1
|
Poole RJ, Flames N, Cochella L. Neurogenesis in Caenorhabditis elegans. Genetics 2024; 228:iyae116. [PMID: 39167071 PMCID: PMC11457946 DOI: 10.1093/genetics/iyae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024] Open
Abstract
Animals rely on their nervous systems to process sensory inputs, integrate these with internal signals, and produce behavioral outputs. This is enabled by the highly specialized morphologies and functions of neurons. Neuronal cells share multiple structural and physiological features, but they also come in a large diversity of types or classes that give the nervous system its broad range of functions and plasticity. This diversity, first recognized over a century ago, spurred classification efforts based on morphology, function, and molecular criteria. Caenorhabditis elegans, with its precisely mapped nervous system at the anatomical level, an extensive molecular description of most of its neurons, and its genetic amenability, has been a prime model for understanding how neurons develop and diversify at a mechanistic level. Here, we review the gene regulatory mechanisms driving neurogenesis and the diversification of neuron classes and subclasses in C. elegans. We discuss our current understanding of the specification of neuronal progenitors and their differentiation in terms of the transcription factors involved and ensuing changes in gene expression and chromatin landscape. The central theme that has emerged is that the identity of a neuron is defined by modules of gene batteries that are under control of parallel yet interconnected regulatory mechanisms. We focus on how, to achieve these terminal identities, cells integrate information along their developmental lineages. Moreover, we discuss how neurons are diversified postembryonically in a time-, genetic sex-, and activity-dependent manner. Finally, we discuss how the understanding of neuronal development can provide insights into the evolution of neuronal diversity.
Collapse
Affiliation(s)
- Richard J Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia 46012, Spain
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Godini R, Fallahi H, Pocock R. The regulatory landscape of neurite development in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:974208. [PMID: 36090252 PMCID: PMC9453034 DOI: 10.3389/fnmol.2022.974208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Neuronal communication requires precise connectivity of neurite projections (axons and dendrites). Developing neurites express cell-surface receptors that interpret extracellular cues to enable correct guidance toward, and connection with, target cells. Spatiotemporal regulation of neurite guidance molecule expression by transcription factors (TFs) is critical for nervous system development and function. Here, we review how neurite development is regulated by TFs in the Caenorhabditis elegans nervous system. By collecting publicly available transcriptome and ChIP-sequencing data, we reveal gene expression dynamics during neurite development, providing insight into transcriptional mechanisms governing construction of the nervous system architecture.
Collapse
Affiliation(s)
- Rasoul Godini
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- *Correspondence: Rasoul Godini,
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Roger Pocock
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Roger Pocock,
| |
Collapse
|
3
|
The Role of Even-Skipped in Drosophila Larval Somatosensory Circuit Assembly. eNeuro 2022; 9:ENEURO.0403-21.2021. [PMID: 35031555 PMCID: PMC8856706 DOI: 10.1523/eneuro.0403-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 11/21/2022] Open
Abstract
Proper somatosensory circuit assembly is critical for processing somatosensory stimuli and for responding accordingly. In comparison to other sensory circuits (e.g., olfactory and visual), somatosensory circuits have unique anatomy and function. However, understanding of somatosensory circuit development lags far behind that of other sensory systems. For example, there are few identified transcription factors required for integration of interneurons into functional somatosensory circuits. Here, as a model, we examine one type of somatosensory interneuron, Even-skipped (Eve) expressing laterally placed interneurons (ELs) of the Drosophila larval nerve cord. Eve is a highly conserved, homeodomain transcription factor known to play a role in cell fate specification and neuronal axon guidance. Because marker genes are often functionally important in the cell types they define, we deleted eve expression specifically from EL interneurons. On the cell biological level, using single neuron labeling, we find eve plays several previously undescribed roles in refinement of neuron morphogenesis. Eve suppresses aberrant neurite branching, promotes axon elongation, and regulates dorsal-ventral dendrite position. On the circuit level, using optogenetics, calcium imaging, and behavioral analysis, we find eve expression is required in EL interneurons for the normal encoding of somatosensory stimuli and for normal mapping of outputs to behavior. We conclude that the eve gene product coordinately regulates multiple aspects of EL interneuron morphogenesis and is critically required to properly integrate EL interneurons into somatosensory circuits. Our data shed light on the genetic regulation of somatosensory circuit assembly.
Collapse
|
4
|
Hobert O. Homeobox genes and the specification of neuronal identity. Nat Rev Neurosci 2021; 22:627-636. [PMID: 34446866 DOI: 10.1038/s41583-021-00497-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/27/2022]
Abstract
The enormous diversity of cell types that characterizes any animal nervous system is defined by neuron-type-specific gene batteries that endow cells with distinct anatomical and functional properties. To understand how such cellular diversity is genetically specified, one needs to understand the gene regulatory programmes that control the expression of cell-type-specific gene batteries. The small nervous system of the nematode Caenorhabditis elegans has been comprehensively mapped at the cellular and molecular levels, which has enabled extensive, nervous system-wide explorations into whether there are common underlying mechanisms that specify neuronal cell-type diversity. One principle that emerged from these studies is that transcription factors termed 'terminal selectors' coordinate the expression of individual members of neuron-type-specific gene batteries, thereby assigning unique identities to individual neuron types. Systematic mutant analyses and recent nervous system-wide expression analyses have revealed that one transcription factor family, the homeobox gene family, is broadly used throughout the entire C. elegans nervous system to specify neuronal identity as terminal selectors. I propose that the preponderance of homeobox genes in neuronal identity control is a reflection of an evolutionary trajectory in which an ancestral neuron type was specified by one or more ancestral homeobox genes, and that this functional linkage then duplicated and diversified to generate distinct cell types in an evolving nervous system.
Collapse
Affiliation(s)
- Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
5
|
Haeussler S, Yeroslaviz A, Rolland SG, Luehr S, Lambie EJ, Conradt B. Genome-wide RNAi screen for regulators of UPRmt in Caenorhabditis elegans mutants with defects in mitochondrial fusion. G3-GENES GENOMES GENETICS 2021; 11:6204483. [PMID: 33784383 PMCID: PMC8495942 DOI: 10.1093/g3journal/jkab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Mitochondrial dynamics plays an important role in mitochondrial quality control and the adaptation of metabolic activity in response to environmental changes. The disruption of mitochondrial dynamics has detrimental consequences for mitochondrial and cellular homeostasis and leads to the activation of the mitochondrial unfolded protein response (UPRmt), a quality control mechanism that adjusts cellular metabolism and restores homeostasis. To identify genes involved in the induction of UPRmt in response to a block in mitochondrial fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans mutants lacking the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and identified 299 suppressors and 86 enhancers. Approximately 90% of these 385 genes are conserved in humans, and one third of the conserved genes have been implicated in human disease. Furthermore, many have roles in developmental processes, which suggests that mitochondrial function and the response to stress are defined during development and maintained throughout life. Our dataset primarily contains mitochondrial enhancers and non-mitochondrial suppressors of UPRmt, indicating that the maintenance of mitochondrial homeostasis has evolved as a critical cellular function, which, when disrupted, can be compensated for by many different cellular processes. Analysis of the subsets 'non-mitochondrial enhancers' and 'mitochondrial suppressors' suggests that organellar contact sites, especially between the ER and mitochondria, are of importance for mitochondrial homeostasis. In addition, we identified several genes involved in IP3 signaling that modulate UPRmt in fzo-1 mutants and found a potential link between pre-mRNA splicing and UPRmt activation.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Assa Yeroslaviz
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Planegg-Martinsried, Germany
| | - Stéphane G Rolland
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Sebastian Luehr
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Eric J Lambie
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, United Kingdom
| |
Collapse
|
6
|
Catela C, Kratsios P. Transcriptional mechanisms of motor neuron development in vertebrates and invertebrates. Dev Biol 2019; 475:193-204. [PMID: 31479648 DOI: 10.1016/j.ydbio.2019.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 02/04/2023]
Abstract
Across phylogeny, motor neurons (MNs) represent a single but often remarkably diverse neuronal class composed of a multitude of subtypes required for vital behaviors, such as eating and locomotion. Over the past decades, seminal studies in multiple model organisms have advanced our molecular understanding of the early steps of MN development, such as progenitor specification and acquisition of MN subtype identity, by revealing key roles for several evolutionarily conserved transcription factors. However, very little is known about the molecular strategies that allow distinct MN subtypes to maintain their identity- and function-defining features during the late steps of development and postnatal life. Here, we provide an overview of invertebrate and vertebrate studies on transcription factor-based strategies that control early and late steps of MN development, aiming to highlight evolutionarily conserved gene regulatory principles necessary for establishment and maintenance of neuronal identity.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Brandt JP, Rossillo M, Du Z, Ichikawa D, Barnes K, Chen A, Noyes M, Bao Z, Ringstad N. Lineage context switches the function of a C. elegans Pax6 homolog in determining a neuronal fate. Development 2019; 146:dev168153. [PMID: 30890567 PMCID: PMC6503985 DOI: 10.1242/dev.168153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 03/11/2019] [Indexed: 01/26/2023]
Abstract
The sensory nervous system of C. elegans comprises cells with varied molecular and functional characteristics, and is, therefore, a powerful model for understanding mechanisms that generate neuronal diversity. We report here that VAB-3, a C. elegans homolog of the homeodomain-containing protein Pax6, has opposing functions in regulating expression of a specific chemosensory fate. A homeodomain-only short isoform of VAB-3 is expressed in BAG chemosensory neurons, where it promotes gene expression and cell function. In other cells, a long isoform of VAB-3, comprising a Paired homology domain and a homeodomain, represses expression of ETS-5, a transcription factor required for expression of BAG fate. Repression of ets-5 requires the Eyes Absent homolog EYA-1 and the Six-class homeodomain protein CEH-32. We determined sequences that mediate high-affinity binding of ETS-5, VAB-3 and CEH-32. The ets-5 locus is enriched for ETS-5-binding sites but lacks sequences that bind VAB-3 and CEH-32, suggesting that these factors do not directly repress ets-5 expression. We propose that a promoter-selection system together with lineage-specific expression of accessory factors allows VAB-3/Pax6 to either promote or repress expression of specific cell fates in a context-dependent manner. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Julia P Brandt
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Mary Rossillo
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Zhuo Du
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - David Ichikawa
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Kristopher Barnes
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Allison Chen
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Marcus Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Zhirong Bao
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
8
|
Catela C, Correa E, Wen K, Aburas J, Croci L, Consalez GG, Kratsios P. An ancient role for collier/Olf/Ebf (COE)-type transcription factors in axial motor neuron development. Neural Dev 2019; 14:2. [PMID: 30658714 PMCID: PMC6339399 DOI: 10.1186/s13064-018-0125-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammalian motor circuits display remarkable cellular diversity with hundreds of motor neuron (MN) subtypes innervating hundreds of different muscles. Extensive research on limb muscle-innervating MNs has begun to elucidate the genetic programs that control animal locomotion. In striking contrast, the molecular mechanisms underlying the development of axial muscle-innervating MNs, which control breathing and spinal alignment, are poorly studied. METHODS Our previous studies indicated that the function of the Collier/Olf/Ebf (COE) family of transcription factors (TFs) in axial MN development may be conserved from nematodes to simple chordates. Here, we examine the expression pattern of all four mouse COE family members (mEbf1-mEbf4) in spinal MNs and employ genetic approaches in both nematodes and mice to investigate their function in axial MN development. RESULTS We report that mEbf1 and mEbf2 are expressed in distinct MN clusters (termed "columns") that innervate different axial muscles. Mouse Ebf1 is expressed in MNs of the hypaxial motor column (HMC), which is necessary for breathing, while mEbf2 is expressed in MNs of the medial motor column (MMC) that control spinal alignment. Our characterization of Ebf2 knock-out mice uncovered a requirement for Ebf2 in the differentiation program of a subset of MMC MNs and revealed for the first time molecular diversity within MMC neurons. Intriguingly, transgenic expression of mEbf1 or mEbf2 can rescue axial MN differentiation and locomotory defects in nematodes (Caenorhabditis elegans) lacking unc-3, the sole C. elegans ortholog of the COE family, suggesting functional conservation among mEbf1, mEbf2 and nematode UNC-3. CONCLUSIONS These findings support the hypothesis that genetic programs controlling axial MN development are deeply conserved across species, and further advance our understanding of such programs by revealing an essential role for Ebf2 in mouse axial MNs. Because human mutations in COE orthologs lead to neurodevelopmental disorders characterized by motor developmental delay, our findings may advance our understanding of these human conditions.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL, USA.
| | - Edgar Correa
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Kailong Wen
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Jihad Aburas
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Laura Croci
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | | |
Collapse
|
9
|
Diversification of C. elegans Motor Neuron Identity via Selective Effector Gene Repression. Neuron 2017; 93:80-98. [PMID: 28056346 DOI: 10.1016/j.neuron.2016.11.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022]
Abstract
A common organizational feature of nervous systems is the existence of groups of neurons that share common traits but can be divided into individual subtypes based on anatomical or molecular features. We elucidate the mechanistic basis of neuronal diversification processes in the context of C.elegans ventral cord motor neurons that share common traits that are directly activated by the terminal selector UNC-3. Diversification of motor neurons into different classes, each characterized by unique patterns of effector gene expression, is controlled by distinct combinations of phylogenetically conserved, class-specific transcriptional repressors. These repressors are continuously required in postmitotic neurons to prevent UNC-3, which is active in all neuron classes, from activating class-specific effector genes in specific motor neuron subsets via discrete cis-regulatory elements. The strategy of antagonizing the activity of broadly acting terminal selectors of neuron identity in a subtype-specific fashion may constitute a general principle of neuron subtype diversification.
Collapse
|
10
|
Campbell RF, Walthall WW. Meis/UNC-62 isoform dependent regulation of CoupTF-II/UNC-55 and GABAergic motor neuron subtype differentiation. Dev Biol 2016; 419:250-261. [PMID: 27634571 DOI: 10.1016/j.ydbio.2016.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 11/28/2022]
Abstract
Gene regulatory networks orchestrate the assembly of functionally related cells within a cellular network. Subtle differences often exist among functionally related cells within such networks. How differences are created among cells with similar functions has been difficult to determine due to the complexity of both the gene and the cellular networks. In Caenorhabditis elegans, the DD and VD motor neurons compose a cross-inhibitory, GABAergic network that coordinates dorsal and ventral muscle contractions during locomotion. The Pitx2 homologue, UNC-30, acts as a terminal selector gene to create similarities and the Coup-TFII homologue, UNC-55, is necessary for creating differences between the two motor neuron classes. What is the organizing gene regulatory network responsible for initiating the expression of UNC-55 and thus creating differences between the DD and VD motor neurons? We show that the unc-55 promoter has modules that contain Meis/UNC-62 binding sites. These sites can be subdivided into regions that are capable of activating or repressing UNC-55 expression in different motor neurons. Interestingly, different isoforms of UNC-62 are responsible for the activation and the stabilization of unc-55 transcription. Furthermore, specific isoforms of UNC-62 are required for proper synaptic patterning of the VD motor neurons. Isoform specific regulation of differentiating neurons is a relatively unexplored area of research and presents a mechanism for creating differences among functionally related cells within a network.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- CRISPR-Cas Systems
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/physiology
- Caenorhabditis elegans Proteins/biosynthesis
- Caenorhabditis elegans Proteins/physiology
- GABAergic Neurons/cytology
- Gene Expression Regulation, Developmental
- Gene Regulatory Networks/genetics
- Genes, Reporter
- Homeodomain Proteins/physiology
- Motor Neurons/classification
- Motor Neurons/cytology
- Neurogenesis/genetics
- Promoter Regions, Genetic/genetics
- Protein Isoforms/physiology
- RNA, Helminth/biosynthesis
- RNA, Helminth/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/physiology
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Transcription Factors
- Transcription, Genetic/genetics
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Richard F Campbell
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Walter W Walthall
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
11
|
Hobert O. A map of terminal regulators of neuronal identity in Caenorhabditis elegans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:474-98. [PMID: 27136279 PMCID: PMC4911249 DOI: 10.1002/wdev.233] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/07/2016] [Accepted: 02/21/2016] [Indexed: 12/31/2022]
Abstract
Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In-depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron-type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity-defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the control of terminal identities, suggesting that these factors have ancient, phylogenetically conserved roles in controlling terminal neuronal differentiation in the nervous system. WIREs Dev Biol 2016, 5:474-498. doi: 10.1002/wdev.233 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Heckscher ES, Zarin AA, Faumont S, Clark MQ, Manning L, Fushiki A, Schneider-Mizell CM, Fetter RD, Truman JW, Zwart MF, Landgraf M, Cardona A, Lockery SR, Doe CQ. Even-Skipped(+) Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude. Neuron 2015; 88:314-29. [PMID: 26439528 PMCID: PMC4619170 DOI: 10.1016/j.neuron.2015.09.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 07/30/2015] [Accepted: 09/02/2015] [Indexed: 11/16/2022]
Abstract
Bilaterally symmetric motor patterns--those in which left-right pairs of muscles contract synchronously and with equal amplitude (such as breathing, smiling, whisking, and locomotion)--are widespread throughout the animal kingdom. Yet, surprisingly little is known about the underlying neural circuits. We performed a thermogenetic screen to identify neurons required for bilaterally symmetric locomotion in Drosophila larvae and identified the evolutionarily conserved Even-skipped(+) interneurons (Eve/Evx). Activation or ablation of Eve(+) interneurons disrupted bilaterally symmetric muscle contraction amplitude, without affecting the timing of motor output. Eve(+) interneurons are not rhythmically active and thus function independently of the locomotor CPG. GCaMP6 calcium imaging of Eve(+) interneurons in freely moving larvae showed left-right asymmetric activation that correlated with larval behavior. TEM reconstruction of Eve(+) interneuron inputs and outputs showed that the Eve(+) interneurons are at the core of a sensorimotor circuit capable of detecting and modifying body wall muscle contraction.
Collapse
Affiliation(s)
- Ellie S Heckscher
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA.
| | - Aref Arzan Zarin
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Serge Faumont
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Matthew Q Clark
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Laurina Manning
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Akira Fushiki
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | | | | | | | - Maarten F Zwart
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Shawn R Lockery
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
13
|
Kowalski JR, Dube H, Touroutine D, Rush KM, Goodwin PR, Carozza M, Didier Z, Francis MM, Juo P. The Anaphase-Promoting Complex (APC) ubiquitin ligase regulates GABA transmission at the C. elegans neuromuscular junction. Mol Cell Neurosci 2014; 58:62-75. [PMID: 24321454 PMCID: PMC4036811 DOI: 10.1016/j.mcn.2013.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/23/2013] [Accepted: 12/02/2013] [Indexed: 01/05/2023] Open
Abstract
Regulation of both excitatory and inhibitory synaptic transmission is critical for proper nervous system function. Aberrant synaptic signaling, including altered excitatory to inhibitory balance, is observed in numerous neurological diseases. The ubiquitin enzyme system controls the abundance of many synaptic proteins and thus plays a key role in regulating synaptic transmission. The Anaphase-Promoting Complex (APC) is a multi-subunit ubiquitin ligase that was originally discovered as a key regulator of protein turnover during the cell cycle. More recently, the APC has been shown to function in postmitotic neurons, where it regulates diverse processes such as synapse development and synaptic transmission at glutamatergic synapses. Here we report that the APC regulates synaptic GABA signaling by acting in motor neurons to control the balance of excitatory (acetylcholine) to inhibitory (GABA) transmission at the Caenorhabditis elegans neuromuscular junction (NMJ). Loss-of-function mutants in multiple APC subunits have increased muscle excitation at the NMJ; this phenotype is rescued by expression of the missing subunit in GABA neurons. Quantitative imaging and electrophysiological analyses indicate that APC mutants have decreased GABA release but normal cholinergic transmission. Consistent with this, APC mutants exhibit convulsions in a seizure assay sensitive to reductions in GABA signaling. Previous studies in other systems showed that the APC can negatively regulate the levels of the active zone protein SYD-2 Liprin-α. Similarly, we found that SYD-2 accumulates in APC mutants at GABAergic presynaptic sites. Finally, we found that the APC subunit EMB-27 CDC16 can localize to presynapses in GABA neurons. Together, our data suggest a model in which the APC acts at GABAergic presynapses to promote GABA release and inhibit muscle excitation. These findings are the first evidence that the APC regulates transmission at inhibitory synapses and have implications for understanding nervous system pathologies, such as epilepsy, that are characterized by misregulated GABA signaling.
Collapse
Affiliation(s)
- Jennifer R Kowalski
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Hitesh Dube
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Denis Touroutine
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Kristen M Rush
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Patricia R Goodwin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Marc Carozza
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Zachary Didier
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
14
|
Steimel A, Suh J, Hussainkhel A, Deheshi S, Grants JM, Zapf R, Moerman DG, Taubert S, Hutter H. The C. elegans CDK8 Mediator module regulates axon guidance decisions in the ventral nerve cord and during dorsal axon navigation. Dev Biol 2013; 377:385-98. [PMID: 23458898 DOI: 10.1016/j.ydbio.2013.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 01/21/2013] [Accepted: 02/14/2013] [Indexed: 11/30/2022]
Abstract
Receptors expressed on the growth cone of outgrowing axons detect cues required for proper navigation. The pathway choices available to an axon are in part defined by the set of guidance receptors present on the growth cone. Regulated expression of receptors and genes controlling the localization and activity of receptors ensures that axons respond only to guidance cues relevant for reaching their targets. In genetic screens for axon guidance mutants, we isolated an allele of let-19/mdt-13, a component of the Mediator, a large ~30 subunit protein complex essential for gene transcription by RNA polymerase II. LET-19/MDT-13 is part of the CDK8 module of the Mediator. By testing other Mediator components, we found that all subunits of the CDK8 module as well as some other Mediator components are required for specific axon navigation decisions in a subset of neurons. Expression profiling demonstrated that let-19/mdt-13 regulates the expression of a large number of genes in interneurons. A mutation in the sax-3 gene, encoding a receptor for the repulsive guidance cue SLT-1, suppresses the commissure navigation defects found in cdk-8 mutants. This suggests that the CDK8 module specifically represses the SAX-3/ROBO pathway to ensure proper commissure navigation.
Collapse
Affiliation(s)
- Andreas Steimel
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wen Q, Po MD, Hulme E, Chen S, Liu X, Kwok SW, Gershow M, Leifer AM, Butler V, Fang-Yen C, Kawano T, Schafer WR, Whitesides G, Wyart M, Chklovskii DB, Zhen M, Samuel ADT. Proprioceptive coupling within motor neurons drives C. elegans forward locomotion. Neuron 2012; 76:750-61. [PMID: 23177960 PMCID: PMC3508473 DOI: 10.1016/j.neuron.2012.08.039] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2012] [Indexed: 01/29/2023]
Abstract
Locomotion requires coordinated motor activity throughout an animal's body. In both vertebrates and invertebrates, chains of coupled central pattern generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement.
Collapse
Affiliation(s)
- Quan Wen
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wolfram V, Southall TD, Brand AH, Baines RA. The LIM-homeodomain protein islet dictates motor neuron electrical properties by regulating K(+) channel expression. Neuron 2012; 75:663-74. [PMID: 22920257 PMCID: PMC3427859 DOI: 10.1016/j.neuron.2012.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 11/24/2022]
Abstract
Neuron electrical properties are critical to function and generally subtype specific, as are patterns of axonal and dendritic projections. Specification of motoneuron morphology and axon pathfinding has been studied extensively, implicating the combinatorial action of Lim-homeodomain transcription factors. However, the specification of electrical properties is not understood. Here, we address the key issues of whether the same transcription factors that specify morphology also determine subtype specific electrical properties. We show that Drosophila motoneuron subtypes express different K+ currents and that these are regulated by the conserved Lim-homeodomain transcription factor Islet. Specifically, Islet is sufficient to repress a Shaker-mediated A-type K+ current, most likely due to a direct transcriptional effect. A reduction in Shaker increases the frequency of action potential firing. Our results demonstrate the deterministic role of Islet on the excitability patterns characteristic of motoneuron subtypes.
Collapse
|
17
|
Schneider J, Skelton RL, Von Stetina SE, Middelkoop TC, van Oudenaarden A, Korswagen HC, Miller DM. UNC-4 antagonizes Wnt signaling to regulate synaptic choice in the C. elegans motor circuit. Development 2012; 139:2234-45. [PMID: 22619391 DOI: 10.1242/dev.075184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Coordinated movement depends on the creation of synapses between specific neurons in the motor circuit. In C. elegans, this important decision is regulated by the UNC-4 homeodomain protein. unc-4 mutants are unable to execute backward locomotion because VA motor neurons are mis-wired with inputs normally reserved for their VB sisters. We have proposed that UNC-4 functions in VAs to block expression of VB genes. This model is substantiated by the finding that ectopic expression of the VB gene ceh-12 (encoding a homolog of the homeodomain protein HB9) in unc-4 mutants results in the mis-wiring of posterior VA motor neurons with VB-like connections. Here, we show that VA expression of CEH-12 depends on a nearby source of the Wnt protein EGL-20. Our results indicate that UNC-4 prevents VAs from responding to a local EGL-20 cue by disabling a canonical Wnt signaling cascade involving the Frizzled receptors MIG-1 and MOM-5. CEH-12 expression in VA motor neurons is also opposed by a separate pathway that includes the Wnt ligand LIN-44. This work has revealed a transcriptional mechanism for modulating the sensitivity of specific neurons to diffusible Wnt ligands and thereby defines distinct patterns of synaptic connectivity. The existence of comparable Wnt gradients in the vertebrate spinal cord could reflect similar roles for Wnt signaling in vertebrate motor circuit assembly.
Collapse
Affiliation(s)
- Judsen Schneider
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nat Neurosci 2011; 15:205-14. [PMID: 22119902 PMCID: PMC3267877 DOI: 10.1038/nn.2989] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/28/2011] [Indexed: 11/08/2022]
Abstract
Cholinergic motor neurons are defined by the coexpression of a battery of genes encoding proteins that act sequentially to synthesize, package and degrade acetylcholine and reuptake its breakdown product, choline. How expression of these critical motor neuron identity determinants is controlled and coordinated is not understood. We show here that, in the nematode Caenorhabditis elegans, all members of the cholinergic gene battery, as well as many other markers of terminal motor neuron fate, are co-regulated by a shared cis-regulatory signature and a common trans-acting factor, the phylogenetically conserved COE (Collier, Olf, EBF)-type transcription factor UNC-3. UNC-3 initiated and maintained expression of cholinergic fate markers and was sufficient to induce cholinergic fate in other neuron types. UNC-3 furthermore operated in negative feedforward loops to induce the expression of transcription factors that repress individual UNC-3-induced terminal fate markers, resulting in diversification of motor neuron differentiation programs in specific motor neuron subtypes. A chordate ortholog of UNC-3, Ciona intestinalis COE, was also both required and sufficient for inducing a cholinergic fate. Thus, UNC-3 is a terminal selector for cholinergic motor neuron differentiation whose function is conserved across phylogeny.
Collapse
|
19
|
Bamps S, Wirtz J, Hope IA. Distinct mechanisms for delimiting expression of four Caenorhabditis elegans transcription factor genes encoding activators or repressors. Mol Genet Genomics 2011; 286:95-107. [PMID: 21655972 DOI: 10.1007/s00438-011-0630-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/21/2011] [Indexed: 02/07/2023]
Abstract
Regulatory transcription factors operate in networks, conferring biological robustness that makes dissection of such gene control processes difficult. The nematode Caenorhabditis elegans is a powerful molecular genetic system that allows the close scrutiny needed to understand these processes in an animal, in vivo. Strikingly lower levels of gene expression were observed when a gfp reporter was inserted into C. elegans transcription factor genes, in their broader genomic context, in comparison to when the reporter was fused to just the promoter regions. The lower level of expression is more consistent with endogenous levels of the gene products, based on independent protein and transcript assays. Through successive precise manipulations of the reporter fusion genes, elements essential for the lower level of expression were localised to the protein-coding region. With a closer focus on four transcription factor genes, the expression of both genes encoding transcriptional activators was found to be restricted by a post-transcriptional mechanism while expression of both genes encoding transcriptional repressors was delimited by transcriptional repression. An element through which the transcriptional repression acts for unc-4 was localised to a 30 base-pair region of a protein-encoding exon, with potentially wider implications for how homeobox genes operate. The hypothesis that the distinction in mechanisms delimiting expression of the two types of transcription factor genes, as observed here, may apply more widely is raised. This leads to observations concerning the implications of these different mechanisms on stochastic noise in gene expression and the consequent significance for developmental decisions in general.
Collapse
Affiliation(s)
- Sophie Bamps
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
20
|
Jafari G, Appleford PJ, Seago J, Pocock R, Woollard A. The UNC-4 homeobox protein represses mab-9 expression in DA motor neurons in Caenorhabditis elegans. Mech Dev 2010; 128:49-58. [PMID: 20933597 DOI: 10.1016/j.mod.2010.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 11/18/2022]
Abstract
The T-box transcription factor mab-9 has been shown to be required for the correct fate of the male-specific blast cells B and F, normal posterior hypodermal morphogenesis, and for the correct axon migration of motor neurons that project circumferential commissures to dorsal muscles. In this study, an RNAi screen designed to identify upstream transcriptional regulators of mab-9 showed that silencing of unc-4 (encoding a paired-class homeodomain protein) increases mab-9::gfp expression in the nervous system, specifically in posterior DA motor neurons. Over-expression of unc-4 from a heat-shock promoter has the opposite effect, causing repression of mab-9 in various cells. We find that mab-9 expression in unc-37 mutants is also elevated in DA motor neurons, consistent with known roles for UNC-37 as a co-repressor with UNC-4. These results identify mab-9 as a novel target of the UNC-4/UNC-37 repressor complex in motor neurons, and suggest that mis-expression of mab-9 may contribute to the neuronal wiring defects in unc-4 and unc-37 mutants.
Collapse
Affiliation(s)
- Gholamali Jafari
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Kim K, Kim R, Sengupta P. The HMX/NKX homeodomain protein MLS-2 specifies the identity of the AWC sensory neuron type via regulation of the ceh-36 Otx gene in C. elegans. Development 2010; 137:963-74. [PMID: 20150279 DOI: 10.1242/dev.044719] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The differentiated features of postmitotic neurons are dictated by the expression of specific transcription factors. The mechanisms by which the precise spatiotemporal expression patterns of these factors are regulated are poorly understood. In C. elegans, the ceh-36 Otx homeobox gene is expressed in the AWC sensory neurons throughout postembryonic development, and regulates terminal differentiation of this neuronal subtype. Here, we show that the HMX/NKX homeodomain protein MLS-2 regulates ceh-36 expression specifically in the AWC neurons. Consequently, the AWC neurons fail to express neuron type-specific characteristics in mls-2 mutants. mls-2 is expressed transiently in postmitotic AWC neurons, and directly initiates ceh-36 expression. CEH-36 subsequently interacts with a distinct site in its cis-regulatory sequences to maintain its own expression, and also directly regulates the expression of AWC-specific terminal differentiation genes. We also show that MLS-2 acts in additional neuron types to regulate their development and differentiation. Our analysis describes a transcription factor cascade that defines the unique postmitotic characteristics of a sensory neuron subtype, and provides insights into the spatiotemporal regulatory mechanisms that generate functional diversity in the sensory nervous system.
Collapse
Affiliation(s)
- Kyuhyung Kim
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | | | |
Collapse
|
22
|
Abstract
Neurons are among the most highly polarized cell types in the body, and the polarization of axon and dendrites underlies the ability of neurons to integrate and transmit information in the brain. Significant progress has been made in the identification of the cellular and molecular mechanisms underlying the establishment of neuronal polarity using primarily in vitro approaches such as dissociated culture of rodent hippocampal and cortical neurons. This model has led to the predominant view suggesting that neuronal polarization is specified largely by stochastic, asymmetric activation of intracellular signaling pathways. Recent evidence shows that extracellular cues can play an instructive role during neuronal polarization in vitro and in vivo. In this review, we synthesize the recent data supporting an integrative model whereby extracellular cues orchestrate the intracellular signaling underlying the initial break of neuronal symmetry leading to axon-dendrite polarization.
Collapse
Affiliation(s)
- Anthony P Barnes
- Pediatric Neuroscience Research Program, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97239-3098, USA.
| | | |
Collapse
|
23
|
Jovelin R. Rapid sequence evolution of transcription factors controlling neuron differentiation in Caenorhabditis. Mol Biol Evol 2009; 26:2373-86. [PMID: 19589887 DOI: 10.1093/molbev/msp142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Whether phenotypic evolution proceeds predominantly through changes in regulatory sequences is a controversial issue in evolutionary genetics. Ample evidence indicates that the evolution of gene regulatory networks via changes in cis-regulatory sequences is an important determinant of phenotypic diversity. However, recent experimental work suggests that the role of transcription factor (TF) divergence in developmental evolution may be underestimated. In order to help understand what levels of constraints are acting on the coding sequence of developmental regulatory genes, evolutionary rates were investigated among 48 TFs required for neuronal development in Caenorhabditis elegans. Allelic variation was then sampled for 28 of these genes within a population of the related species Caenorhabditis remanei. Neuronal TFs are more divergent, both within and between species, than structural genes. TFs affecting different neuronal classes are under different levels of selective constraints. The regulatory genes controlling the differentiation of chemosensory neurons evolve particularly fast and exhibit higher levels of within- and between-species nucleotide variation than TFs required for the development of several neuronal classes and TFs required for motorneuron differentiation. The TFs affecting chemosensory neuron development are also more divergent than chemosensory genes expressed in the neurons they differentiate. These results illustrate that TFs are not as highly constrained as commonly thought and suggest that the role of divergence in developmental regulatory genes during the evolution of gene regulatory networks requires further attention.
Collapse
Affiliation(s)
- Richard Jovelin
- Center for Ecology and Evolutionary Biology, University of Oregon, Oregon, USA.
| |
Collapse
|
24
|
Berri S, Boyle JH, Tassieri M, Hope IA, Cohen N. Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait. HFSP JOURNAL 2009; 3:186-93. [PMID: 19639043 DOI: 10.2976/1.3082260] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 01/28/2009] [Indexed: 11/19/2022]
Abstract
The ability of an animal to locomote through its environment depends crucially on the interplay between its active endogenous control and the physics of its interactions with the environment. The nematode worm Caenorhabditis elegans serves as an ideal model system for studying the respective roles of neural control and biomechanics, as well as the interaction between them. With only 302 neurons in a hard-wired neural circuit, the worm's apparent anatomical simplicity belies its behavioural complexity. Indeed, C. elegans exhibits a rich repertoire of complex behaviors, the majority of which are mediated by its adaptive undulatory locomotion. The conventional wisdom is that two kinematically distinct C. elegans locomotion behaviors-swimming in liquids and crawling on dense gel-like media-correspond to distinct locomotory gaits. Here we analyze the worm's motion through a series of different media and reveal a smooth transition from swimming to crawling, marked by a linear relationship between key locomotion metrics. These results point to a single locomotory gait, governed by the same underlying control mechanism. We further show that environmental forces play only a small role in determining the shape of the worm, placing conditions on the minimal pattern of internal forces driving locomotion.
Collapse
|
25
|
Von Stetina SE, Fox RM, Watkins KL, Starich TA, Shaw JE, Miller DM. UNC-4 represses CEH-12/HB9 to specify synaptic inputs to VA motor neurons in C. elegans. Genes Dev 2007; 21:332-46. [PMID: 17289921 PMCID: PMC1785118 DOI: 10.1101/gad.1502107] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In Caenorhabditis elegans, VA and VB motor neurons arise as lineal sisters but synapse with different interneurons to regulate locomotion. VA-specific inputs are defined by the UNC-4 homeoprotein and its transcriptional corepressor, UNC-37/Groucho, which function in the VAs to block the creation of chemical synapses and gap junctions with interneurons normally reserved for VBs. To reveal downstream genes that control this choice, we have employed a cell-specific microarray strategy that has now identified unc-4-regulated transcripts. One of these genes, ceh-12, a member of the HB9 family of homeoproteins, is normally restricted to VBs. We show that expression of CEH-12/HB9 in VA motor neurons in unc-4 mutants imposes VB-type inputs. Thus, this work reveals a developmental switch in which motor neuron input is defined by differential expression of transcription factors that select alternative presynaptic partners. The conservation of UNC-4, HB9, and Groucho expression in the vertebrate motor circuit argues that similar mechanisms may regulate synaptic specificity in the spinal cord.
Collapse
Affiliation(s)
- Stephen E. Von Stetina
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Rebecca M. Fox
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Kathie L. Watkins
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Todd A. Starich
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jocelyn E. Shaw
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - David M. Miller
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Corresponding author.E-MAIL ; FAX (615) 936-5673
| |
Collapse
|
26
|
Von Stetina SE, Watson JD, Fox RM, Olszewski KL, Spencer WC, Roy PJ, Miller DM. Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol 2007; 8:R135. [PMID: 17612406 PMCID: PMC2323220 DOI: 10.1186/gb-2007-8-7-r135] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/13/2007] [Accepted: 07/05/2007] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND With its fully sequenced genome and simple, well-defined nervous system, the nematode Caenorhabditis elegans offers a unique opportunity to correlate gene expression with neuronal differentiation. The lineal origin, cellular morphology and synaptic connectivity of each of the 302 neurons are known. In many instances, specific behaviors can be attributed to particular neurons or circuits. Here we describe microarray-based methods that monitor gene expression in C. elegans neurons and, thereby, link comprehensive profiles of neuronal transcription to key developmental and functional properties of the nervous system. RESULTS We employed complementary microarray-based strategies to profile gene expression in the embryonic and larval nervous systems. In the MAPCeL (Microarray Profiling C. elegans cells) method, we used fluorescence activated cell sorting (FACS) to isolate GFP-tagged embryonic neurons for microarray analysis. To profile the larval nervous system, we used the mRNA-tagging technique in which an epitope-labeled mRNA binding protein (FLAG-PAB-1) was transgenically expressed in neurons for immunoprecipitation of cell-specific transcripts. These combined approaches identified approximately 2,500 mRNAs that are highly enriched in either the embryonic or larval C. elegans nervous system. These data are validated in part by the detection of gene classes (for example, transcription factors, ion channels, synaptic vesicle components) with established roles in neuronal development or function. Of particular interest are 19 conserved transcripts of unknown function that are also expressed in the mammalian brain. In addition to utilizing these profiling approaches to define stage-specific gene expression, we also applied the mRNA-tagging method to fingerprint a specific neuron type, the A-class group of cholinergic motor neurons, during early larval development. A comparison of these data to a MAPCeL profile of embryonic A-class motor neurons identified genes with common functions in both types of A-class motor neurons as well as transcripts with roles specific to each motor neuron type. CONCLUSION We describe microarray-based strategies for generating expression profiles of embryonic and larval C. elegans neurons. These methods can be applied to particular neurons at specific developmental stages and, therefore, provide an unprecedented opportunity to obtain spatially and temporally defined snapshots of gene expression in a simple model nervous system.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Joseph D Watson
- Graduate Program in Neuroscience, Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232-8548, USA
| | - Rebecca M Fox
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kellen L Olszewski
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University 246 Carl Icahn Laboratory, Princeton NJ 08544, USA
| | - W Clay Spencer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Peter J Roy
- Department of Medical Genetics and Microbiology, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 1A, Canada
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- Graduate Program in Neuroscience, Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232-8548, USA
| |
Collapse
|
27
|
Pym ECG, Southall TD, Mee CJ, Brand AH, Baines RA. The homeobox transcription factor Even-skipped regulates acquisition of electrical properties in Drosophila neurons. Neural Dev 2006; 1:3. [PMID: 17147779 PMCID: PMC1679800 DOI: 10.1186/1749-8104-1-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 11/16/2006] [Indexed: 11/28/2022] Open
Abstract
Background While developmental processes such as axon pathfinding and synapse formation have been characterized in detail, comparatively less is known of the intrinsic developmental mechanisms that regulate transcription of ion channel genes in embryonic neurons. Early decisions, including motoneuron axon targeting, are orchestrated by a cohort of transcription factors that act together in a combinatorial manner. These transcription factors include Even-skipped (Eve), islet and Lim3. The perdurance of these factors in late embryonic neurons is, however, indicative that they might also regulate additional aspects of neuron development, including the acquisition of electrical properties. Results To test the hypothesis that a combinatorial code transcription factor is also able to influence the acquisition of electrical properties in embryonic neurons we utilized the molecular genetics of Drosophila to manipulate the expression of Eve in identified motoneurons. We show that increasing expression of this transcription factor, in two Eve-positive motoneurons (aCC and RP2), is indeed sufficient to affect the electrical properties of these neurons in early first instar larvae. Specifically, we observed a decrease in both the fast K+ conductance (IKfast) and amplitude of quantal cholinergic synaptic input. We used charybdotoxin to pharmacologically separate the individual components of IKfast to show that increased Eve specifically down regulates the Slowpoke (a BK Ca2+-gated potassium channel), but not Shal, component of this current. Identification of target genes for Eve, using DNA adenine methyltransferase identification, revealed strong binding sites in slowpoke and nAcRα-96Aa (a nicotinic acetylcholine receptor subunit). Verification using real-time PCR shows that pan-neuronal expression of eve is sufficient to repress transcripts for both slo and nAcRα-96Aa. Conclusion Taken together, our findings demonstrate, for the first time, that Eve is sufficient to regulate both voltage- and ligand-gated currents in motoneurons, extending its known repertoire of action beyond its already characterized role in axon guidance. Our data are also consistent with a common developmental program that utilizes a defined set of transcription factors to determine both morphological and functional neuronal properties.
Collapse
Affiliation(s)
- Edward CG Pym
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Tony D Southall
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Christopher J Mee
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Richard A Baines
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
28
|
Tarchini B, Huynh THN, Cox GA, Duboule D. HoxD cluster scanning deletions identify multiple defects leading to paralysis in the mouse mutant Ironside. Genes Dev 2006; 19:2862-76. [PMID: 16322559 PMCID: PMC1315393 DOI: 10.1101/gad.351105] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A spontaneous semidominant mutation (Ironside, Irn) was isolated in mice, leading to severe hindlimb paralysis following multiple deletions in cis at the HoxD locus. To understand its cellular and molecular etiology, we embarked on a comparative analysis using systematic HoxD cluster deletions, produced via targeted meiotic recombination (TAMERE). Different lines of mice were classified according to the severity of their paralyses, and subsequent analyses revealed that multiple causative factors were involved, alone or in combination, in the occurrence of this pathology. Among them are the loss of Hoxd10 function, the sum of remaining Hoxd gene activity, and the ectopic gain of function of the neighboring gene Evx2, all contributing to the mispositioning, the absence, or misidentification of specific lumbo-sacral pools of motoneurons, nerve root homeosis, and hindlimb innervation defects. These results highlight the importance of a systematic approach when studying such clustered gene families, and give insights into the function and regulation of Hox and Evx2 genes during early spinal cord development.
Collapse
Affiliation(s)
- Basile Tarchini
- National Research Centre Frontiers in Genetics and Department of Zoology and Animal Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
29
|
de Rosa R, Prud'homme B, Balavoine G. caudal and even-skipped in the annelid Platynereis dumerilii and the ancestry of posterior growth. Evol Dev 2005; 7:574-87. [PMID: 16336411 DOI: 10.1111/j.1525-142x.2005.05061.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to address the question of the conservation of posterior growth mechanisms in bilaterians, we have studied the expression patterns of the orthologues of the genes caudal, even-skipped, and brachyury in the annelid Platynereis dumerilii. Annelids belong to the still poorly studied third large branch of the bilaterians, the lophotrochozoans, and have anatomic and developmental characteristics, such as a segmented body plan, indirect development through a microscopic ciliated larva, and building of the trunk through posterior addition, which are all hypothesized by some authors (including us) to be present already in Urbilateria, the last common ancestor of bilaterians. All three genes are shown to be likely involved in the building of the anteroposterior axis around the slit-like amphistomous blastopore as well as in the patterning of the terminal anus-bearing piece of the body (the pygidium). In addition, caudal and even-skipped are likely involved in the posterior addition of segments. Together with the emerging results on the conservation of segmentation genes, these results reinforce the hypothesis that Urbilateria had a segmented trunk developing through posterior addition.
Collapse
Affiliation(s)
- Renaud de Rosa
- Centre de Génétique Moléculaire du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
30
|
Abstract
Caenorhabditis elegans motor neurons control a range of activities including locomotion, foraging, defecation, and gender-specific functions. In this chapter,we focus primarily on motor neurons that regulate body movement, with particular emphasis on those in the ventral nerve cord (VNC). We describe the basic architecture and development of the motor circuit, genes that specify motor neuron fates, and models of how the motor circuit controls locomotion. We identify surprising similarities between the structure and development of the nematode and vertebrate axial nerve cords and speculate about the potential roles of conserved families of transcription factors in the evolution of these motor circuits.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | |
Collapse
|
31
|
Culetto E, Baylis HA, Richmond JE, Jones AK, Fleming JT, Squire MD, Lewis JA, Sattelle DB. The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor alpha subunit. J Biol Chem 2004; 279:42476-83. [PMID: 15280391 DOI: 10.1074/jbc.m404370200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anthelmintic drug levamisole causes hypercontraction of body wall muscles and lethality in nematode worms. In the nematode Caenorhabditis elegans, a genetic screen for levamisole resistance has identified 12 genes, three of which (unc-38, unc-29, and lev-1) encode nicotinic acetylcholine receptor (nAChR) subunits. Here we describe the molecular and functional characterization of another levamisole-resistant gene, unc-63, encoding a nAChR alpha subunit with a predicted amino acid sequence most similar to that of UNC-38. Like UNC-38 and UNC-29, UNC-63 is expressed in body wall muscles. In addition, UNC-63 is expressed in vulval muscles and neurons. We also show that LEV-1 is expressed in body wall muscle, thus overlapping the cellular localization of UNC-63, UNC-38, and UNC-29 and suggesting possible association in vivo. This is supported by electrophysiological studies on body wall muscle, which demonstrate that a levamisole-sensitive nAChR present at the C. elegans neuromuscular junction requires both UNC-63 and LEV-1 subunits. Thus, at least four subunits, two alpha types (UNC-38 and UNC-63) and two non-alpha types (UNC-29 and LEV-1), can contribute to levamisole-sensitive muscle nAChRs in nematodes.
Collapse
Affiliation(s)
- Emmanuel Culetto
- Medical Research Council Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Jones AK, Sattelle DB. Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode,Caenorhabditis elegans. Bioessays 2003; 26:39-49. [PMID: 14696039 DOI: 10.1002/bies.10377] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that bring about a diversity of fast synaptic actions. Analysis of the Caenorhabditis elegans genome has revealed one of the most-extensive and diverse nAChR gene families known, consisting of at least 27 subunits. Striking variation with possible functional implications has been observed in normally conserved motifs at the acetylcholine-binding site and in the channel-lining region. Some nAChR subunits are particular to neurons whilst others are present in both neurons and muscles. The localization of subunits in non-synaptic regions suggests novel roles for nAChRs. Genetic and heterologous expression studies have identified a subset of nAChR subunits that are important drug targets while the study of mutants has identified genes functionally-linked to nAChRs. Future studies using C. elegans offer the prospect of increasing our understanding of the functional diversity of a complex nAChR gene family as well as addressing the role of nAChRs and associated proteins in human disorders.
Collapse
Affiliation(s)
- Andrew K Jones
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX
| | | |
Collapse
|
33
|
Mongan NP, Jones AK, Smith GR, Sansom MSP, Sattelle DB. Novel alpha7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans. Protein Sci 2002; 11:1162-71. [PMID: 11967372 PMCID: PMC2373549 DOI: 10.1110/ps.3040102] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
We have used reverse-transcription-polymerase chain reaction (RT-PCR) and DNA sequencing techniques to confirm the transcription of seven (six alpha and one non-alpha) novel candidate nicotinic acetylcholine receptor (nAChR) subunit-encoding genes identified in the genome sequence of the nematode Caenorhabditis elegans. Compared to vertebrate nAChR subunits, they most closely resemble the homomer-forming, neuronal alpha7 subunit. Comparison of the predicted amino acid sequences of the new nAChR subunits with those described previously in C. elegans reveals five subunits (four alpha and one non-alpha) which resemble the DEG-3-like group of subunits. To date, this highly divergent nAChR subunit group is unique to C. elegans. ACR-22 is the first non-alpha member of the DEG-3-like group of subunits to be identified. Two new members of the related ACR-16-like nAChR group of subunits have also been shown to be transcribed, making the ACR-16-like subunit group the largest in C. elegans. Residues in the alpha subunit second transmembrane region (M2) which contribute to the channel lining show variations with implications for channel function. For example, in ACR-22, the highly conserved 0' lysine of M2 is replaced by histidine. Restrained molecular dynamics simulations have been used to generate molecular models of homo-pentameric M2 helix bundles for the novel subunits, enabling identification and display of pore-lining and protein interface residues. The number and diversity of genes encoding C. elegans nAChR subunits with similarities to the homomer-forming vertebrate alpha7 subunits and the identification of related non-alpha subunits, only found in C. elegans to date, suggest that at least some of these subunits may contribute to heteromers in vivo.
Collapse
Affiliation(s)
- Nigel P Mongan
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | | | |
Collapse
|