1
|
Li J, Lin Y, Li D, He M, Kui H, Bai J, Chen Z, Gou Y, Zhang J, Wang T, Tang Q, Kong F, Jin L, Li M. Building Haplotype-Resolved 3D Genome Maps of Chicken Skeletal Muscle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305706. [PMID: 38582509 PMCID: PMC11200017 DOI: 10.1002/advs.202305706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/07/2024] [Indexed: 04/08/2024]
Abstract
Haplotype-resolved 3D chromatin architecture related to allelic differences in avian skeletal muscle development has not been addressed so far, although chicken husbandry for meat consumption has been prevalent feature of cultures on every continent for more than thousands of years. Here, high-resolution Hi-C diploid maps (1.2-kb maximum resolution) are generated for skeletal muscle tissues in chicken across three developmental stages (embryonic day 15 to day 30 post-hatching). The sequence features governing spatial arrangement of chromosomes and characterize homolog pairing in the nucleus, are identified. Multi-scale characterization of chromatin reorganization between stages from myogenesis in the fetus to myofiber hypertrophy after hatching show concordant changes in transcriptional regulation by relevant signaling pathways. Further interrogation of parent-of-origin-specific chromatin conformation supported that genomic imprinting is absent in birds. This study also reveals promoter-enhancer interaction (PEI) differences between broiler and layer haplotypes in skeletal muscle development-related genes are related to genetic variation between breeds, however, only a minority of breed-specific variations likely contribute to phenotypic divergence in skeletal muscle potentially via allelic PEI rewiring. Beyond defining the haplotype-specific 3D chromatin architecture in chicken, this study provides a rich resource for investigating allelic regulatory divergence among chicken breeds.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yu Lin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Diyan Li
- School of PharmacyChengdu UniversityChengdu610106China
| | - Mengnan He
- Wildlife Conservation Research DepartmentChengdu Research Base of Giant Panda BreedingChengdu610057China
| | - Hua Kui
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Ziyu Chen
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yuwei Gou
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Tao Wang
- School of PharmacyChengdu UniversityChengdu610106China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Fanli Kong
- College of Life ScienceSichuan Agricultural UniversityYa'an625014China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
2
|
Yekefenhazi D, He Q, Wang X, Han W, Song C, Li W. Chromosome-level genome assembly of Nibea coibor using PacBio HiFi reads and Hi-C technologies. Sci Data 2022; 9:670. [PMID: 36329044 PMCID: PMC9633807 DOI: 10.1038/s41597-022-01804-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Nibea coibor belongs to Sciaenidae and is distributed in the South China Sea, East China Sea, India and the Philippines. In this study, we sequenced the DNA of a male Nibea coibor using PacBio long-read sequencing and generated chromatin interaction data. The genome size of Nibea coibor was estimated to be 611.85~633.88 Mb based on k-mer counts generated with Jellyfish. PacBio sequencing produced 29.26 Gb of HiFi reads, and Hifiasm was used to assemble a 627.60 Mb genome with a contig N50 of 10.66 Mb. We further found the canonical telomeric repeats "TTAGGG" to be present at the telomeres of all 24 chromosomes. The completeness of the assembly was estimated to be 98.9% and 97.8% using BUSCO and Merqury, respectively. Using the combination of ab initio prediction, protein homology and RNAseq annotation, we identified a total of 21,433 protein-coding genes. Phylogenetic analyses showed that Nibea coibor and Nibea albiflora are closely related. The results provide an important basis for research on the genetic breeding and genome evolution of Nibea coibor.
Collapse
Affiliation(s)
- Dinaer Yekefenhazi
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Qiwei He
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Xiaopeng Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Wei Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Chaowei Song
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China.
| |
Collapse
|
3
|
Zhang Y, Tian GG, Wang X, Hou C, Hu X, Wu J. Retinoic acid induced meiosis initiation in female germline stem cells by remodelling three-dimensional chromatin structure. Cell Prolif 2022; 55:e13242. [PMID: 35633286 PMCID: PMC9251051 DOI: 10.1111/cpr.13242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
Objectives This study aimed to clarify the regulation and mechanism of meiotic initiation in FGSC development. Materials and Methods FGSCs were induced to differentiate into meiosis in differentiation medium. RNA sequencing was performed to analysis the difference of transcription level. High‐through chromosome conformation capture sequencing (Hi‐C) was performed to analysis changes of three‐dimensional chromatin structure. Chromosome conformation capture further confirmed a spatial chromatin loop. ChIP‐qPCR and dual luciferase reporter were used to test the interaction between Stimulated by retinoic acid gene 8 (STRA8) protein and Trip13 promoter. Results Compared with FGSCs, the average diameter of STRA8‐positive germ cells increased from 13 μm to 16.8 μm. Furthermore, there were 4788 differentially expressed genes between the two cell stages; Meiosis and chromatin structure‐associated terms were significantly enriched. Additionally, Hi‐C results showed that FGSCs underwent A/B compartment switching (switch rate was 29.81%), the number of topologically associating domains (TADs) increasing, the average size of TADs decreasing, and chromatin loop changes at genome region of Trip13 from undifferentiated stage to meiosis‐initiation stage. Furthermore, we validated that Trip13 promoter contacted distal enhancer to form spatial chromatin loop and STRA8 could bind Trip13 promoter to promote gene expression. Conclusion FGSCs underwent chromatin structure remodelling from undifferentiated stage to meiosis‐initiation stage, which facilitated STRA8 binding to Trip13 promoter and promoting its expression.
Collapse
Affiliation(s)
- Yabin Zhang
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Changliang Hou
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaopeng Hu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
4
|
Chromatin basis of the senescence-associated secretory phenotype. Trends Cell Biol 2022; 32:513-526. [PMID: 35012849 DOI: 10.1016/j.tcb.2021.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023]
Abstract
Cellular senescence is a stable cell growth arrest. Senescent cells are metabolically active, as exemplified by the secretion of inflammatory cytokines, chemokines, and growth factors, which is termed senescence-associated secretory phenotype (SASP). The SASP exerts a range of functions in both normal health and pathology, which is possibly best characterized in cancers and physical aging. Recent studies demonstrated that chromatin is instrumental in regulating the SASP both through nuclear transcription and via the innate immune cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in the cytoplasm. Here, we will review these regulatory mechanisms, with an emphasis on most recent developments in the field. We will highlight the challenges and opportunities in developing intervention approaches, such as targeting chromatin regulatory mechanisms, to alter the SASP as an emerging approach to combat cancers and achieve healthy aging.
Collapse
|
5
|
Maslova A, Krasikova A. FISH Going Meso-Scale: A Microscopic Search for Chromatin Domains. Front Cell Dev Biol 2021; 9:753097. [PMID: 34805161 PMCID: PMC8597843 DOI: 10.3389/fcell.2021.753097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
The intimate relationships between genome structure and function direct efforts toward deciphering three-dimensional chromatin organization within the interphase nuclei at different genomic length scales. For decades, major insights into chromatin structure at the level of large-scale euchromatin and heterochromatin compartments, chromosome territories, and subchromosomal regions resulted from the evolution of light microscopy and fluorescence in situ hybridization. Studies of nanoscale nucleosomal chromatin organization benefited from a variety of electron microscopy techniques. Recent breakthroughs in the investigation of mesoscale chromatin structures have emerged from chromatin conformation capture methods (C-methods). Chromatin has been found to form hierarchical domains with high frequency of local interactions from loop domains to topologically associating domains and compartments. During the last decade, advances in super-resolution light microscopy made these levels of chromatin folding amenable for microscopic examination. Here we are reviewing recent developments in FISH-based approaches for detection, quantitative measurements, and validation of contact chromatin domains deduced from C-based data. We specifically focus on the design and application of Oligopaint probes, which marked the latest progress in the imaging of chromatin domains. Vivid examples of chromatin domain FISH-visualization by means of conventional, super-resolution light and electron microscopy in different model organisms are provided.
Collapse
Affiliation(s)
| | - Alla Krasikova
- Laboratory of Nuclear Structure and Dynamics, Cytology and Histology Department, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
6
|
Gravitational Force-Induced 3D Chromosomal Conformational Changes Are Associated with Rapid Transcriptional Response in Human T Cells. Int J Mol Sci 2021; 22:ijms22179426. [PMID: 34502336 PMCID: PMC8430767 DOI: 10.3390/ijms22179426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The mechanisms underlying gravity perception in mammalian cells are unknown. We have recently discovered that the transcriptome of cells in the immune system, which is the most affected system during a spaceflight, responds rapidly and broadly to altered gravity. To pinpoint potential underlying mechanisms, we compared gene expression and three-dimensional (3D) chromosomal conformational changes in human Jurkat T cells during the short-term gravitational changes in parabolic flight and suborbital ballistic rocket flight experiments. We found that differential gene expression in gravity-responsive chromosomal regions, but not differentially regulated single genes, are highly conserved between different real altered gravity comparisons. These coupled gene expression effects in chromosomal regions could be explained by underlying chromatin structures. Based on a high-throughput chromatin conformation capture (Hi-C) analysis in altered gravity, we found that small chromosomes (chr16–22, with the exception of chr18) showed increased intra- and interchromosomal interactions in altered gravity, whereby large chromosomes showed decreased interactions. Finally, we detected a nonrandom overlap between Hi-C-identified chromosomal interacting regions and gravity-responsive chromosomal regions (GRCRs). We therefore demonstrate the first evidence that gravitational force-induced 3D chromosomal conformational changes are associated with rapid transcriptional response in human T cells. We propose a general model of cellular sensitivity to gravitational forces, where gravitational forces acting on the cellular membrane are rapidly and mechanically transduced through the cytoskeleton into the nucleus, moving chromosome territories to new conformation states and their genes into more expressive or repressive environments, finally resulting in region-specific differential gene expression.
Collapse
|
7
|
Wittmeier A, Cassini C, Töpperwien M, Denz M, Hagemann J, Osterhoff M, Salditt T, Köster S. Combined scanning small-angle X-ray scattering and holography probes multiple length scales in cell nuclei. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:518-529. [PMID: 33650565 PMCID: PMC7941289 DOI: 10.1107/s1600577520016276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
X-rays are emerging as a complementary probe to visible-light photons and electrons for imaging biological cells. By exploiting their small wavelength and high penetration depth, it is possible to image whole, intact cells and resolve subcellular structures at nanometer resolution. A variety of X-ray methods for cell imaging have been devised for probing different properties of biological matter, opening up various opportunities for fully exploiting different views of the same sample. Here, a combined approach is employed to study cell nuclei of NIH-3T3 fibroblasts. Scanning small-angle X-ray scattering is combined with X-ray holography to quantify length scales, aggregation state, and projected electron and mass densities of the nuclear material. Only by joining all this information is it possible to spatially localize nucleoli, heterochromatin and euchromatin, and physically characterize them. It is thus shown that for complex biological systems, like the cell nucleus, combined imaging approaches are highly valuable.
Collapse
Affiliation(s)
- Andrew Wittmeier
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Chiara Cassini
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)’, University of Göttingen, Göttingen, Germany
| | - Mareike Töpperwien
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Manuela Denz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Johannes Hagemann
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Markus Osterhoff
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)’, University of Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)’, University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Razin SV, Ulianov SV. Divide and Rule: Phase Separation in Eukaryotic Genome Functioning. Cells 2020; 9:cells9112480. [PMID: 33203115 PMCID: PMC7696541 DOI: 10.3390/cells9112480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The functioning of a cell at various organizational levels is determined by the interactions between macromolecules that promote cellular organelle formation and orchestrate metabolic pathways via the control of enzymatic activities. Although highly specific and relatively stable protein-protein, protein-DNA, and protein-RNA interactions are traditionally suggested as the drivers for cellular function realization, recent advances in the discovery of weak multivalent interactions have uncovered the role of so-called macromolecule condensates. These structures, which are highly divergent in size, composition, function, and cellular localization are predominantly formed by liquid-liquid phase separation (LLPS): a physical-chemical process where an initially homogenous solution turns into two distinct phases, one of which contains the major portion of the dissolved macromolecules and the other one containing the solvent. In a living cell, LLPS drives the formation of membrane-less organelles such as the nucleolus, nuclear bodies, and viral replication factories and facilitates the assembly of complex macromolecule aggregates possessing regulatory, structural, and enzymatic functions. Here, we discuss the role of LLPS in the spatial organization of eukaryotic chromatin and regulation of gene expression in normal and pathological conditions.
Collapse
Affiliation(s)
- Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119017 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119017 Moscow, Russia
| | - Sergey V. Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119017 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119017 Moscow, Russia
- Correspondence: ; Tel.: +7-499-135-9787
| |
Collapse
|
9
|
DasGupta A, Lee TL, Li C, Saltzman AL. Emerging Roles for Chromo Domain Proteins in Genome Organization and Cell Fate in C. elegans. Front Cell Dev Biol 2020; 8:590195. [PMID: 33195254 PMCID: PMC7649781 DOI: 10.3389/fcell.2020.590195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022] Open
Abstract
In most eukaryotes, the genome is packaged with histones and other proteins to form chromatin. One of the major mechanisms for chromatin regulation is through post-translational modification of histone proteins. Recognition of these modifications by effector proteins, often dubbed histone “readers,” provides a link between the chromatin landscape and gene regulation. The diversity of histone reader proteins for each modification provides an added layer of regulatory complexity. In this review, we will focus on the roles of chromatin organization modifier (chromo) domain containing proteins in the model nematode, Caenorhabditis elegans. An amenability to genetic and cell biological approaches, well-studied development and a short life cycle make C. elegans a powerful system to investigate the diversity of chromo domain protein functions in metazoans. We will highlight recent insights into the roles of chromo domain proteins in the regulation of heterochromatin and the spatial conformation of the genome as well as their functions in cell fate, fertility, small RNA pathways and transgenerational epigenetic inheritance. The spectrum of different chromatin readers may represent a layer of regulation that integrates chromatin landscape, genome organization and gene expression.
Collapse
Affiliation(s)
- Abhimanyu DasGupta
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Tammy L Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Chengyin Li
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Arneet L Saltzman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Iwasaki O, Tanizawa H, Kim KD, Kossenkov A, Nacarelli T, Tashiro S, Majumdar S, Showe LC, Zhang R, Noma KI. Involvement of condensin in cellular senescence through gene regulation and compartmental reorganization. Nat Commun 2019; 10:5688. [PMID: 31831736 PMCID: PMC6908677 DOI: 10.1038/s41467-019-13604-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/11/2019] [Indexed: 01/21/2023] Open
Abstract
Senescence is induced by various stimuli such as oncogene expression and telomere shortening, referred to as oncogene-induced senescence (OIS) and replicative senescence (RS), respectively, and accompanied by global transcriptional alterations and 3D genome reorganization. Here, we demonstrate that the human condensin II complex participates in senescence via gene regulation and reorganization of euchromatic A and heterochromatic B compartments. Both OIS and RS are accompanied by A-to-B and B-to-A compartmental transitions, the latter of which occur more frequently and are undergone by 14% (430 Mb) of the human genome. Mechanistically, condensin is enriched in A compartments and implicated in B-to-A transitions. The full activation of senescence genes (SASP genes and p53 targets) requires condensin; its depletion impairs senescence markers. This study describes that condensin reinforces euchromatic A compartments and promotes B-to-A transitions, both of which are coupled to optimal expression of senescence genes, thereby allowing condensin to contribute to senescent processes.
Collapse
Affiliation(s)
- Osamu Iwasaki
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17456, Republic of Korea
| | | | | | - Sanki Tashiro
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | | | | | - Rugang Zhang
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Ken-Ichi Noma
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
11
|
Poleshko A, Smith CL, Nguyen SC, Sivaramakrishnan P, Wong KG, Murray JI, Lakadamyali M, Joyce EF, Jain R, Epstein JA. H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. eLife 2019; 8:49278. [PMID: 31573510 PMCID: PMC6795522 DOI: 10.7554/elife.49278] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Cell-type-specific 3D organization of the genome is unrecognizable during mitosis. It remains unclear how essential positional information is transmitted through cell division such that a daughter cell recapitulates the spatial genome organization of the parent. Lamina-associated domains (LADs) are regions of repressive heterochromatin positioned at the nuclear periphery that vary by cell type and contribute to cell-specific gene expression and identity. Here we show that histone 3 lysine 9 dimethylation (H3K9me2) is an evolutionarily conserved, specific mark of nuclear peripheral heterochromatin and that it is retained through mitosis. During mitosis, phosphorylation of histone 3 serine 10 temporarily shields the H3K9me2 mark allowing for dissociation of chromatin from the nuclear lamina. Using high-resolution 3D immuno-oligoFISH, we demonstrate that H3K9me2-enriched genomic regions, which are positioned at the nuclear lamina in interphase cells prior to mitosis, re-associate with the forming nuclear lamina before mitotic exit. The H3K9me2 modification of peripheral heterochromatin ensures that positional information is safeguarded through cell division such that individual LADs are re-established at the nuclear periphery in daughter nuclei. Thus, H3K9me2 acts as a 3D architectural mitotic guidepost. Our data establish a mechanism for epigenetic memory and inheritance of spatial organization of the genome.
Collapse
Affiliation(s)
- Andrey Poleshko
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Cheryl L Smith
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Son C Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Priya Sivaramakrishnan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Karen G Wong
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Eric F Joyce
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Rajan Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Penn Cardiovascular Institute and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Penn Cardiovascular Institute and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
12
|
Ren B, Tan HL, Nguyen TTT, Sayed AMM, Li Y, Mok YK, Yang H, Chen ES. Regulation of transcriptional silencing and chromodomain protein localization at centromeric heterochromatin by histone H3 tyrosine 41 phosphorylation in fission yeast. Nucleic Acids Res 2019; 46:189-202. [PMID: 29136238 PMCID: PMC5758876 DOI: 10.1093/nar/gkx1010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/13/2017] [Indexed: 12/29/2022] Open
Abstract
Heterochromatin silencing is critical for genomic integrity and cell survival. It is orchestrated by chromodomain (CD)-containing proteins that bind to methylated histone H3 lysine 9 (H3K9me), a hallmark of heterochromatin. Here, we show that phosphorylation of tyrosine 41 (H3Y41p)—a novel histone H3 modification—participates in the regulation of heterochromatin in fission yeast. We show that a loss-of-function mutant of H3Y41 can suppress heterochromatin de-silencing in the centromere and subtelomere repeat regions, suggesting a de-silencing role for H3Y41p on heterochromatin. Furthermore, we show both in vitro and in vivo that H3Y41p differentially regulates two CD-containing proteins without the change in the level of H3K9 methylation: it promotes the binding of Chp1 to histone H3 and the exclusion of Swi6. H3Y41p is preferentially enriched on centromeric heterochromatin during M- to early S phase, which coincides with the localization switch of Swi6/Chp1. The loss-of-function H3Y41 mutant could suppress the hypersensitivity of the RNAi mutants towards hydroxyurea (HU), which arrests replication in S phase. Overall, we describe H3Y41p as a novel histone modification that differentially regulates heterochromatin silencing in fission yeast via the binding of CD-containing proteins.
Collapse
Affiliation(s)
- Bingbing Ren
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Hwei Ling Tan
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Thi Thuy Trang Nguyen
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | | | - Ying Li
- Cancer Science Institute, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences, National University of Singapore
| | - Henry Yang
- Cancer Science Institute, National University of Singapore, Yong Loo Lin School of Medicine, Singapore.,National University Health System (NUHS), Singapore
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, Singapore.,National University Health System (NUHS), Singapore
| |
Collapse
|
13
|
Chromatin structures condensed by linker histones. Essays Biochem 2019; 63:75-87. [DOI: 10.1042/ebc20180056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
Abstract
In eukaryotic cells, genomic DNA exists in the form of chromatin through association with histone proteins, which consist of four core histone (H2A, H2B, H3, and H4) families and one linker histone (H1) family. The core histones bind to DNA to form the nucleosome, the recurring structural unit of chromatin. The linker histone binds to the nucleosome to form the next structural unit of chromatin, the chromatosome, which occurs dominantly in metazoans. Linker histones also play an essential role in condensing chromatin to form higher order structures. Unlike the core histones in the formation of the nucleosome, the role of linker histone in the formation of the chromatosome and high-order chromatin structure is not well understood. Nevertheless, exciting progress in the structural studies of chromatosomes and nucleosome arrays condensed by linker histones has been made in the last several years. In this mini-review, we discuss these recent experimental results and provide some perspectives for future studies.
Collapse
|
14
|
von Knethen A, Brüne B. Histone Deacetylation Inhibitors as Therapy Concept in Sepsis. Int J Mol Sci 2019; 20:ijms20020346. [PMID: 30654448 PMCID: PMC6359123 DOI: 10.3390/ijms20020346] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/15/2022] Open
Abstract
Sepsis is characterized by dysregulated gene expression, provoking a hyper-inflammatory response occurring in parallel to a hypo-inflammatory reaction. This is often associated with multi-organ failure, leading to the patient’s death. Therefore, reprogramming of these pro- and anti-inflammatory, as well as immune-response genes which are involved in acute systemic inflammation, is a therapy approach to prevent organ failure and to improve sepsis outcomes. Considering epigenetic, i.e., reversible, modifications of chromatin, not altering the DNA sequence as one tool to adapt the expression profile, inhibition of factors mediating these changes is important. Acetylation of histones by histone acetyltransferases (HATs) and initiating an open-chromatin structure leading to its active transcription is counteracted by histone deacetylases (HDACs). Histone deacetylation triggers a compact nucleosome structure preventing active transcription. Hence, inhibiting the activity of HDACs by specific inhibitors can be used to restore the expression profile of the cells. It can be assumed that HDAC inhibitors will reduce the expression of pro-, as well as anti-inflammatory mediators, which blocks sepsis progression. However, decreased cytokine expression might also be unfavorable, because it can be associated with decreased bacterial clearance.
Collapse
Affiliation(s)
- Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt/Main, 60590 Frankfurt, Germany.
- Fraunhofer⁻IME, Project Group Translational Medicine and Pharmacology (TMP), 60596 Frankfurt, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt/Main, 60590 Frankfurt, Germany.
- Fraunhofer⁻IME, Project Group Translational Medicine and Pharmacology (TMP), 60596 Frankfurt, Germany.
| |
Collapse
|
15
|
He M, Li Y, Tang Q, Li D, Jin L, Tian S, Che T, He S, Deng L, Gao G, Gu Y, Jiang Z, Li X, Li M. Genome-Wide Chromatin Structure Changes During Adipogenesis and Myogenesis. Int J Biol Sci 2018; 14:1571-1585. [PMID: 30263009 PMCID: PMC6158721 DOI: 10.7150/ijbs.25328] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022] Open
Abstract
The recently developed high-throughput chromatin conformation capture (Hi-C) technology enables us to explore the spatial architecture of genomes, which is increasingly considered an important regulator of gene expression. To investigate the changes in three-dimensional (3D) chromatin structure and its mediated gene expression during adipogenesis and myogenesis, we comprehensively mapped 3D chromatin organization for four cell types (3T3-L1 pre-adipocytes, 3T3-L1-D adipocytes, C2C12 myoblasts, and C2C12-D myotubes). We demonstrate that the dynamic spatial genome architecture affected gene expression during cell differentiation. A considerable proportion (~22%) of the mouse genome underwent compartment A/B rearrangement during adipogenic and myogenic differentiation, and most (~80%) upregulated marker genes exhibited an active chromatin state with B to A switch or stable A compartment. More than half (65.4%-73.2%) of the topologically associating domains (TADs) are dynamic. The newly formed TAD and intensified local interactions in the Fabp gene cluster indicated more precise structural regulation of the expression of pro-differentiation genes during adipogenesis. About half (32.39%-59.04%) of the differential chromatin interactions (DCIs) during differentiation are promoter interactions, although these DCIs only account for a small proportion of genome-wide interactions (~9.67% in adipogenesis and ~4.24% in myogenesis). These differential promoter interactions were enriched with promoter-enhancer interactions (PEIs), which were mediated by typical adipogenic and myogenic transcription factors. Differential promoter interactions also included more differentially expressed genes than nonpromoter interactions. Our results provide a global view of dynamic chromatin interactions during adipogenesis and myogenesis and are a resource for studying long-range chromatin interactions mediating the expression of pro-differentiation genes.
Collapse
Affiliation(s)
- Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing 100089, China
| | - Tiandong Che
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shen He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lamei Deng
- Novogene Bioinformatics Institute, Beijing 100089, China
| | - Guangliang Gao
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.,Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Yiren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Pig Science Institute, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing 100089, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
16
|
Woringer M, Darzacq X. Protein motion in the nucleus: from anomalous diffusion to weak interactions. Biochem Soc Trans 2018; 46:945-956. [PMID: 30065106 PMCID: PMC6103463 DOI: 10.1042/bst20170310] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Understanding how transcription factors (TFs) regulate mammalian gene expression in space and time is a central topic in biology. To activate a gene, a TF has first to diffuse in the available space of the nucleus until it reaches a target DNA sequence or protein (target site). This eventually results in the recruitment of the whole transcriptional machinery. All these processes take place in the mammalian nucleoplasm, a highly organized and dynamic environment, in which some complexes transiently assemble and break apart, whereas others appear more stable. This diversity of dynamic behaviors arises from the number of biomolecules that make up the nucleoplasm and their pairwise interactions. Indeed, interactions energies that span several orders of magnitude, from covalent bounds to transient and dynamic interactions, can shape nuclear landscapes. Thus, the nuclear environment determines how frequently and how fast a TF contacts its target site, and it indirectly regulates gene expression. How exactly transient interactions are involved in the regulation of TF diffusion is unclear, but are reflected by live cell imaging techniques, including single-particle tracking (SPT). Overall, the macroscopic result of these microscopic interactions is almost always anomalous diffusion, a phenomenon widely studied and modeled. Here, we review the connections between the anomalous diffusion of a TF observed by SPT and the microscopic organization of the nucleus, including recently described topologically associated domains and dynamic phase-separated compartments. We propose that anomalous diffusion found in SPT data result from weak and transient interactions with dynamic nuclear substructures, and that SPT data analysis would benefit from a better description of such structures.
Collapse
Affiliation(s)
- Maxime Woringer
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, CA 94720, U.S.A.
- Unité Imagerie et Modélisation, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
- Sorbonne Universités, CNRS, F-75005 Paris, France
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, CA 94720, U.S.A.
| |
Collapse
|
17
|
Stanyte R, Nuebler J, Blaukopf C, Hoefler R, Stocsits R, Peters JM, Gerlich DW. Dynamics of sister chromatid resolution during cell cycle progression. J Cell Biol 2018; 217:1985-2004. [PMID: 29695489 PMCID: PMC5987726 DOI: 10.1083/jcb.201801157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/16/2018] [Accepted: 04/11/2018] [Indexed: 01/04/2023] Open
Abstract
Faithful genome transmission in dividing cells requires that the two copies of each chromosome's DNA package into separate but physically linked sister chromatids. The linkage between sister chromatids is mediated by cohesin, yet where sister chromatids are linked and how they resolve during cell cycle progression has remained unclear. In this study, we investigated sister chromatid organization in live human cells using dCas9-mEGFP labeling of endogenous genomic loci. We detected substantial sister locus separation during G2 phase irrespective of the proximity to cohesin enrichment sites. Almost all sister loci separated within a few hours after their respective replication and then rapidly equilibrated their average distances within dynamic chromatin polymers. Our findings explain why the topology of sister chromatid resolution in G2 largely reflects the DNA replication program. Furthermore, these data suggest that cohesin enrichment sites are not persistent cohesive sites in human cells. Rather, cohesion might occur at variable genomic positions within the cell population.
Collapse
Affiliation(s)
- Rugile Stanyte
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Johannes Nuebler
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Claudia Blaukopf
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Rudolf Hoefler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Roman Stocsits
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
18
|
Chamorro-Garcia R, Diaz-Castillo C, Shoucri BM, Käch H, Leavitt R, Shioda T, Blumberg B. Ancestral perinatal obesogen exposure results in a transgenerational thrifty phenotype in mice. Nat Commun 2017; 8:2012. [PMID: 29222412 PMCID: PMC5722856 DOI: 10.1038/s41467-017-01944-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022] Open
Abstract
Ancestral environmental exposures to non-mutagenic agents can exert effects in unexposed descendants. This transgenerational inheritance has significant implications for understanding disease etiology. Here we show that exposure of F0 mice to the obesogen tributyltin (TBT) throughout pregnancy and lactation predisposes unexposed F4 male descendants to obesity when dietary fat is increased. Analyses of body fat, plasma hormone levels, and visceral white adipose tissue DNA methylome and transcriptome collectively indicate that the F4 obesity is consistent with a leptin resistant, thrifty phenotype. Ancestral TBT exposure induces global changes in DNA methylation and altered expression of metabolism-relevant genes. Analysis of chromatin accessibility in F3 and F4 sperm reveals significant differences between control and TBT groups and significant similarities between F3 and F4 TBT groups that overlap with areas of differential methylation in F4 adipose tissue. Our data suggest that ancestral TBT exposure induces changes in chromatin organization transmissible through meiosis and mitosis. Early life exposure to endocrine disrupting chemicals has been linked to increased adiposity during adulthood. Here Chamorro-García et al. show that ancestral exposure to the obesogen tributyltin causes obesity in untreated F4 generation male descendants by inducing heritable changes in genome architecture that promote a thrifty phenotype.
Collapse
Affiliation(s)
- Raquel Chamorro-Garcia
- Department of Developmental and Cell Biology, University of California, 2011 Biological Sciences 3, Irvine, CA, 92697-2300, USA
| | - Carlos Diaz-Castillo
- Department of Developmental and Cell Biology, University of California, 2011 Biological Sciences 3, Irvine, CA, 92697-2300, USA
| | - Bassem M Shoucri
- Department of Developmental and Cell Biology, University of California, 2011 Biological Sciences 3, Irvine, CA, 92697-2300, USA
| | - Heidi Käch
- Department of Developmental and Cell Biology, University of California, 2011 Biological Sciences 3, Irvine, CA, 92697-2300, USA.,Department of Environmental Systems Science, ETH, Zurich, 8092, Switzerland
| | - Ron Leavitt
- Department of Developmental and Cell Biology, University of California, 2011 Biological Sciences 3, Irvine, CA, 92697-2300, USA
| | - Toshi Shioda
- Center for Cancer Research, Massachusetts General Hospital, Bldg 149, 13th Street, Charlestown, MA, 02129, USA.
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, 2011 Biological Sciences 3, Irvine, CA, 92697-2300, USA. .,Department of Pharmaceutical Sciences, University of California, Irvine, 92697-2300, CA, USA. .,Department of Biomedical Engineering, University of California, Irvine, 92697-2300, CA, USA.
| |
Collapse
|
19
|
van de Werken HJG, Haan JC, Feodorova Y, Bijos D, Weuts A, Theunis K, Holwerda SJB, Meuleman W, Pagie L, Thanisch K, Kumar P, Leonhardt H, Marynen P, van Steensel B, Voet T, de Laat W, Solovei I, Joffe B. Small chromosomal regions position themselves autonomously according to their chromatin class. Genome Res 2017; 27:922-933. [PMID: 28341771 PMCID: PMC5453326 DOI: 10.1101/gr.213751.116] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/22/2017] [Indexed: 11/24/2022]
Abstract
The spatial arrangement of chromatin is linked to the regulation of nuclear processes. One striking aspect of nuclear organization is the spatial segregation of heterochromatic and euchromatic domains. The mechanisms of this chromatin segregation are still poorly understood. In this work, we investigated the link between the primary genomic sequence and chromatin domains. We analyzed the spatial intranuclear arrangement of a human artificial chromosome (HAC) in a xenospecific mouse background in comparison to an orthologous region of native mouse chromosome. The two orthologous regions include segments that can be assigned to three major chromatin classes according to their gene abundance and repeat repertoire: (1) gene-rich and SINE-rich euchromatin; (2) gene-poor and LINE/LTR-rich heterochromatin; and (3) gene-depleted and satellite DNA-containing constitutive heterochromatin. We show, using fluorescence in situ hybridization (FISH) and 4C-seq technologies, that chromatin segments ranging from 0.6 to 3 Mb cluster with segments of the same chromatin class. As a consequence, the chromatin segments acquire corresponding positions in the nucleus irrespective of their chromosomal context, thereby strongly suggesting that this is their autonomous property. Interactions with the nuclear lamina, although largely retained in the HAC, reveal less autonomy. Taken together, our results suggest that building of a functional nucleus is largely a self-organizing process based on mutual recognition of chromosome segments belonging to the major chromatin classes.
Collapse
Affiliation(s)
- Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute & Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands.,Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Josien C Haan
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Yana Feodorova
- Department of Biology II, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Dominika Bijos
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - An Weuts
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Koen Theunis
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Sjoerd J B Holwerda
- Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Wouter Meuleman
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ludo Pagie
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Katharina Thanisch
- Department of Biology II, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Parveen Kumar
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Heinrich Leonhardt
- Department of Biology II, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Peter Marynen
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Wouter de Laat
- Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Irina Solovei
- Department of Biology II, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Boris Joffe
- Department of Biology II, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
20
|
Cell Type-Specific Epigenomic Analysis Reveals a Uniquely Closed Chromatin Architecture in Mouse Rod Photoreceptors. Sci Rep 2017; 7:43184. [PMID: 28256534 PMCID: PMC5335693 DOI: 10.1038/srep43184] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/19/2017] [Indexed: 12/24/2022] Open
Abstract
Rod photoreceptors are specialized neurons that mediate vision in dim light and are the predominant photoreceptor type in nocturnal mammals. The rods of nocturnal mammals are unique among vertebrate cell types in having an ‘inverted’ nuclear architecture, with a dense mass of heterochromatin in the center of the nucleus rather than dispersed clumps at the periphery. To test if this unique nuclear architecture is correlated with a unique epigenomic landscape, we performed ATAC-seq on mouse rods and their most closely related cell type, cone photoreceptors. We find that thousands of loci are selectively closed in rods relative to cones as well as >60 additional cell types. Furthermore, we find that the open chromatin profile of photoreceptors lacking the rod master regulator Nrl is nearly indistinguishable from that of native cones, indicating that Nrl is required for selective chromatin closure in rods. Finally, we identified distinct enrichments of transcription factor binding sites in rods and cones, revealing key differences in the cis-regulatory grammar of these cell types. Taken together, these data provide insight into the development and maintenance of photoreceptor identity, and highlight rods as an attractive system for studying the relationship between nuclear organization and local changes in gene regulation.
Collapse
|
21
|
Lewis ZA. Polycomb Group Systems in Fungi: New Models for Understanding Polycomb Repressive Complex 2. Trends Genet 2017; 33:220-231. [DOI: 10.1016/j.tig.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 02/03/2023]
|
22
|
Skinner BM, Johnson EEP. Nuclear morphologies: their diversity and functional relevance. Chromosoma 2017; 126:195-212. [PMID: 27631793 PMCID: PMC5371643 DOI: 10.1007/s00412-016-0614-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
Studies of chromosome and genome biology often focus on condensed chromatin in the form of chromosomes and neglect the non-dividing cells. Even when interphase nuclei are considered, they are often then treated as interchangeable round objects. However, different cell types can have very different nuclear shapes, and these shapes have impacts on cellular function; indeed, many pathologies are linked with alterations to nuclear shape. In this review, we describe some of the nuclear morphologies beyond the spherical and ovoid. Many of the leukocytes of the immune system have lobed nuclei, which aid their flexibility and migration; smooth muscle cells have a spindle shaped nucleus, which must deform during muscle contractions; spermatozoa have highly condensed nuclei which adopt varied shapes, potentially associated with swimming efficiency. Nuclei are not passive passengers within the cell. There are clear effects of nuclear shape on the transcriptional activity of the cell. Recent work has shown that regulation of gene expression can be influenced by nuclear morphology, and that cells can drastically remodel their chromatin during differentiation. The link between the nucleoskeleton and the cytoskeleton at the nuclear envelope provides a mechanism for transmission of mechanical forces into the nucleus, directly affecting chromatin compaction and organisation.
Collapse
Affiliation(s)
- Benjamin M Skinner
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
| | - Emma E P Johnson
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| |
Collapse
|
23
|
Haddad N, Jost D, Vaillant C. Perspectives: using polymer modeling to understand the formation and function of nuclear compartments. Chromosome Res 2017; 25:35-50. [PMID: 28091870 PMCID: PMC5346151 DOI: 10.1007/s10577-016-9548-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
Compartmentalization is a ubiquitous feature of cellular function. In the nucleus, early observations revealed a non-random spatial organization of the genome with a large-scale segregation between transcriptionally active—euchromatin—and silenced—heterochromatin—parts of the genome. Recent advances in genome-wide mapping and imaging techniques have strikingly improved the resolution at which nuclear genome folding can be analyzed and have revealed a multiscale spatial compartmentalization with increasing evidences that such compartment may indeed result from and participate to genome function. Understanding the underlying mechanisms of genome folding and in particular the link to gene regulation requires a cross-disciplinary approach that combines the new high-resolution techniques with computational modeling of chromatin and chromosomes. In this perspective article, we first present how the copolymer theoretical framework can account for the genome compartmentalization. We then suggest, in a second part, that compartments may act as a “nanoreactor,” increasing the robustness of either activation or repression by enhancing the local concentration of regulators. We conclude with the need to develop a new framework, namely the “living chromatin” model that will allow to explicitly investigate the coupling between spatial compartmentalization and gene regulation.
Collapse
Affiliation(s)
- N Haddad
- CNRS, Laboratoire de Physique, University of Lyon, ENS de Lyon, University of Claude Bernard, 69007, Lyon, France
| | - D Jost
- University Grenoble-Alpes, CNRS, TIMC-IMAG lab, UMR 5525, Grenoble, France.
| | - C Vaillant
- CNRS, Laboratoire de Physique, University of Lyon, ENS de Lyon, University of Claude Bernard, 69007, Lyon, France.
| |
Collapse
|
24
|
Jabbari K, Bernardi G. An Isochore Framework Underlies Chromatin Architecture. PLoS One 2017; 12:e0168023. [PMID: 28060840 PMCID: PMC5218411 DOI: 10.1371/journal.pone.0168023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/24/2016] [Indexed: 01/03/2023] Open
Abstract
A recent investigation showed the existence of correlations between the architectural features of mammalian interphase chromosomes and the compositional properties of isochores. This result prompted us to compare maps of the Topologically Associating Domains (TADs) and of the Lamina Associated Domains (LADs) with the corresponding isochore maps of mouse and human chromosomes. This approach revealed that: 1) TADs and LADs correspond to isochores, i.e., isochores are the genomic units that underlie chromatin domains; 2) the conservation of TADs and LADs in mammalian genomes is explained by the evolutionary conservation of isochores; 3) chromatin domains corresponding to GC-poor isochores (e.g., LADs) show not only self-interactions but also intrachromosomal interactions with other domains also corresponding to GC-poor isochores even if located far away; in contrast, chromatin domains corresponding to GC-rich isochores (e.g., TADs) show more localized chromosomal interactions, many of which are inter-chromosomal. In conclusion, this investigation establishes a link between DNA sequences and chromatin architecture, explains the evolutionary conservation of TADs and LADs and provides new information on the spatial distribution of GC-poor/gene-poor and GC-rich/gene-rich chromosomal regions in the interphase nucleus.
Collapse
Affiliation(s)
- Kamel Jabbari
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9B, Köln, Germany
| | - Giorgio Bernardi
- Science Department, Roma Tre University, Viale Marconi, Rome, Italy, and Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| |
Collapse
|
25
|
Jost D, Vaillant C, Meister P. Coupling 1D modifications and 3D nuclear organization: data, models and function. Curr Opin Cell Biol 2016; 44:20-27. [PMID: 28040646 DOI: 10.1016/j.ceb.2016.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022]
Abstract
Over the past decade, advances in molecular methods have strikingly improved the resolution at which nuclear genome folding can be analyzed. This revealed a wealth of conserved features organizing the one dimensional DNA molecule into tridimensional nuclear domains. In this review, we briefly summarize the main findings and highlight how models based on polymer physics shed light on the principles underlying the formation of these domains. Finally, we discuss the mechanistic similarities allowing self-organization of these structures and the functional importance of these in the maintenance of transcriptional programs.
Collapse
Affiliation(s)
- Daniel Jost
- University Grenoble Alpes, CNRS, TIMC-IMAG lab, UMR 5525, Grenoble, F-38706 La Tronche, France
| | - Cédric Vaillant
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69007 Lyon, France
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|