.
Collapse
Affiliation(s)
- Marta Costa
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3 EJ, UK
| | - Manuel Calleja
- Centro de Biología Molecular Severo Ochoa, C/ Nicolás Cabrera, 1, Universidad Autónoma, 28049 Madrid, Spain
| | - Claudio R Alonso
- John Maynard Smith Building, School of Life Sciences University of Sussex, Brighton BN1 9QG, UK.
| | - Pat Simpson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3 EJ, UK.
| |
Collapse
|
5
|
Jiménez-Guri E, Huerta-Cepas J, Cozzuto L, Wotton KR, Kang H, Himmelbauer H, Roma G, Gabaldón T, Jaeger J. Comparative transcriptomics of early dipteran development. BMC Genomics 2013; 14:123. [PMID: 23432914 PMCID: PMC3616871 DOI: 10.1186/1471-2164-14-123] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 02/19/2013] [Indexed: 12/24/2022] Open
Abstract
Background Modern sequencing technologies have massively increased the amount of data available for comparative genomics. Whole-transcriptome shotgun sequencing (RNA-seq) provides a powerful basis for comparative studies. In particular, this approach holds great promise for emerging model species in fields such as evolutionary developmental biology (evo-devo). Results We have sequenced early embryonic transcriptomes of two non-drosophilid dipteran species: the moth midge Clogmia albipunctata, and the scuttle fly Megaselia abdita. Our analysis includes a third, published, transcriptome for the hoverfly Episyrphus balteatus. These emerging models for comparative developmental studies close an important phylogenetic gap between Drosophila melanogaster and other insect model systems. In this paper, we provide a comparative analysis of early embryonic transcriptomes across species, and use our data for a phylogenomic re-evaluation of dipteran phylogenetic relationships. Conclusions We show how comparative transcriptomics can be used to create useful resources for evo-devo, and to investigate phylogenetic relationships. Our results demonstrate that de novo assembly of short (Illumina) reads yields high-quality, high-coverage transcriptomic data sets. We use these data to investigate deep dipteran phylogenetic relationships. Our results, based on a concatenation of 160 orthologous genes, provide support for the traditional view of Clogmia being the sister group of Brachycera (Megaselia, Episyrphus, Drosophila), rather than that of Culicomorpha (which includes mosquitoes and blackflies).
Collapse
Affiliation(s)
- Eva Jiménez-Guri
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yang M, Hatton-Ellis E, Simpson P. The kinase Sgg modulates temporal development of macrochaetes in Drosophila by phosphorylation of Scute and Pannier. Development 2011; 139:325-34. [PMID: 22159580 DOI: 10.1242/dev.074260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Evolution of novel structures is often made possible by changes in the timing or spatial expression of genes regulating development. Macrochaetes, large sensory bristles arranged into species-specific stereotypical patterns, are an evolutionary novelty of cyclorraphous flies and are associated with changes in both the temporal and spatial expression of the proneural genes achaete (ac) and scute (sc). Changes in spatial expression are associated with the evolution of cis-regulatory sequences, but it is not known how temporal regulation is achieved. One factor required for ac-sc expression, the expression of which coincides temporally with that of ac-sc in the notum, is Wingless (Wg; also known as Wnt). Wingless downregulates the activity of the serine/threonine kinase Shaggy (Sgg; also known as GSK-3). We demonstrate that Scute is phosphorylated by Sgg on a serine residue and that mutation of this residue results in a form of Sc with heightened proneural activity that can rescue the loss of bristles characteristic of wg mutants. We suggest that the phosphorylated form of Sc has reduced transcriptional activity such that sc is unable to autoregulate, an essential function for the segregation of bristle precursors. Sgg also phosphorylates Pannier, a transcriptional activator of ac-sc, the activity of which is similarly dampened when in the phosphorylated state. Furthermore, we show that Wg signalling does not act directly via a cis-regulatory element of the ac-sc genes. We suggest that temporal control of ac-sc activity in cyclorraphous flies is likely to be regulated by permissive factors and might therefore not be encoded at the level of ac-sc gene sequences.
Collapse
Affiliation(s)
- Mingyao Yang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | |
Collapse
|
7
|
An arthropod cis-regulatory element functioning in sensory organ precursor development dates back to the Cambrian. BMC Biol 2010; 8:127. [PMID: 20868489 PMCID: PMC2958161 DOI: 10.1186/1741-7007-8-127] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/24/2010] [Indexed: 12/21/2022] Open
Abstract
Background An increasing number of publications demonstrate conservation of function of cis-regulatory elements without sequence similarity. In invertebrates such functional conservation has only been shown for closely related species. Here we demonstrate the existence of an ancient arthropod regulatory element that functions during the selection of neural precursors. The activity of genes of the achaete-scute (ac-sc) family endows cells with neural potential. An essential, conserved characteristic of proneural genes is their ability to restrict their own activity to single or a small number of progenitor cells from their initially broad domains of expression. This is achieved through a process called lateral inhibition. A regulatory element, the sensory organ precursor enhancer (SOPE), is required for this process. First identified in Drosophila, the SOPE contains discrete binding sites for four regulatory factors. The SOPE of the Drosophila asense gene is situated in the 5' UTR. Results Through a manual comparison of consensus binding site sequences we have been able to identify a SOPE in UTR sequences of asense-like genes in species belonging to all four arthropod groups (Crustacea, Myriapoda, Chelicerata and Insecta). The SOPEs of the spider Cupiennius salei and the insect Tribolium castaneum are shown to be functional in transgenic Drosophila. This would place the origin of this regulatory sequence as far back as the last common ancestor of the Arthropoda, that is, in the Cambrian, 550 million years ago. Conclusions The SOPE is not detectable by inter-specific sequence comparison, raising the possibility that other ancient regulatory modules in invertebrates might have escaped detection.
Collapse
|
8
|
Homology of dipteran bristles and lepidopteran scales: requirement for the Bombyx mori achaete-scute homologue ASH2. Genetics 2009; 183:619-27, 1SI-3SI. [PMID: 19667136 DOI: 10.1534/genetics.109.102848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lepidopteran wing scales and Drosophila bristles are considered homologous structures on the basis of the similarities in their cell lineages. However, the molecular mechanisms underlying scale development are essentially unknown as analysis of gene function in Lepidoptera is sorely limited. In this study, we used the Bombyx mori mutant scaleless (sl), which displays a nearly complete loss of wing scales, to explore the mechanism of lepidopteran wing-scale formation. We found that Bm-ASH2, one of four Bombyx achaete-scute homologs, is highly expressed in early pupal wings of wild-type silkworms, but its expression is severely reduced in sl pupal wings. Through molecular characterization of the mutant locus using luciferase and gel shift assays, genetic analysis of recombining populations, and in vivo rescue experiments, we provide evidence that a 26-bp deletion within the Bm-ASH2 promoter is closely linked to the sl locus and leads to loss of Bm-ASH2 expression and the scaleless-wings phenotype. Thus, the Bm-ASH2 appears to play a critical role in scale formation in B. mori. This finding supports the proposed homology of lepidopteran scales and dipteran bristles and provides evidence for conservation of the genetic pathway in scale/bristle development at the level of gene function.
Collapse
|
9
|
Molecular cloning and characterization of homologs of achaete-scute and hairy-enhancer of split in the olfactory organ of the spiny lobster Panulirus argus. J Mol Neurosci 2009; 39:294-307. [PMID: 19322682 DOI: 10.1007/s12031-009-9195-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 03/09/2009] [Indexed: 02/06/2023]
Abstract
The olfactory organ of the Caribbean spiny lobster Panulirus argus maintains lifelong proliferation and turnover of olfactory receptor neurons (ORNs). Towards examining the molecular basis of this adult neurogenesis, we search for expression of homologs of proneural, neurogenic, and pre-pattern genes in this olfactory organ. We report here a homolog of the proneural Achaete-Scute family, called splash (spiny lobster achaete-scute homolog), and a homolog of the pre-pattern and neurogenic hairy-enhancer of split family, called splhairy (spiny lobster hairy). Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) indicates a molt stage dependence of the levels of expression of splash and splhairy mRNA in the olfactory organ, with higher expression in premolt than in postmolt or intermolt animals, which is positively correlated with rates of neurogenesis. splash and splhairy mRNA are expressed not only in the olfactory organ but also in other tissues, albeit at lower levels, irrespective of molt stage. We conclude that the expression of achaete-scute and hairy-enhancer of split in the proliferation zone of the olfactory organ of spiny lobsters and their enhanced expression in premolt animals suggest that they play a role in the proliferation of ORNs and that their expression in regions of the olfactory organ populated by mature ORNs and in other tissues suggests that they have additional functions.
Collapse
|
10
|
Abstract
Comparative developmental evidence indicates that reorganizations in developmental gene regulatory networks (GRNs) underlie evolutionary changes in animal morphology, including body plans. We argue here that the nature of the evolutionary alterations that arise from regulatory changes depends on the hierarchical position of the change within a GRN. This concept cannot be accomodated by microevolutionary nor macroevolutionary theory. It will soon be possible to investigate these ideas experimentally, by assessing the effects of GRN changes on morphological evolution.
Collapse
Affiliation(s)
- Douglas H Erwin
- Department of Paleobiology, MRC-121, National Museum of Natural History, PO BOX 37012, Washington, Washington DC 20013-7012, USA.
| | | |
Collapse
|
11
|
Redundant mechanisms mediate bristle patterning on the Drosophila thorax. Proc Natl Acad Sci U S A 2008; 105:20112-7. [PMID: 19104061 DOI: 10.1073/pnas.0804282105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The thoracic bristle pattern of Drosophila results from the spatially restricted expression of the achaete-scute (ac-sc) genes in clusters of cells, mediated by the activity of many discrete cis-regulatory sequences. However, ubiquitous expression of sc or asense (ase) achieved with a heterologous promoter, in the absence of endogenous ac-sc expression, and the activity of the cis-regulatory elements, allows the development of bristles positioned at wild-type locations. We demonstrate that the products of the genes stripe, hairy, and extramacrochaetae contribute to rescue by antagonizing the activity of Sc and Ase. The three genes are expressed in specific but overlapping spatial domains of expression that form a prepattern that allows precise positioning of bristles. The redundant mechanisms might contribute to the robustness of the pattern. We discuss the possibility that patterning in trans by antagonism is ancestral and that the positional cis-regulatory sequences might be of recent origin.
Collapse
|
12
|
Abstract
Is genetic evolution predictable? Evolutionary developmental biologists have argued that, at least for morphological traits, the answer is a resounding yes. Most mutations causing morphological variation are expected to reside in the cis-regulatory, rather than the coding, regions of developmental genes. This "cis-regulatory hypothesis" has recently come under attack. In this review, we first describe and critique the arguments that have been proposed in support of the cis-regulatory hypothesis. We then test the empirical support for the cis-regulatory hypothesis with a comprehensive survey of mutations responsible for phenotypic evolution in multicellular organisms. Cis-regulatory mutations currently represent approximately 22% of 331 identified genetic changes although the number of cis-regulatory changes published annually is rapidly increasing. Above the species level, cis-regulatory mutations altering morphology are more common than coding changes. Also, above the species level cis-regulatory mutations predominate for genes not involved in terminal differentiation. These patterns imply that the simple question "Do coding or cis-regulatory mutations cause more phenotypic evolution?" hides more interesting phenomena. Evolution in different kinds of populations and over different durations may result in selection of different kinds of mutations. Predicting the genetic basis of evolution requires a comprehensive synthesis of molecular developmental biology and population genetics.
Collapse
Affiliation(s)
- David L Stern
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
13
|
Zhou Q, Zhang T, Xu W, Yu L, Yi Y, Zhang Z. Analysis of four achaete-scute homologs in Bombyx mori reveals new viewpoints of the evolution and functions of this gene family. BMC Genet 2008; 9:24. [PMID: 18321391 PMCID: PMC2315653 DOI: 10.1186/1471-2156-9-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 03/06/2008] [Indexed: 11/22/2022] Open
Abstract
Background achaete-scute complexe (AS-C) has been widely studied at genetic, developmental and evolutional levels. Genes of this family encode proteins containing a highly conserved bHLH domain, which take part in the regulation of the development of central nervous system and peripheral nervous system. Many AS-C homologs have been isolated from various vertebrates and invertebrates. Also, AS-C genes are duplicated during the evolution of Diptera. Functions besides neural development controlling have also been found in Drosophila AS-C genes. Results We cloned four achaete-scute homologs (ASH) from the lepidopteran model organism Bombyx mori, including three proneural genes and one neural precursor gene. Proteins encoded by them contained the characteristic bHLH domain and the three proneural ones were also found to have the C-terminal conserved motif. These genes regulated promoter activity through the Class A E-boxes in vitro. Though both Bm-ASH and Drosophila AS-C have four members, they are not in one by one corresponding relationships. Results of RT-PCR and real-time PCR showed that Bm-ASH genes were expressed in different larval tissues, and had well-regulated expressional profiles during the development of embryo and wing/wing disc. Conclusion There are four achaete-scute homologs in Bombyx mori, the second insect having four AS-C genes so far, and these genes have multiple functions in silkworm life cycle. AS-C gene duplication in insects occurs after or parallel to, but not before the taxonomic order formation during evolution.
Collapse
Affiliation(s)
- Qingxiang Zhou
- The Biotechnology Research Institute, National Engineering of crop germplasm and genetic improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | | | | | | | | | | |
Collapse
|
14
|
Simpson P, Ayyar S. Chapter 3 Evolution of Cis‐Regulatory Sequences in Drosophila. LONG-RANGE CONTROL OF GENE EXPRESSION 2008; 61:67-106. [DOI: 10.1016/s0065-2660(07)00003-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Simpson P. The stars and stripes of animal bodies: evolution of regulatory elements mediating pigment and bristle patterns in Drosophila. Trends Genet 2007; 23:350-8. [PMID: 17499383 DOI: 10.1016/j.tig.2007.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/11/2007] [Accepted: 04/23/2007] [Indexed: 11/22/2022]
Abstract
Evolution has generated enormous morphological diversity in animals and one of the genetic processes that might have contributed to this is evolution of the cis-regulatory sequences responsible for the temporal and spatial expression of genes regulating embryonic development. This could be particularly relevant to pleiotropic genes with multiple independently acting regulatory modules. Loss or gain of modules enables altered expression without loss of other functions. Here I focus on recent studies correlating differences in morphological traits between related species of Drosophila to changes in cis-regulatory sequences. They show that ancestral regulatory modules have evolved to mediate different transcriptional outputs and suggest that evolution of cis-regulatory sequences might reflect a general mechanism driving evolutionary change.
Collapse
Affiliation(s)
- Pat Simpson
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Abstract
Cis-regulatory sequences direct patterns of gene expression essential for development and physiology. Evolutionary changes in these sequences contribute to phenotypic divergence. Despite their importance, cis-regulatory regions remain one of the most enigmatic features of the genome. Patterns of sequence evolution can be used to identify cis-regulatory elements, but the power of this approach depends upon the relationship between sequence and function. Comparative studies of gene regulation among Diptera reveal that divergent sequences can underlie conserved expression, and that expression differences can evolve despite largely similar sequences. This complex structure-function relationship is the primary impediment for computational identification and interpretation of cis-regulatory sequences. Biochemical characterization and in vivo assays of cis-regulatory sequences on a genomic-scale will relieve this barrier.
Collapse
Affiliation(s)
- P J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, 1061 Natural Science Building, 830 North University Ave., Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
17
|
Simpson P, Marcellini S. The origin and evolution of stereotyped patterns of macrochaetes on the nota of cyclorraphous Diptera. Heredity (Edinb) 2006; 97:148-56. [PMID: 16850036 DOI: 10.1038/sj.hdy.6800874] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A long-standing problem in evolutionary biology is how genetic variation arises within populations and evolves to make species anatomically different. Many of the morphological differences in body plans between animal groups are thought to result from changes in gene expression during development. The rules governing the structure and evolution of cis-regulatory gene sequences are unknown, however, and the evolution of traits between closely related species remains relatively unexplored at a molecular level. To study the evolution of gene regulation, it is necessary to find a tractable trait that varies between species and for which the genetic regulation is well known in at least one of the species. The stereotyped, two-dimensional pattern of bristles on the thorax of Drosophila has been intensively investigated and is due to a precise spatial expression of proneural genes. Other species of flies have different bristle patterns and so comparisons between them provide a good paradigm for the study of changes in gene regulation. Here, we review the current state of understanding of these changes.
Collapse
Affiliation(s)
- P Simpson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
18
|
Simpson P, Lewis M, Richardson J. Conservation of upstream regulators of scute on the notum of cyclorraphous Diptera. Dev Genes Evol 2006; 216:363-71. [PMID: 16670872 DOI: 10.1007/s00427-006-0077-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 04/04/2006] [Indexed: 11/25/2022]
Abstract
Bristles on the notum of many cyclorraphous flies are arranged into species-specific stereotyped patterns. Differences in the spatial expression of the proneural gene scute correlate with the positions of bristles in those species looked at so far. However, the examination of a number of genes encoding trans-regulatory factors, such as pannier, stripe, u-shaped, caupolican and wingless, indicates that they are expressed in conserved domains on the prospective notum. This suggests that the function of a trans-regulatory network of genes is relatively unchanged in derived Diptera, and that many differences are likely to be due to changes in cis-regulatory sequences of scute. In contrast, in Anopheles gambiae, a basal species with no stereotyped bristle pattern, the expression patterns of pannier and wingless are not conserved, and expression of AgASH, the Anopheles proneural gene, does not correlate in a similar manner with the bristle pattern. We discuss the possibility that independently acting cis-regulatory sequences at the scute locus may have arisen in the lineage giving rise to cyclorraphous flies.
Collapse
Affiliation(s)
- Pat Simpson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | |
Collapse
|
19
|
Beckingham KM, Texada MJ, Baker DA, Munjaal R, Armstrong JD. Genetics of graviperception in animals. ADVANCES IN GENETICS 2006; 55:105-45. [PMID: 16291213 DOI: 10.1016/s0065-2660(05)55004-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Gravity is a constant stimulus for life on Earth and most organisms have evolved structures to sense gravitational force and incorporate its influence into their behavioral repertoire. Here we focus attention on animals and their diverse structures for perceiving and responding to the gravitational vector-one of the few static reference stimuli for any mobile organism. We discuss vertebrate, arthropod, and nematode models from the perspective of the role that genetics is playing in our understanding of graviperception in each system. We describe the key sensory structures in each class of organism and present what is known about the genetic control of development of these structures and the molecular signaling pathways operating in the mature organs. We also discuss the role of large genetic screens in identifying specific genes with roles in mechanosensation and graviperception.
Collapse
Affiliation(s)
- Kathleen M Beckingham
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | | | | | |
Collapse
|
20
|
Schlatter R, Maier D. The Enhancer of split and Achaete-Scute complexes of Drosophilids derived from simple ur-complexes preserved in mosquito and honeybee. BMC Evol Biol 2005; 5:67. [PMID: 16293187 PMCID: PMC1310631 DOI: 10.1186/1471-2148-5-67] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 11/17/2005] [Indexed: 11/11/2022] Open
Abstract
Background In Drosophila melanogaster the Enhancer of split-Complex [E(spl)-C] consists of seven highly related genes encoding basic helix-loop-helix (bHLH) repressors and intermingled, four genes that belong to the Bearded (Brd) family. Both gene classes are targets of the Notch signalling pathway. The Achaete-Scute-Complex [AS-C] comprises four genes encoding bHLH activators. The question arose how these complexes evolved with regard to gene number in the evolution of insects concentrating on Diptera and the Hymenoptera Apis mellifera. Results In Drosophilids both gene complexes are highly conserved, spanning roughly 40 million years of evolution. However, in species more diverged like Anopheles or Apis we find dramatic differences. Here, the E(spl)-C consists of one bHLH (mβ) and one Brd family member (mα) in a head to head arrangement. Interestingly in Apis but not in Anopheles, there are two more E(spl) bHLH like genes within 250 kb, which may reflect duplication events in the honeybee that occurred independently of that in Diptera. The AS-C may have arisen from a single sc/l'sc like gene which is well conserved in Apis and Anopheles and a second ase like gene that is highly diverged, however, located within 50 kb. Conclusion E(spl)-C and AS-C presumably evolved by gene duplication to the nowadays complex composition in Drosophilids in order to govern the accurate expression patterns typical for these highly evolved insects. The ancestral ur-complexes, however, consisted most likely of just two genes: E(spl)-C contains one bHLH member of mβ type and one Brd family member of mα type and AS-C contains one sc/l'sc and a highly diverged ase like gene.
Collapse
Affiliation(s)
- Rebekka Schlatter
- Universität Hohenheim, Institut für Genetik, Garbenstr. 30, 70599 Stuttgart, GERMANY
| | - Dieter Maier
- Universität Hohenheim, Institut für Genetik, Garbenstr. 30, 70599 Stuttgart, GERMANY
| |
Collapse
|
21
|
Gibert JM, Marcellini S, David JR, Schlötterer C, Simpson P. A major bristle QTL from a selected population of Drosophila uncovers the zinc-finger transcription factor poils-au-dos, a repressor of achaete-scute. Dev Biol 2005; 288:194-205. [PMID: 16216235 DOI: 10.1016/j.ydbio.2005.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 09/12/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
Traditional screens aiming at identifying genes regulating development have relied on mutagenesis. Here, we describe a new gene involved in bristle development, identified through the use of natural variation and selection. Drosophila melanogaster bears a pattern of 11 macrochaetes per heminotum. From a population initially sampled in Marrakech, a strain was selected for an increased number of thoracic macrochaetes. Using recombination and single nucleotide polymorphisms, the factor responsible was mapped to a single locus on the third chromosome, poils au dos, that encodes a zinc-finger-ZAD protein. The original, as well as new, presumed null, alleles of poils au dos, is associated with ectopic achaete-scute expression that results in the additional bristles. This suggests a possible role for Poils au dos as a repressor of achaete and scute. Ectopic expression appears to be independent of the activity of known cis-regulatory enhancer sequences at the achaete-scute complex that mediate activation at specific sites on the notum. The target sequences for Poils au dos activity were mapped to a 14 kb region around scute. In addition, we show that pad interacts synergistically with the repressor hairy and with Dpp signaling in posterior and anterior regions of the notum, respectively.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | | | | | |
Collapse
|
22
|
Richardson J, Simpson P. A conserved trans-regulatory landscape for scute expression on the notum of cyclorraphous Diptera. Dev Genes Evol 2005; 216:29-38. [PMID: 16193319 DOI: 10.1007/s00427-005-0028-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
Bristles on the notum of many cyclorraphous flies are arranged into species-specific stereotyped patterns. The positions of bristles correlate with differences in the spatial expression of the scute (sc) gene in those species examined so far. However, a major upstream activator of scute, Pannier (Pnr), is expressed in a conserved domain over the entire medial notum. Here we examine the expression patterns in Calliphora vicina of stripe (sr), u-shaped (ush), caupolican (caup) and wingless (wg), genes known to modify the activity of Pnr or to act downstream of Pnr in Drosophila. We find that, with minor differences, their expression patterns are conserved. This suggests that the function of a trans-regulatory network of genes is relatively unchanged in derived Diptera and that many differences are likely to be due to changes in cis-regulatory sequences of scute.
Collapse
Affiliation(s)
- Joanna Richardson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | | |
Collapse
|
23
|
Wheeler SR, Skeath JB. The identification and expression of achaete-scute genes in the branchiopod crustacean Triops longicaudatus. Gene Expr Patterns 2005; 5:695-700. [PMID: 15939382 DOI: 10.1016/j.modgep.2005.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
The achaete-scute (ac/sc) genes are a highly conserved family of transcription factors that play important roles in the development of neural cells in both vertebrates and invertebrates. As such, the study of arthropod ac/sc gene expression during neurogenesis has become a model system for investigating the evolution of neural patterning. To date, ac/sc gene expression has been investigated in insects, chelicerates, and myriapods. Here we present the identification of two ac/sc genes from the branchiopod crustacean Triops longicaudatus. Triops longicaudatus achaete-scute homologs1 and 2 (Tl-ASH1 and Tl-ASH2) exhibit dynamic and distinct expression profiles during Triops neurogenesis. Tl-ASH1 expression initiates in nearly all cells of the neurogenic region and subsequently in clusters of cells evenly spaced along the length of the developing limbs. In contrast, Tl-ASH2 initiates expression after Tl-ASH1. In the CNS, only a subset of Tl-ASH1 cells appears to express Tl-ASH2. Similarly, in the PNS individual Tl-ASH2 positive cells appear to arise from the clusters of Tl-ASH1 expressing cells. Shortly after activating Tl-ASH2 expression, these cells enlarge and divide. The expression dynamics of ac/sc genes in Triops parallel those observed in insects and contrasts with those found in chelicerates and myriapods.
Collapse
Affiliation(s)
- Scott R Wheeler
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | |
Collapse
|
24
|
Usui-Ishihara A, Simpson P. Differences in sensory projections between macro- and microchaetes in Drosophilid flies. Dev Biol 2005; 277:170-83. [PMID: 15572148 DOI: 10.1016/j.ydbio.2004.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 09/12/2004] [Indexed: 11/29/2022]
Abstract
From examination of the central axonal projections of sensory bristles on the notum of several species of Drosophilidae, we demonstrate different features that may indicate different functions for macro- and microchaetes. The large macrochaetes have conserved arborizations that correlate with their conserved position. Nevertheless, we find evidence for only two discrete projection patterns for bristles in the dorsocentral (DC) row, even when there may be four or five bristles present. We show that the small microchaetes of Drosophila melanogaster display regional specificity and subsets of contiguous bristles project to a common region in the thoracic ganglion. Interestingly, the axons of each of these subsets also form a specific fasciculation group on the scutum before joining the axon of a particular macrochaete. The positions of microchaetes on the scutum and the shape of the fasciculation groups vary between closely related species. There is no correlation between body size, bristle patterns, and fasciculation patterns. Furthermore, none of these traits correlate with the phylogenetic relationships between the species studied. We discuss the possibility that macro- and microchaetes may have different functions and that these have implications for evolutionary constraints on bristle patterns.
Collapse
Affiliation(s)
- Akiko Usui-Ishihara
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | | |
Collapse
|
25
|
Usui K, Pistillo D, Simpson P. Mutual exclusion of sensory bristles and tendons on the notum of dipteran flies. Curr Biol 2004; 14:1047-55. [PMID: 15202997 DOI: 10.1016/j.cub.2004.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 04/06/2004] [Accepted: 04/14/2004] [Indexed: 11/18/2022]
Abstract
BACKGROUND Genes of the achaete-scute complex encode transcription factors whose activity regulates the development of neural cells. The spatially restricted expression of achaete-scute on the mesonotum of higher flies governs the development and positioning of the large sensory bristles. On the scutum the bristles are arranged into conserved patterns, based on an ancestral arrangement of four longitudinal rows. This pattern appears to date back to the origin of cyclorraphous flies about 100-140 million years ago. The origin of the four-row bauplan, which is independent of body size, and the reasons for its conservation, are not known. RESULTS We report that tendons for attachment of the indirect flight muscles are invariably located between the bristle rows of the scutum throughout the Diptera. Tendon development depends on the activity of a transcription factor encoded by the gene stripe. In Drosophila, stripe and achaete-scute have separate expression domains, leading to spatial segregation of tendon precursors and bristle precursors. Furthermore the products of these genes act antagonistically: ectopic sr expression prevents bristle development and ectopic sc expression prevents normal muscle attachment. The product of stripe acts downstream of Achaete-Scute and interferes with the development of bristle precursors. CONCLUSIONS The pattern of flight muscles has changed little throughout the Diptera and we argue that the sites of muscle attachment may have constrained the positioning of bristles during the course of evolution. This could account for the pattern of four bristle rows on the scutum.
Collapse
Affiliation(s)
- Kazuya Usui
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | | | | |
Collapse
|
26
|
Wrischnik LA, Timmer JR, Megna LA, Cline TW. Recruitment of the Proneural Gene scute to the Drosophila Sex-Determination Pathway. Genetics 2003; 165:2007-27. [PMID: 14704182 PMCID: PMC1462923 DOI: 10.1093/genetics/165.4.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract
In flies, scute (sc) works with its paralogs in the achaete-scute-complex (ASC) to direct neuronal development. However, in the family Drosophilidae, sc also acquired a role in the primary event of sex determination, X chromosome counting, by becoming an X chromosome signal element (XSE)—an evolutionary step shown here to have occurred after sc diverged from its closest paralog, achaete (ac). Two temperature-sensitive alleles, scsisB2 and scsisB3, which disrupt only sex determination, were recovered in a powerful F1 genetic selection and used to investigate how sc was recruited to the sex-determination pathway. scsisB2 revealed 3′ nontranscribed regulatory sequences likely to be involved. The scsisB2 lesion abolished XSE activity when combined with mutations engineered in a sequence upstream of all XSEs. In contrast, changes in Sc protein sequence seem not to have been important for recruitment. The observation that the other new allele, scsisB3, eliminates the C-terminal half of Sc without affecting neurogenesis and that scsisB1, the most XSE-specific allele previously available, is a nonsense mutant, would seem to suggest the opposite, but we show that housefly Sc can substitute for fruit fly Sc in sex determination, despite lacking Drosophilidae-specific conserved residues in its C-terminal half. Lack of synergistic lethality among mutations in sc, twist, and dorsal argue against a proposed role for sc in mesoderm formation that had seemed potentially relevant to sex-pathway recruitment. The screen that yielded new sc alleles also generated autosomal duplications that argue against the textbook view that fruit fly sex signal evolution recruited a set of autosomal signal elements comparable to the XSEs.
Collapse
Affiliation(s)
- Lisa A Wrischnik
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Over the past two to three decades, developmental biology has demonstrated that all multicellular organisms in the animal kingdom share many of the same molecular building blocks and many of the same regulatory genetic pathways. Yet we still do not understand how the various organisms use these molecules and pathways to assume all the forms we know today. Evolutionary developmental biology tackles this problem by comparing the development of one organism to another and comparing the genes involved and gene functions to understand what makes one organism different from another. In this review, we revisit a set of seven concepts defined by Lewis Wolpert (fate maps, asymmetric division, induction, competence, positional information, determination, and lateral inhibition) that describe the characters of many developmental systems and supplement them with three additional concepts (developmental genomics, genetic redundancy, and genetic networks). We will discuss examples of comparative developmental studies where these concepts have guided observations on the advent of a developmental novelty. Finally, we identify a set of evolutionary frameworks, such as developmental constraints, cooption, duplication, parallel and convergent evolution, and homoplasy, to adequately describe the evolutionary properties of developmental systems.
Collapse
Affiliation(s)
- David Rudel
- Max-Planck Institut für Entwicklungsbiologie, Abteilung Evolutionsbiologie, Spemannstrasse 37-39, D-72076 Tübingen, Germany
| | | |
Collapse
|
28
|
Young JH, Merritt DJ. The ultrastructure and function of the silk-producing basitarsus in the Hilarini (Diptera: Empididae). ARTHROPOD STRUCTURE & DEVELOPMENT 2003; 32:157-165. [PMID: 18089001 DOI: 10.1016/s1467-8039(03)00006-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2003] [Accepted: 03/20/2003] [Indexed: 05/25/2023]
Abstract
The tribe Hilarini (Diptera: Empididae), commonly known as dance flies, can be recognised by their swollen silk-producing prothoracic basitarsus, a male secondary sexual characteristic. The ultrastructure and function of the silk-producing basitarsus from one undescribed morphospecies of Hilarini, 'Hilarempis 20', is presented. Male H. 20 collect small parcels of diatomaceous algae from the surface of freshwater creeks that they bind with silk produced by the gland in the basitarsus. The gift is then presented to females in a nearby swarm, composed predominately of females. The basitarsus houses approximately 12 pairs of class III dermal glandular units that congregate on the ventral side of the cavity. Each gland cell has a large extracellular lumen where secretion accumulates. The lumen drains to the outside via a conducting canal encompassed by a canal cell and a duct extending through the shaft of a specialised secretory spine. The secretory spines lie in pairs in a ventral groove that runs the length of the basitarsus. A comparison of the basitarsal secretory spines with sensilla on the basitarsi of non gland-bearing legs of males, and with non gland-bearing prothoracic basitarsi of females, suggests that the glandular units are derived from contact chemosensory sensilla.
Collapse
Affiliation(s)
- James H Young
- Department of Biological Sciences, Macquarie University Sydney, 2109 Sydney, NSW, Australia
| | | |
Collapse
|
29
|
Skaer N, Pistillo D, Simpson P. Transcriptional heterochrony of scute and changes in bristle pattern between two closely related species of blowfly. Dev Biol 2002; 252:31-45. [PMID: 12453458 DOI: 10.1006/dbio.2002.0841] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Temporal shifts in the expression of regulatory genes, relative to other events taking place during development, can result in changes in morphology. Such transcriptional heterochrony can introduce dramatic morphological changes that involve rather few genetic events and so has the potential to cause rapid changes during evolution. We have shown previously that stereotyped species-specific bristle patterns on the notum of higher Diptera correlate with changes in the spatial regulation of scute expression. scute encodes a proneural gene required for the development of sensory bristle precursors and is expressed before pupation in discrete domains on the presumptive notum at sites where the macrochaete precursors arise. Thus, for Ceratitis capitata and Calliphora vicina, species separated from Drosophila melanogaster by about 80 and 100 million years respectively, the domains of sc expression differ. In all three species, a second phase of ubiquitous sc expression, after pupation, precedes formation of the microchaete precursors. Here, we describe sc expression in Phormia terranovae, a species belonging to the family Calliphoridae that is closely related to C. vicina. We find that spatial regulation is almost identical between P. terranovae and C. vicina, in spite of their different bristle patterns. The timing of sc expression differs, however, between the two. The first spatially restricted phase of expression is slightly delayed and the second ubiquitous phase remarkably accelerated, such that there is a period of overlap. As a result, the last precursors from the first phase of expression arise at the same time as the first precursors from the second phase of expression and are morphologically indistinguishable from the late-arising microchaetes. These observations illustrate the power of developmental heterochrony in bringing about rapid morphological change.
Collapse
Affiliation(s)
- Nick Skaer
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | | | | |
Collapse
|
30
|
Rozowski M. Establishing character correspondence for sensory organ traits in flies: sensory organ development provides insight for reconstructing character evolution. Mol Phylogenet Evol 2002; 24:400-11. [PMID: 12220983 DOI: 10.1016/s1055-7903(02)00207-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In Diptera and in other insects sensory organ patterns play an important role in the construction of phylogenies based on morphological characters. In this paper I explore the developmental basis for sensory organ pattern transformations between and within species. Knowledge of the properties of sensory organ development provides a foundation to judge the correspondence relationships between sensory organs. This is used to explore what components of notum bristle patterns are equivalent across the Schizophora. By investigating patterning processes in leg development, and their conservation across holometabolous insects, I show ways of relating specialised leg vestiture between species. Sensory organ patterns on the legs are diversified under homeotic gene control, potentially adding patterns of homeotic variation between legs to the list of informative traits for phylogenetic analysis. Correspondence relationships between wing and haltere sensory organ fields are resolved by exploring homeotic gene action in detail.
Collapse
Affiliation(s)
- Marion Rozowski
- Laboratory for Development and Evolution, University Museum of Zoology, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
31
|
Calleja M, Renaud O, Usui K, Pistillo D, Morata G, Simpson P. How to pattern an epithelium: lessons from achaete-scute regulation on the notum of Drosophila. Gene 2002; 292:1-12. [PMID: 12119094 DOI: 10.1016/s0378-1119(02)00628-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The notum of Drosophila is a good model system for the study of two-dimensional pattern formation. Attention has mainly focused on the regulation of the spatial expression of the genes of the achaete-scute complex (AS-C) that results in a stereotyped bristle pattern. Expression of AS-C genes has traditionally been viewed as a consequence of the activity of a group of factors that constitute a prepattern [Stern, 1954. Am. Sci. 42, 213]. The prepattern is thought to be composed of a mosaic of transcription factors that act in combination, through discrete cis-regulatory sequences, to activate expression of genes of the AS-C in small clusters of cells at the sites of each future bristle. Recent results challenge this view and suggest a hierarchy of activity amongst prepattern genes. It is suggested that in the medial notum, the selector-like gene pannier regulates the entire pattern, and is the only factor to directly activate AS-C genes. Other factors may play subsidiary roles. On the lateral notum genes of the iroquois complex appear to regulate the lateral pattern. Regulation of pannier and iroquois depends upon the signalling molecule Decapentaplegic. The majority of genes are expressed in either longitudinal or transverse domains on the notum and we discuss the possibility that pattern formation may rely on these two axial coordinates. We also discuss preliminary results suggesting that prepattern factors also regulate genes required for other, little studied, aspects of notal morphology, such as the muscle attachment sites and pigment distribution. Thus there may be a common prepattern for the entire structure.
Collapse
Affiliation(s)
- Manuel Calleja
- Centro de Biologia Molecular, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|