1
|
Jeon H, Jin S, Kim J, Joo S, Choe CP. Pax1a-EphrinB2a pathway in the first pharyngeal pouch controls hyomandibular plate formation by promoting chondrocyte formation in zebrafish. Front Cell Dev Biol 2025; 13:1482906. [PMID: 40109361 PMCID: PMC11919851 DOI: 10.3389/fcell.2025.1482906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The hyomandibular (HM) cartilage securing the lower jaw to the neurocranium in fish is a craniofacial skeletal element whose shape and function have changed dramatically in vertebrate evolution, yet the genetic mechanisms shaping this cartilage are less understood. Using mutants and rescue experiments in zebrafish, we reveal a previously unappreciated role of Pax1a in the anterior HM plate formation through EphrinB2a. During craniofacial development, pax1a is expressed in the pharyngeal endoderm from the pharyngeal segmentation stage to chondrocyte formation. Loss of pax1a leads to defects in the first pouch and to the absence of chondrocytes in the anterior region of the HM plate caused by increased cell death in differentiating osteochondral progenitors. In pax1 mutants, a forced expression of pax1a by the heat shock before pouch formation rescues the defects in the first pouch and HM plate together, whereas a forced expression of pax1a after pouch formation rescues only the defects in the HM plate without rescuing the first pouch defects. In pax1a mutants, ephrinb2a expressed in the first pouch is downregulated when adjacent osteochondral progenitors differentiate into the chondrocytes, with mutations in ephrinb2a causing hyomandibular plate defects. Lastly, pax1 mutants rescue the anterior hyomandibular plate defects by pouch-specific restoration of EphrinB2a or a heat-shock-treated expression of ephrinb2a after pouch formation. We propose that the Pax1a-EphrinB2a pathway in the first pouch is directly required to shape the HM plate in addition to the early role of Pax1a in the first pouch formation.
Collapse
Affiliation(s)
- Haewon Jeon
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sil Jin
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jihyeon Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Saehoon Joo
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
2
|
Larionova D, Huysseune A. Differential retinoic acid sensitivity of oral and pharyngeal teeth in medaka (Oryzias latipes) supports the importance of pouch-cleft contacts in pharyngeal tooth initiation. Dev Dyn 2024; 253:1094-1105. [PMID: 38940489 DOI: 10.1002/dvdy.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Previous studies have claimed that pharyngeal teeth in medaka (Oryzias latipes) are induced independent of retinoic acid (RA) signaling, unlike in zebrafish (Danio rerio). In zebrafish, pharyngeal tooth formation depends on a proper physical contact between the embryonic endodermal pouch anterior to the site of tooth formation, and the adjacent ectodermal cleft, an RA-dependent process. Here, we test the hypothesis that a proper pouch-cleft contact is required for pharyngeal tooth formation in embryonic medaka, as it is in zebrafish. We used 4-[diethylamino]benzaldehyde (DEAB) to pharmacologically inhibit RA production, and thus pouch-cleft contacts, in experiments strictly controlled in time, and analyzed these using high-resolution imaging. RESULTS Pharyngeal teeth in medaka were present only when the corresponding anterior pouch had reached the ectoderm (i.e., a physical pouch-cleft contact established), similar to the situation in zebrafish. Oral teeth were present even when the treatment started approximately 4 days before normal oral tooth appearance. CONCLUSIONS RA dependency for pharyngeal tooth formation is not different between zebrafish and medaka. We propose that the differential response to DEAB of oral versus pharyngeal teeth in medaka could be ascribed to the distinct germ layer origin of the epithelia involved in tooth formation in these two regions.
Collapse
Affiliation(s)
- D Larionova
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - A Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Pan YK. Structure and function of the larval teleost fish gill. J Comp Physiol B 2024; 194:569-581. [PMID: 38584182 DOI: 10.1007/s00360-024-01550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The fish gill is a multifunctional organ that is important in multiple physiological processes such as gas transfer, ionoregulation, and chemoreception. This characteristic organ of fishes has received much attention, yet an often-overlooked point is that larval fishes in most cases do not have a fully developed gill, and thus larval gills do not function identically as adult gills. In addition, large changes associated with gas exchange and ionoregulation happen in gills during the larval phase, leading to the oxygen and ionoregulatory hypotheses examining the environmental constraint that resulted in the evolution of gills. This review thus focuses exclusively on the larval fish gill of teleosts, summarizing the development of teleost larval fish gills and its function in gas transfer, ionoregulation, and chemoreception, and comparing and contrasting it to adult gills where applicable, while providing some insight into the oxygen vs ionoregulatory hypotheses debate.
Collapse
Affiliation(s)
- Yihang Kevin Pan
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Jin S, Choe CP. A Potential Role of fgf4, fgf24, and fgf17 in Pharyngeal Pouch Formation in Zebrafish. Dev Reprod 2024; 28:55-65. [PMID: 39055102 PMCID: PMC11268894 DOI: 10.12717/dr.2024.28.2.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 07/27/2024]
Abstract
In vertebrates, Fgf signaling is essential for the development of pharyngeal pouches, which controls facial skeletal development. Genetically, fgf3 and fgf8 are required for pouch formation in mice and zebrafish. However, loss-of-function phenotypes of fgf3 and fgf8 are milder than expected in mice and zebrafish, which suggests that an additional fgf gene(s) would be involved in pouch formation. Here, we analyzed the expression, regulation, and function of three fgfs, fgf4, fgf24, and fgf17, during pouch development in zebrafish. We find that they are expressed in the distinct regions of pharyngeal endoderm in pouch formation, with fgf4 and fgf17 also being expressed in the adjacent mesoderm, in addition to previously reported endodermal fgf3 and mesodermal fgf8 expression. The endodermal expression of fgf4, fgf24, and fgf17 and the mesodermal expression of fgf4 and fgf17 are positively regulated by Tbx1 but not by Fgf3, in pouch formation. Fgf8 is required to express the endodermal expression of fgf4 and fgf24. Interestingly, however, single mutant, all double mutant combinations, and triple mutant for fgf4, fgf24, and fgf17 do not show any defects in pouches and facial skeletons. Considering a high degree of genetic redundancy in the Fgf signaling components in craniofacial development in zebrafish, our result suggests that fgf4, fgf24, and fgf17 have a potential role for pouch formation, with a redundancy with other fgf gene(s).
Collapse
Affiliation(s)
- Sil Jin
- Division of Applied Life Science,
Gyeongsang National University, Jinju 52828,
Korea
| | - Chong Pyo Choe
- Division of Life Science, Gyeongsang
National University, Jinju 52828,
Korea
- Plant Molecular Biology and Biotechnology
Research Center, Gyeongsang National University,
Jinju 52828, Korea
| |
Collapse
|
5
|
Jin S, Jeon H, Choe CP. Expression and Functional Analysis of cofilin1-like in Craniofacial Development in Zebrafish. Dev Reprod 2022; 26:23-36. [PMID: 35528320 PMCID: PMC9042393 DOI: 10.12717/dr.2022.26.1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
Pharyngeal pouches, a series of outgrowths of the pharyngeal endoderm, are a key
epithelial structure governing facial skeleton development in vertebrates. Pouch
formation is achieved through collective cell migration and rearrangement of
pouch-forming cells controlled by actin cytoskeleton dynamics. While essential
transcription factors and signaling molecules have been identified in pouch
formation, regulators of actin cytoskeleton dynamics have not been reported yet
in any vertebrates. Cofilin1-like (Cfl1l) is a fish-specific member of the
Actin-depolymerizing factor (ADF)/Cofilin family, a critical regulator of actin
cytoskeleton dynamics in eukaryotic cells. Here, we report the expression and
function of cfl1l in pouch development in zebrafish. We first
showed that fish cfl1l might be an ortholog of vertebrate
adf, based on phylogenetic analysis of vertebrate
adf and cfl genes. During pouch formation,
cfl1l was expressed sequentially in the developing pouches
but not in the posterior cell mass in which future pouch-forming cells are
present. However, pouches, as well as facial cartilages whose development is
dependent upon pouch formation, were unaffected by loss-of-function mutations in
cfl1l. Although it could not be completely ruled out a
possibility of a genetic redundancy of Cfl1l with other Cfls, our results
suggest that the cfl1l expression in the developing pouches
might be dispensable for regulating actin cytoskeleton dynamics in pouch-forming
cells.
Collapse
Affiliation(s)
- Sil Jin
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Haewon Jeon
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Chong Pyo Choe
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.,Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
6
|
Huysseune A, Cerny R, Witten PE. The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits. Biol Rev Camb Philos Soc 2021; 97:414-447. [PMID: 34647411 PMCID: PMC9293187 DOI: 10.1111/brv.12805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
There are several competing hypotheses on tooth origins, with discussions eventually settling in favour of an 'outside-in' scenario, in which internal odontodes (teeth) derived from external odontodes (skin denticles) in jawless vertebrates. The evolution of oral teeth from skin denticles can be intuitively understood from their location at the mouth entrance. However, the basal condition for jawed vertebrates is arguably to possess teeth distributed throughout the oropharynx (i.e. oral and pharyngeal teeth). As skin denticle development requires the presence of ectoderm-derived epithelium and of mesenchyme, it remains to be answered how odontode-forming skin epithelium, or its competence, were 'transferred' deep into the endoderm-covered oropharynx. The 'modified outside-in' hypothesis for tooth origins proposed that this transfer was accomplished through displacement of odontogenic epithelium, that is ectoderm, not only through the mouth, but also via any opening (e.g. gill slits) that connects the ectoderm to the epithelial lining of the pharynx (endoderm). This review explores from an evolutionary and from a developmental perspective whether ectoderm plays a role in (pharyngeal) tooth and denticle formation. Historic and recent studies on tooth development show that the odontogenic epithelium (enamel organ) of oral or pharyngeal teeth can be of ectodermal, endodermal, or of mixed ecto-endodermal origin. Comprehensive data are, however, only available for a few taxa. Interestingly, in these taxa, the enamel organ always develops from the basal layer of a stratified epithelium that is at least bilayered. In zebrafish, a miniaturised teleost that only retains pharyngeal teeth, an epithelial surface layer with ectoderm-like characters is required to initiate the formation of an enamel organ from the basal, endodermal epithelium. In urodele amphibians, the bilayered epithelium is endodermal, but the surface layer acquires ectodermal characters, here termed 'epidermalised endoderm'. Furthermore, ectoderm-endoderm contacts at pouch-cleft boundaries (i.e. the prospective gill slits) are important for pharyngeal tooth initiation, even if the influx of ectoderm via these routes is limited. A balance between sonic hedgehog and retinoic acid signalling could operate to assign tooth-initiating competence to the endoderm at the level of any particular pouch. In summary, three characters are identified as being required for pharyngeal tooth formation: (i) pouch-cleft contact, (ii) a stratified epithelium, of which (iii) the apical layer adopts ectodermal features. These characters delimit the area in which teeth can form, yet cannot alone explain the distribution of teeth over the different pharyngeal arches. The review concludes with a hypothetical evolutionary scenario regarding the persisting influence of ectoderm on pharyngeal tooth formation. Studies on basal osteichthyans with less-specialised types of early embryonic development will provide a crucial test for the potential role of ectoderm in pharyngeal tooth formation and for the 'modified outside-in' hypothesis of tooth origins.
Collapse
Affiliation(s)
- Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic
| | - P Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| |
Collapse
|
7
|
Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J, Fan G, Hu J, Xu W, Bi X, Zhu Y, Song Y, Chen H, Ma T, Zhao R, Jiang H, Zhang B, Feng C, Yuan Y, Gan X, Li Y, Zeng H, Liu Q, Zhang Y, Shao F, Hao S, Zhang H, Xu X, Liu X, Wang D, Zhu M, Zhang G, Zhao W, Qiu Q, He S, Wang W. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 2021; 184:1362-1376.e18. [PMID: 33545087 DOI: 10.1016/j.cell.2021.01.047] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/09/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022]
Abstract
Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.
Collapse
Affiliation(s)
- Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Chenglong Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jue Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guangyi Fan
- BGI-Qingdao, Qingdao 266555, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiang Hu
- Grandomics Biosciences, Beijing 102200, China
| | - Wenjie Xu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- BGI-Shenzhen, Shenzhen 518083, China
| | - Youan Zhu
- Institute of Vertebrate Paleontology and Paleoanthropology, China Academy of Sciences, Beijing 100044, China
| | - Yue Song
- BGI-Qingdao, Qingdao 266555, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Tiantian Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Haifeng Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bin Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qun Liu
- BGI-Qingdao, Qingdao 266555, China
| | | | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | | | - He Zhang
- BGI-Qingdao, Qingdao 266555, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xin Liu
- BGI-Qingdao, Qingdao 266555, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102200, China
| | - Min Zhu
- Institute of Vertebrate Paleontology and Paleoanthropology, China Academy of Sciences, Beijing 100044, China
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenming Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
8
|
Okada K, Takada S. The second pharyngeal pouch is generated by dynamic remodeling of endodermal epithelium in zebrafish. Development 2020; 147:dev194738. [PMID: 33158927 DOI: 10.1242/dev.194738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022]
Abstract
Pharyngeal arches (PAs) are segmented by endodermal outpocketings called pharyngeal pouches (PPs). Anterior and posterior PAs appear to be generated by different mechanisms, but it is unclear how the anterior and posterior PAs combine. Here, we addressed this issue with precise live imaging of PP development and cell tracing of pharyngeal endoderm in zebrafish embryos. We found that two endodermal bulges are initially generated in the future second PP (PP2) region, which separates anterior and posterior PAs. Subsequently, epithelial remodeling causes contact between these two bulges, resulting in the formation of mature PP2 with a bilayered morphology. The rostral and caudal bulges develop into the operculum and gill, respectively. Development of the caudal PP2 and more posterior PPs is affected by impaired retinoic acid signaling or pax1a/b dysfunction, suggesting that the rostral front of posterior PA development corresponds to the caudal PP2. Our study clarifies an aspect of PA development that is essential for generation of a seamless array of PAs in zebrafish.
Collapse
Affiliation(s)
- Kazunori Okada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaijicho, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaijicho, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
- Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| |
Collapse
|
9
|
Liu YH, Lin TC, Hwang SPL. Zebrafish Pax1a and Pax1b are required for pharyngeal pouch morphogenesis and ceratobranchial cartilage development. Mech Dev 2020; 161:103598. [PMID: 32061871 DOI: 10.1016/j.mod.2020.103598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 01/11/2023]
Abstract
Pharyngeal arches are derived from all three germ layers and molecular interactions among the tissue types are required for proper development of subsequent pharyngeal cartilages; however, the mechanisms underlying this process are not fully described. Here we report that in zebrafish, Pax1a and Pax1b have overlapping and essential functions in pharyngeal pouch morphogenesis and subsequent ceratobranchial cartilage development. Both pax1a and pax1b are co-expressed in pharyngeal pouches, and time-lapse imaging of a novel Tg(pax1b:eGFP) enhancer trap line further revealed the sequential segmental development of pharyngeal pouches. Zebrafish pax1a-/-; pax1b-/- double mutant embryos generated by CRISPR-Cas9 mutagenesis exhibit unsegmented pharyngeal pouches 2-5 with small outpocketings. Endodermal expression of fgf3, tbx1 and edn1 is also absent in pharyngeal pouches 2-5 at 36 h post fertilization (hpf). Loss of ceratobranchial cartilage 1-4 and reduced or absent expression of dlx2a and hand2 in the pharyngeal arches 3-6 are observed in CRISPR mutant and morphant embryos that are deficient in both zebrafish pax1a and pax1b at 96 or 36 hpf. These results suggest that zebrafish Pax1a and Pax1b both regulate pharyngeal pouch morphogenesis by modulating expression of fgf3 and tbx1. Furthermore, our data support a model wherein endodermal Pax1a and Pax1b act through Fgf3 and Tbx-Edn1 signaling to non-autonomously regulate the development of ceratobranchial cartilage via expression of dlx2a and hand2.
Collapse
Affiliation(s)
- Yu-Hsiu Liu
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Tz-Chi Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Sheng-Ping L Hwang
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China; Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, Republic of China; Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China.
| |
Collapse
|
10
|
Li L, Mao A, Wang P, Ning G, Cao Y, Wang Q. Endodermal pouch-expressed dmrt2b is important for pharyngeal cartilage formation. Biol Open 2018; 7:bio.035444. [PMID: 30341107 PMCID: PMC6310889 DOI: 10.1242/bio.035444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pharyngeal pouches, a series of outpocketings derived from the foregut endoderm, are essential for craniofacial skeleton formation. However, the molecular mechanisms underlying endodermal pouch-regulated head cartilage development are not fully understood. In this study, we find that zebrafish dmrt2b, a gene encoding Doublesex- and Mab-3-related transcription factor, is specifically expressed in endodermal pouches and required for normal pharyngeal cartilage development. Loss of dmrt2b doesn't affect cranial neural crest (CNC) specification and migration, but leads to prechondrogenic condensation defects by reducing cxcl12b expression after CNC cell movement into the pharyngeal arches. Moreover, dmrt2b inactivation results in reduced proliferation and impaired differentiation of CNC cells. We also show that dmrt2b suppresses crossveinless 2 expression in endodermal pouches to maintain BMP/Smad signaling in the arches, thereby facilitating CNC cell proliferation and chondrogenic differentiation. This work provides insight into how transcription factors expressed in endodermal pouches regulate pharyngeal skeleton development through tissue-tissue interactions.
Collapse
Affiliation(s)
- Linwei Li
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Aihua Mao
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
11
|
Jin S, O J, Stellabotte F, Choe CP. Foxi1 promotes late-stage pharyngeal pouch morphogenesis through ectodermal Wnt4a activation. Dev Biol 2018; 441:12-18. [PMID: 29932895 DOI: 10.1016/j.ydbio.2018.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 11/26/2022]
Abstract
The pharyngeal pouches are a series of epithelial outgrowths of the foregut endoderm. Pharyngeal pouches segment precursors of the vertebrate face into pharyngeal arches and pattern the facial skeleton. These pouches fail to develop normally in zebrafish foxi1 mutants, yet the role Foxi1 plays in pouch development remains to be determined. Here we show that ectodermal Foxi1 acts downstream of Fgf8a during the late stage of pouch development to promote rearrangement of pouch-forming cells into bilayers. During this phase, foxi1 and wnt4a are coexpressed in the facial ectoderm and their expression is expanded in fgf8a mutants. foxi1 expression is unaffected in wnt4a mutants; conversely, ectodermal wnt4a expression is abolished in foxi1 mutants. Consistent with this, foxi1 mutant pouch and facial skeletal defects resemble those of wnt4a mutants. These findings suggest that ectodermal Foxi1 mediates late-stage pouch morphogenesis through wnt4a expression. We therefore propose that Fox1 activation of Wnt4a in the ectoderm signals the epithelial stabilization of pouch-forming cells during late-stage of pouch morphogenesis.
Collapse
Affiliation(s)
- Sil Jin
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jiyun O
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Frank Stellabotte
- School of Allied Health, Business, and STEM, Middlesex Community College, Middletown, CT 06457, USA
| | - Chong Pyo Choe
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
12
|
Miyashita T, Diogo R. Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via Assimilation of Dissimilar Units. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|