1
|
Ruiz-Reig N, Chehade G, Yerna X, Durá I, Gailly P, Tissir F. Aberrant generation of dentate gyrus granule cells is associated with epileptic susceptibility in p53 conditional knockout mice. Front Neurosci 2024; 18:1418973. [PMID: 39206115 PMCID: PMC11349535 DOI: 10.3389/fnins.2024.1418973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Neuronal apoptosis is a mechanism used to clear the cells of oxidative stress or DNA damage and refine the final number of neurons for a functional neuronal circuit. The tumor suppressor protein p53 is a key regulator of the cell cycle and serves as a checkpoint for eliminating neurons with high DNA damage, hyperproliferative signals or cellular stress. During development, p53 is largely expressed in progenitor cells. In the adult brain, p53 expression is restricted to the neurogenic niches where it regulates cell proliferation and self-renewal. To investigate the functional consequences of p53 deletion in the cortex and hippocampus, we generated a conditional mutant mouse (p53-cKO) in which p53 is deleted from pallial progenitors and their derivatives. Surprisingly, we did not find any significant change in the number of neurons in the mutant cortex or CA region of the hippocampus compared with control mice. However, p53-cKO mice exhibit more proliferative cells in the subgranular zone of the dentate gyrus and more granule cells in the granular cell layer. Glutamatergic synapses in the CA3 region are more numerous in p53-cKO mice compared with control littermates, which correlates with overexcitability and higher epileptic susceptibility in the mutant mice.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Georges Chehade
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Xavier Yerna
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Irene Durá
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Philippe Gailly
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Fadel Tissir
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
2
|
Sterling NA, Cho SH, Kim S. Entosis implicates a new role for P53 in microcephaly pathogenesis, beyond apoptosis. Bioessays 2024; 46:e2300245. [PMID: 38778437 DOI: 10.1002/bies.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Entosis, a form of cell cannibalism, is a newly discovered pathogenic mechanism leading to the development of small brains, termed microcephaly, in which P53 activation was found to play a major role. Microcephaly with entosis, found in Pals1 mutant mice, displays P53 activation that promotes entosis and apoptotic cell death. This previously unappreciated pathogenic mechanism represents a novel cellular dynamic in dividing cortical progenitors which is responsible for cell loss. To date, various recent models of microcephaly have bolstered the importance of P53 activation in cell death leading to microcephaly. P53 activation caused by mitotic delay or DNA damage manifests apoptotic cell death which can be suppressed by P53 removal in these animal models. Such genetic studies attest P53 activation as quality control meant to eliminate genomically unfit cells with minimal involvement in the actual function of microcephaly associated genes. In this review, we summarize the known role of P53 activation in a variety of microcephaly models and introduce a novel mechanism wherein entotic cell cannibalism in neural progenitors is triggered by P53 activation.
Collapse
Affiliation(s)
- Noelle A Sterling
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Biomedical Sciences Graduate Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Seo-Hee Cho
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Tantry MSA, Santhakumar K. Insights on the Role of α- and β-Tubulin Isotypes in Early Brain Development. Mol Neurobiol 2023; 60:3803-3823. [PMID: 36943622 DOI: 10.1007/s12035-023-03302-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Tubulins are the highly conserved subunit of microtubules which involve in various fundamental functions including brain development. Microtubules help in neuronal proliferation, migration, differentiation, cargo transport along the axons, synapse formation, and many more. Tubulin gene family consisting of multiple isotypes, their differential expression and varied post translational modifications create a whole new level of complexity and diversity in accomplishing manifold neuronal functions. The studies on the relation between tubulin genes and brain development opened a new avenue to understand the role of each tubulin isotype in neurodevelopment. Mutations in tubulin genes are reported to cause brain development defects especially cortical malformations, referred as tubulinopathies. There is an increased need to understand the molecular correlation between various tubulin mutations and the associated brain pathology. Recently, mutations in tubulin isotypes (TUBA1A, TUBB, TUBB1, TUBB2A, TUBB2B, TUBB3, and TUBG1) have been linked to cause various neurodevelopmental defects like lissencephaly, microcephaly, cortical dysplasia, polymicrogyria, schizencephaly, subcortical band heterotopia, periventricular heterotopia, corpus callosum agenesis, and cerebellar hypoplasia. This review summarizes on the microtubule dynamics, their role in neurodevelopment, tubulin isotypes, post translational modifications, and the role of tubulin mutations in causing specific neurodevelopmental defects. A comprehensive list containing all the reported tubulin pathogenic variants associated with brain developmental defects has been prepared to give a bird's eye view on the broad range of tubulin functions.
Collapse
Affiliation(s)
- M S Ananthakrishna Tantry
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
4
|
Maillard C, Roux CJ, Charbit-Henrion F, Steffann J, Laquerriere A, Quazza F, Buisson NB. Tubulin mutations in human neurodevelopmental disorders. Semin Cell Dev Biol 2022; 137:87-95. [PMID: 35915025 DOI: 10.1016/j.semcdb.2022.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Mutations causing dysfunction of tubulins and microtubule-associated proteins, also known as tubulinopathies, are a group of recently described entities that lead to complex brain malformations. Anatomical and functional consequences of the disruption of tubulins include microcephaly, combined with abnormal corticogenesis due to impaired migration or lamination and abnormal growth cone dynamics of projecting and callosal axons. Key imaging features of tubulinopathies are characterized by three major patterns of malformations of cortical development (MCD): lissencephaly, microlissencephaly, and dysgyria. Additional distinctive MRI features include dysmorphism of the basal ganglia, midline commissural structure hypoplasia or agenesis, and cerebellar and brainstem hypoplasia. Tubulinopathies can be diagnosed as early as 21-24 gestational weeks using imaging and neuropathology, with possible extreme microlissencephaly with an extremely thin cortex, lissencephaly with either thick or thin/intermediate cortex, and dysgyria combined with cerebellar hypoplasia, pons hypoplasia and corpus callosum dysgenesis. More than 100 MCD-associated mutations have been reported in TUBA1A, TUBB2B, or TUBB3 genes, whereas fewer than ten are known in other genes such TUBB2A, TUBB or TUBG1. Although these mutations are scattered along the α- and β-tubulin sequences, recurrent mutations are consistently associated with almost identical cortical dysgenesis. Much of the evidence supports that these mutations alter the dynamic properties and functions of microtubules in several fashions. These include diminishing the abundance of functional tubulin heterodimers, altering GTP binding, altering longitudinal and lateral protofilament interactions, and impairing microtubule interactions with kinesin and/or dynein motors or with MAPs. In this review we discuss the recent advances in our understanding of the effects of mutations of tubulins and microtubule-associated proteins on human brain development and the pathogenesis of malformations of cortical development.
Collapse
Affiliation(s)
- Camille Maillard
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
| | - Charles Joris Roux
- Pediatric Radiology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France
| | - Fabienne Charbit-Henrion
- Université de Paris, Sorbonne Paris Cité, Imagine INSERM UMR1163, Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, France
| | - Julie Steffann
- Université de Paris, Sorbonne Paris Cité, Imagine INSERM UMR1163, Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, France
| | - Annie Laquerriere
- Pathology Laboratory, Rouen University Hospital, Rouen, France; NeoVasc Region-Inserm Team ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Floriane Quazza
- Pediatric Neurology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France
| | - Nadia Bahi Buisson
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France; Pediatric Neurology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France.
| |
Collapse
|
5
|
Kuil LE, MacKenzie KC, Tang CS, Windster JD, Le TL, Karim A, de Graaf BM, van der Helm R, van Bever Y, Sloots CEJ, Meeussen C, Tibboel D, de Klein A, Wijnen RMH, Amiel J, Lyonnet S, Garcia-Barcelo MM, Tam PKH, Alves MM, Brooks AS, Hofstra RMW, Brosens E. Size matters: Large copy number losses in Hirschsprung disease patients reveal genes involved in enteric nervous system development. PLoS Genet 2021; 17:e1009698. [PMID: 34358225 PMCID: PMC8372947 DOI: 10.1371/journal.pgen.1009698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 08/18/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Hirschsprung disease (HSCR) is a complex genetic disease characterized by absence of ganglia in the intestine. HSCR etiology can be explained by a unique combination of genetic alterations: rare coding variants, predisposing haplotypes and Copy Number Variation (CNV). Approximately 18% of patients have additional anatomical malformations or neurological symptoms (HSCR-AAM). Pinpointing the responsible culprits within a CNV is challenging as often many genes are affected. Therefore, we selected candidate genes based on gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics. Next, we used a zebrafish model to investigate whether loss of these genes affects enteric neuron development in vivo. This study included three groups of patients, two groups without coding variants in disease associated genes: HSCR-AAM and HSCR patients without associated anomalies (HSCR-isolated). The third group consisted of all HSCR patients in which a confirmed pathogenic rare coding variant was identified. We compared these patient groups to unaffected controls. Predisposing haplotypes were determined, confirming that every HSCR subgroup had increased contributions of predisposing haplotypes, but their contribution was highest in isolated HSCR patients without RET coding variants. CNV profiling proved that specifically HSCR-AAM patients had larger Copy Number (CN) losses. Gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics were used to determine plausible candidate genes located within CN losses. Validation in zebrafish using CRISPR/Cas9 targeting confirmed the contribution of UFD1L, TBX2, SLC8A1, and MAPK8 to ENS development. In addition, we revealed epistasis between reduced Ret and Gnl1 expression and between reduced Ret and Tubb5 expression in vivo. Rare large CN losses—often de novo—contribute to HSCR in HSCR-AAM patients. We proved the involvement of six genes in enteric nervous system development and Hirschsprung disease. Hirschsprung disease is a congenital disorder characterized by the absence of intestinal neurons in the distal part of the intestine. It is a complex genetic disorder in which multiple variations in our genome combined, result in disease. One of these variations are Copy Number Variations (CNVs): large segments of our genome that are duplicated or deleted. Patients often have Hirschsprung disease without other symptoms. However, a proportion of patients has additional associated anatomical malformations and neurological symptoms. We found that CNVs, present in patients with associated anomalies, are more often larger compared to unaffected controls or Hirschsprung patients without other symptoms. Furthermore, Copy Number (CN) losses are enriched for constrained coding regions (CCR; genes usually not impacted by genomic alterations in unaffected controls) of which the expression is higher in the developing intestinal neurons compared to the intestine. We modelled loss of these candidate genes in zebrafish by disrupting the zebrafish orthologues by genome editing. For several genes this resulted in changes in intestinal neuron development, reminiscent of HSCR observed in patients. The results presented here highlight the importance of Copy Number profiling, zebrafish validation and evaluating all CCR expressed in developing intestinal neurons during diagnostic evaluation.
Collapse
Affiliation(s)
- Laura E. Kuil
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Katherine C. MacKenzie
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Clara S. Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Centre, The University of Hong Kong–Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - Jonathan D. Windster
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thuy Linh Le
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | - Anwarul Karim
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bianca M. de Graaf
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert van der Helm
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cornelius E. J. Sloots
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Conny Meeussen
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - René M. H. Wijnen
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeanne Amiel
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | - Stanislas Lyonnet
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | | | - Paul K. H. Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Centre, The University of Hong Kong–Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Non-Structural Protein 5 of Zika Virus Interacts with p53 in Human Neural Progenitor Cells and Induces p53-Mediated Apoptosis. Virol Sin 2021; 36:1411-1420. [PMID: 34224111 DOI: 10.1007/s12250-021-00422-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 10/20/2022] Open
Abstract
Zika virus (ZIKV) infection could disrupt neurogenesis and cause microcephaly in neonates by targeting neural progenitor cells (NPCs). The tumor suppressor p53-mediated cell cycle arrest and apoptotic cell death have been suggested to be activated upon ZIKV infection, yet the detailed mechanism is not well understood. In the present study, we investigated the effects of ZIKV-encoded proteins in the activation of p53 signaling pathway and found that, among the ten viral proteins, the nonstructural protein 5 (NS5) of ZIKV most significantly activated the transcription of p53 target genes. Using the immunoprecipitation-coupled mass spectrometry approach, we identified that ZIKV-NS5 interacted with p53 protein. The NS5-p53 interaction was further confirmed by co-immunoprecipitation and GST pull-down assays. In addition, the MTase domain of NS5 and the C-terminal domain of p53 were mapped to be responsible for the interaction between these two proteins. We further showed that ZIKV-NS5 was colocalized with p53 and increased its protein level in the nuclei and able to prolong the half-life of p53. Furthermore, lentivirus-mediated expression of ZIKV-NS5 in hNPCs led to an apparent cell death phenotype. ZIKV-NS5 promoted the cleavage of PARP1 and significantly increased the cell apoptosis of hNPCs. Taken together, these findings revealed that ZIKV-NS5 is a previously undiscovered regulator of p53-mediated apoptosis in hNPCs, which may contribute to the ZIKV-caused abnormal neurodevelopment.
Collapse
|
7
|
Human Microcephaly Protein RTTN Is Required for Proper Mitotic Progression and Correct Spindle Position. Cells 2021; 10:cells10061441. [PMID: 34207628 PMCID: PMC8229632 DOI: 10.3390/cells10061441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/16/2023] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a complex neurodevelopmental disorder characterized by a small brain size with mild to moderate intellectual disability. We previously demonstrated that human microcephaly RTTN played an important role in regulating centriole duplication during interphase, but the role of RTTN in mitosis is not fully understood. Here, we show that RTTN is required for normal mitotic progression and correct spindle position. The depletion of RTTN induces the dispersion of the pericentriolar protein γ-tubulin and multiple mitotic abnormalities, including monopolar, abnormal bipolar, and multipolar spindles. Importantly, the loss of RTTN altered NuMA/p150Glued congression to the spindle poles, perturbed NuMA cortical localization, and reduced the number and the length of astral microtubules. Together, our results provide a new insight into how RTTN functions in mitosis.
Collapse
|
8
|
Leca I, Phillips AW, Hofer I, Landler L, Ushakova L, Cushion TD, Dürnberger G, Stejskal K, Mechtler K, Keays DA. A proteomic survey of microtubule-associated proteins in a R402H TUBA1A mutant mouse. PLoS Genet 2020; 16:e1009104. [PMID: 33137126 PMCID: PMC7660477 DOI: 10.1371/journal.pgen.1009104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/12/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022] Open
Abstract
Microtubules play a critical role in multiple aspects of neurodevelopment, including the generation, migration and differentiation of neurons. A recurrent mutation (R402H) in the α-tubulin gene TUBA1A is known to cause lissencephaly with cerebellar and striatal phenotypes. Previous work has shown that this mutation does not perturb the chaperone-mediated folding of tubulin heterodimers, which are able to assemble and incorporate into the microtubule lattice. To explore the molecular mechanisms that cause the disease state we generated a new conditional mouse line that recapitulates the R402H variant. We show that heterozygous mutants present with laminar phenotypes in the cortex and hippocampus, as well as a reduction in striatal size and cerebellar abnormalities. We demonstrate that homozygous expression of the R402H allele causes neuronal death and exacerbates a cell intrinsic defect in cortical neuronal migration. Microtubule sedimentation assays coupled with quantitative mass spectrometry demonstrated that the binding and/or levels of multiple microtubule associated proteins (MAPs) are perturbed by the R402H mutation including VAPB, REEP1, EZRIN, PRNP and DYNC1l1/2. Consistent with these data we show that the R402H mutation impairs dynein-mediated transport which is associated with a decoupling of the nucleus to the microtubule organising center. Our data support a model whereby the R402H variant is able to fold and incorporate into microtubules, but acts as a gain of function by perturbing the binding of MAPs. Microtubules are polymers composed of tubulin proteins, which play an important role in the development of the human brain. Genetic mutations in tubulin genes are known to cause neurodevelopmental diseases, including lissencephaly which is characterised by an impairment in the migration of neurons. In this study we investigate how a common mutation (R402H) in TUBA1A causes lissencephaly by generating and characterising a mouse with the same variant. We show that affected animals recapitulate multiple aspects of the human disease; including laminar perturbations in the cortex and hippocampus, attributable to defects in neuronal migration at key developmental time points. To characterize the molecular implications of the R402H mutation we purified microtubules from the developing brain, and analysed the proteins present by mass spectrometry. This revealed that the binding of DYNC1I1/2 to microtubules is altered in mice with the R402H mutation. Our results provide insight into the molecular pathology underlying tubulin related disease states, and provide a foundation for the rational design of therapeutic interventions.
Collapse
Affiliation(s)
- Ines Leca
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | | | - Iris Hofer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Lukas Landler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Institute of Zoology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Lyubov Ushakova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Thomas David Cushion
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Gerhard Dürnberger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Karel Stejskal
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - David Anthony Keays
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
- * E-mail:
| |
Collapse
|
9
|
Li D, Shen KM, Zackai EH, Bhoj EJ. Clinical variability of TUBB-associated disorders: Diagnosis through reanalysis. Am J Med Genet A 2020; 182:3035-3039. [PMID: 33016642 DOI: 10.1002/ajmg.a.61897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/06/2022]
Abstract
A range of clinical findings have been associated with heterozygous mutations in the Beta Tubulin (TUBB) gene, including microcephaly, structural brain abnormalities, intellectual disability, and skin creases. We report a 5-year-old male who presented for evaluation of cleft palate, cardiac defects, growth retardation, hemivertebrae causing scoliosis, and preauricular skin tags. Previous clinical exome sequencing of this patient was nondiagnostic, but reanalysis in the research setting identified a de novo missense c. 925C>G p.(Arg309Gly) mutation in TUBB. This mutation was not found in population allele frequency databases, and was classified to be likely pathogenic. This patient shares some phenotypic characteristics with previous reported patients of TUBB mutations of the two TUBB-related phenotypes: "Cortical dysplasia, complex, with other brain malformations 6" [MIM 615771] and "Circumferential Skin Creases Kunze type (CSC-KT)" [MIM 156610], but has no excess skin creases or structural brain anomalies. We also report previously undescribed features, including transposition of the great arteries and vertebral fusion, thus representing phenotype expansion of TUBB-associated disorders.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kaitlyn M Shen
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elaine H Zackai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth J Bhoj
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Xiong Y, Zhang Y, Xiong S, Williams-Villalobo AE. A Glance of p53 Functions in Brain Development, Neural Stem Cells, and Brain Cancer. BIOLOGY 2020; 9:biology9090285. [PMID: 32932978 PMCID: PMC7564678 DOI: 10.3390/biology9090285] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
p53 is one of the most intensively studied tumor suppressors. It transcriptionally regulates a broad range of genes to modulate a series of cellular events, including DNA damage repair, cell cycle arrest, senescence, apoptosis, ferroptosis, autophagy, and metabolic remodeling, which are fundamental for both development and cancer. This review discusses the role of p53 in brain development, neural stem cell regulation and the mechanisms of inactivating p53 in gliomas. p53 null or p53 mutant mice show female biased exencephaly, potentially due to X chromosome inactivation failure and/or hormone-related gene expression. Oxidative cellular status, increased PI3K/Akt signaling, elevated ID1, and metabolism are all implicated in p53-loss induced neurogenesis. However, p53 has also been shown to promote neuronal differentiation. In addition, p53 mutations are frequently identified in brain tumors, especially glioblastomas. Mechanisms underlying p53 inactivation in brain tumor cells include disruption of p53 protein stability, gene expression and transactivation potential as well as p53 gene loss or mutation. Loss of p53 function and gain-of-function of mutant p53 are both implicated in brain development and tumor genesis. Further understanding of the role of p53 in the brain may provide therapeutic insights for brain developmental syndromes and cancer.
Collapse
Affiliation(s)
- Yuqing Xiong
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
| | - Yun Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA;
- Correspondence: ; Tel.: +1-713-313-7557
| | - Shunbin Xiong
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Abie E. Williams-Villalobo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA;
| |
Collapse
|
11
|
Mitchell-Dick A, Chalem A, Pilaz LJ, Silver DL. Acute Lengthening of Progenitor Mitosis Influences Progeny Fate during Cortical Development in vivo. Dev Neurosci 2020; 41:300-317. [PMID: 32541147 DOI: 10.1159/000507113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND/AIMS Prenatal microcephaly is posited to arise from aberrant mitosis of neural progenitors, which disrupts both neuronal production and survival. Although microcephaly has both a genetic and environmental etiology, the mechanisms by which dysregulation of mitosis causes microcephaly are poorly understood. We previously discovered that prolonged mitosis of mouse neural progenitors, either ex vivo or in vitro, directly alters progeny cell fate, -resulting in precocious differentiation and apoptosis. This raises questions as to whether prolonged progenitor mitosis affects cell fate and neurogenesis in vivo, and what are the underlying mechanisms? METHODS/RESULTS Towards addressing these knowledge gaps, we developed an in vivo model of mitotic delay. This uses pharmacological inhibition to acutely and reversibly prolong mitosis during cortical development, and fluorescent dyes to label direct progeny. Using this model, we discovered that a causal relationship between mitotic delay of neural progenitors and altered progeny cell fate is evident in vivo. Using transcriptome analyses to investigate the state of delayed cells and their progeny, we uncovered potential molecular mechanisms by which prolonged mitosis induces altered cell fates, including DNA damage and p53 signaling. We then extended our studies to human neural progenitors, demonstrating that lengthened mitosis duration also directly alters neuronal cell fate. CONCLUSIONS This study establishes a valuable new experimental paradigm towards understanding mechanisms whereby lengthened mitosis duration may explain some cases of microcephaly.
Collapse
Affiliation(s)
- Aaron Mitchell-Dick
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Andrea Chalem
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.,Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA, .,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA, .,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA, .,Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, USA,
| |
Collapse
|
12
|
Little JN, Dwyer ND. p53 deletion rescues lethal microcephaly in a mouse model with neural stem cell abscission defects. Hum Mol Genet 2019; 28:434-447. [PMID: 30304535 DOI: 10.1093/hmg/ddy350] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
Building a cerebral cortex of the proper size involves balancing rates and timing of neural stem cell (NSC) proliferation, neurogenesis and cell death. The cellular mechanisms connecting genetic mutations to brain malformation phenotypes are still poorly understood. Microcephaly may result when NSC divisions are too slow, produce neurons too early or undergo apoptosis but the relative contributions of these cellular mechanisms to various types of microcephaly are not understood. We previously showed that mouse mutants in Kif20b (formerly called Mphosph1, Mpp1 or KRMP1) have small cortices that show elevated apoptosis and defects in maturation of NSC midbodies, which mediate cytokinetic abscission. Here we test the contribution of intrinsic NSC apoptosis to brain size reduction in this lethal microcephaly model. By making double mutants with the pro-apoptotic genes Bax and Trp53 (p53), we find that p53-dependent apoptosis of cortical NSCs accounts for most of the microcephaly, but that there is a significant apoptosis-independent contribution as well. Remarkably, heterozygous p53 deletion is sufficient to fully rescue survival of the Kif20b mutant into adulthood. In addition, the NSC midbody maturation defects are not rescued by p53 deletion, showing that they are either upstream of p53 activation, or in a parallel pathway. Accumulation of p53 in the nucleus of mutant NSCs at midbody stage suggests the possibility of a novel midbody-mediated pathway for p53 activation. This work elucidates both NSC apoptosis and abscission mechanisms that could underlie human microcephaly or other brain malformations.
Collapse
Affiliation(s)
- Jessica Neville Little
- Department of Cell Biology.,Cell and Developmental Biology Graduate Program.,Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
13
|
Wan YJ, Guo Q, Liu D, Jiang Y, Zeng KW, Tu PF. Protocatechualdehyde reduces myocardial fibrosis by directly targeting conformational dynamics of collagen. Eur J Pharmacol 2019; 855:183-191. [DOI: 10.1016/j.ejphar.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/17/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|
14
|
Souphron J, Bodakuntla S, Jijumon AS, Lakisic G, Gautreau AM, Janke C, Magiera MM. Purification of tubulin with controlled post-translational modifications by polymerization-depolymerization cycles. Nat Protoc 2019; 14:1634-1660. [PMID: 30996262 DOI: 10.1038/s41596-019-0153-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
Abstract
In vitro reconstitutions of microtubule assemblies have provided essential mechanistic insights into the molecular bases of microtubule dynamics and their interactions with associated proteins. The tubulin code has emerged as a regulatory mechanism for microtubule functions, which suggests that tubulin isotypes and post-translational modifications (PTMs) play important roles in controlling microtubule functions. To investigate the tubulin code mechanism, it is essential to analyze different tubulin variants in vitro. Until now, this has been difficult, as most reconstitution experiments have used heavily post-translationally modified tubulin purified from brain tissue. Therefore, we developed a protocol that allows purification of tubulin with controlled PTMs from limited sources through cycles of polymerization and depolymerization. Although alternative protocols using affinity purification of tubulin also yield very pure tubulin, our protocol has the unique advantage of selecting for fully functional tubulin, as non-polymerizable tubulin is excluded in the successive polymerization cycles. It thus provides a novel procedure for obtaining tubulin with controlled PTMs for in vitro reconstitution experiments. We describe specific procedures for tubulin purification from adherent cells, cells grown in suspension cultures and single mouse brains. The protocol can be combined with drug treatment, transfection of cells before tubulin purification or enzymatic treatment during the purification process. The amplification of cells and their growth in spinner bottles takes ~13 d; the tubulin purification takes 6-7 h. The tubulin can be used in total internal reflection fluorescence (TIRF)-microscopy-based experiments or pelleting assays for the investigation of intrinsic properties of microtubules and their interactions with associated proteins.
Collapse
Affiliation(s)
- Judith Souphron
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - A S Jijumon
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Goran Lakisic
- BIOC, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, France
- Institut MICALIS, AgroParisTech, Université Paris Saclay, INRA, Jouy-en-Josas, France
| | | | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France.
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France.
| |
Collapse
|
15
|
Broix L, Asselin L, Silva CG, Ivanova EL, Tilly P, Gilet JG, Lebrun N, Jagline H, Muraca G, Saillour Y, Drouot N, Reilly ML, Francis F, Benmerah A, Bahi-Buisson N, Belvindrah R, Nguyen L, Godin JD, Chelly J, Hinckelmann MV. Ciliogenesis and cell cycle alterations contribute to KIF2A-related malformations of cortical development. Hum Mol Genet 2019; 27:224-238. [PMID: 29077851 DOI: 10.1093/hmg/ddx384] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Genetic findings reported by our group and others showed that de novo missense variants in the KIF2A gene underlie malformations of brain development called pachygyria and microcephaly. Though KIF2A is known as member of the Kinesin-13 family involved in the regulation of microtubule end dynamics through its ATP dependent MT-depolymerase activity, how KIF2A variants lead to brain malformations is still largely unknown. Using cellular and in utero electroporation approaches, we show here that KIF2A disease-causing variants disrupts projection neuron positioning and interneuron migration, as well as progenitors proliferation. Interestingly, further dissection of this latter process revealed that ciliogenesis regulation is also altered during progenitors cell cycle. Altogether, our data suggest that deregulation of the coupling between ciliogenesis and cell cycle might contribute to the pathogenesis of KIF2A-related brain malformations. They also raise the issue whether ciliogenesis defects are a hallmark of other brain malformations, such as those related to tubulins and MT-motor proteins variants.
Collapse
Affiliation(s)
- Loïc Broix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France.,Institut Cochin, INSERM U1016, CNRS U8104, Paris Descartes University, Paris 75000, France
| | - Laure Asselin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Carla G Silva
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Ekaterina L Ivanova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Peggy Tilly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Johan G Gilet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Nicolas Lebrun
- Institut Cochin, INSERM U1016, CNRS U8104, Paris Descartes University, Paris 75000, France
| | - Hélène Jagline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Giuseppe Muraca
- Institut Cochin, INSERM U1016, CNRS U8104, Paris Descartes University, Paris 75000, France
| | - Yoann Saillour
- Institut Cochin, INSERM U1016, CNRS U8104, Paris Descartes University, Paris 75000, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Madeline Louise Reilly
- Paris Diderot University, Paris 75013, France.,INSERM UMR 1163, Paris 75015, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris 75015, France
| | - Fiona Francis
- Inserm UMR-S 839, Paris 75005, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris 75000, France.,Institut du Fer à Moulin, Paris 75000, France
| | - Alexandre Benmerah
- INSERM UMR 1163, Paris 75015, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris 75015, France
| | - Nadia Bahi-Buisson
- Paris Diderot University, Paris 75013, France.,INSERM UMR 1163, Paris 75015, France
| | - Richard Belvindrah
- Inserm UMR-S 839, Paris 75005, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris 75000, France.,Institut du Fer à Moulin, Paris 75000, France
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Juliette D Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France.,Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
| | - Maria-Victoria Hinckelmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,CNRS U7104, Illkirch 67400, France.,INSERM U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| |
Collapse
|
16
|
Tripathy R, Leca I, van Dijk T, Weiss J, van Bon BW, Sergaki MC, Gstrein T, Breuss M, Tian G, Bahi-Buisson N, Paciorkowski AR, Pagnamenta AT, Wenninger-Weinzierl A, Martinez-Reza MF, Landler L, Lise S, Taylor JC, Terrone G, Vitiello G, Del Giudice E, Brunetti-Pierri N, D'Amico A, Reymond A, Voisin N, Bernstein JA, Farrelly E, Kini U, Leonard TA, Valence S, Burglen L, Armstrong L, Hiatt SM, Cooper GM, Aldinger KA, Dobyns WB, Mirzaa G, Pierson TM, Baas F, Chelly J, Cowan NJ, Keays DA. Mutations in MAST1 Cause Mega-Corpus-Callosum Syndrome with Cerebellar Hypoplasia and Cortical Malformations. Neuron 2018; 100:1354-1368.e5. [PMID: 30449657 PMCID: PMC6436622 DOI: 10.1016/j.neuron.2018.10.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/03/2018] [Accepted: 10/24/2018] [Indexed: 01/04/2023]
Abstract
Corpus callosum malformations are associated with a broad range of neurodevelopmental diseases. We report that de novo mutations in MAST1 cause mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCC-CH-CM) in the absence of megalencephaly. We show that MAST1 is a microtubule-associated protein that is predominantly expressed in post-mitotic neurons and is present in both dendritic and axonal compartments. We further show that Mast1 null animals are phenotypically normal, whereas the deletion of a single amino acid (L278del) recapitulates the distinct neurological phenotype observed in patients. In animals harboring Mast1 microdeletions, we find that the PI3K/AKT3/mTOR pathway is unperturbed, whereas Mast2 and Mast3 levels are diminished, indicative of a dominant-negative mode of action. Finally, we report that de novo MAST1 substitutions are present in patients with autism and microcephaly, raising the prospect that mutations in this gene give rise to a spectrum of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Ratna Tripathy
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ines Leca
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Tessa van Dijk
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Janneke Weiss
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Genetics, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Maria Christina Sergaki
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Thomas Gstrein
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Martin Breuss
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Guoling Tian
- Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Nadia Bahi-Buisson
- Université Paris Descartes, Institut Cochin Hôpital Cochin, 75014 Paris, France
| | | | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Oxford, UK, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Andrea Wenninger-Weinzierl
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Maria Fernanda Martinez-Reza
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Lukas Landler
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Stefano Lise
- NIHR Oxford Biomedical Research Centre, Oxford, UK, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Oxford, UK, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy
| | - Giuseppina Vitiello
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy
| | - Ennio Del Giudice
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy; Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Naples, Italy
| | - Alessandra D'Amico
- Department of Advanced Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Norine Voisin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | - Usha Kini
- Department of Clinical Genetics, Oxford Regional Genetics Service, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Thomas A Leonard
- Center for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Stéphanie Valence
- Centre de référence des Malformations et Maladies Congénitales du Cervelet et Département de Génétique et Embryologie Médicale, APHP, Hôpital Trousseau, 75012 Paris, France
| | - Lydie Burglen
- Centre de référence des Malformations et Maladies Congénitales du Cervelet et Département de Génétique et Embryologie Médicale, APHP, Hôpital Trousseau, 75012 Paris, France
| | - Linlea Armstrong
- Provincial Medical Genetics Programme, BCWH and Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kimberly A Aldinger
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA
| | - William B Dobyns
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA
| | - Ghayda Mirzaa
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA
| | - Tyler Mark Pierson
- Departments of Pediatrics and Neurology & the Board of Governors Regenerative Medicine, Institute Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jamel Chelly
- Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Nicholas J Cowan
- Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - David Anthony Keays
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria.
| |
Collapse
|
17
|
Breuss MW, Nguyen T, Srivatsan A, Leca I, Tian G, Fritz T, Hansen AH, Musaev D, McEvoy-Venneri J, James KN, Rosti RO, Scott E, Tan U, Kolodner RD, Cowan NJ, Keays DA, Gleeson JG. Uner Tan syndrome caused by a homozygous TUBB2B mutation affecting microtubule stability. Hum Mol Genet 2017; 26:258-269. [PMID: 28013290 DOI: 10.1093/hmg/ddw383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/03/2016] [Indexed: 01/07/2023] Open
Abstract
The integrity and dynamic properties of the microtubule cytoskeleton are indispensable for the development of the mammalian brain. Consequently, mutations in the genes that encode the structural component (the α/β-tubulin heterodimer) can give rise to severe, sporadic neurodevelopmental disorders. These are commonly referred to as the tubulinopathies. Here we report the addition of recessive quadrupedalism, also known as Uner Tan syndrome (UTS), to the growing list of diseases caused by tubulin variants. Analysis of a consanguineous UTS family identified a biallelic TUBB2B mutation, resulting in a p.R390Q amino acid substitution. In addition to the identifying quadrupedal locomotion, all three patients showed severe cerebellar hypoplasia. None, however, displayed the basal ganglia malformations typically associated with TUBB2B mutations. Functional analysis of the R390Q substitution revealed that it did not affect the ability of β-tubulin to fold or become assembled into the α/β-heterodimer, nor did it influence the incorporation of mutant-containing heterodimers into microtubule polymers. The 390Q mutation in S. cerevisiae TUB2 did not affect growth under basal conditions, but did result in increased sensitivity to microtubule-depolymerizing drugs, indicative of a mild impact of this mutation on microtubule function. The TUBB2B mutation described here represents an unusual recessive mode of inheritance for missense-mediated tubulinopathies and reinforces the sensitivity of the developing cerebellum to microtubule defects.
Collapse
Affiliation(s)
- Martin W Breuss
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Thai Nguyen
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Anjana Srivatsan
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Ines Leca
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Guoling Tian
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| | - Tanja Fritz
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Andi H Hansen
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Damir Musaev
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Jennifer McEvoy-Venneri
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Kiely N James
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Rasim O Rosti
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Eric Scott
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Uner Tan
- Department of Physiology, Medical School, Cukurova University, Adana, Turkey and
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, Institute for Genomic Medicine and Moores-UCSD Cancer Center, San Diego, La Jolla, CA, USA
| | - Nicholas J Cowan
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| | - David A Keays
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Joseph G Gleeson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| |
Collapse
|
18
|
Azzarelli R, Oleari R, Lettieri A, Andre' V, Cariboni A. In Vitro, Ex Vivo and In Vivo Techniques to Study Neuronal Migration in the Developing Cerebral Cortex. Brain Sci 2017; 7:brainsci7050048. [PMID: 28448448 PMCID: PMC5447930 DOI: 10.3390/brainsci7050048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 11/16/2022] Open
Abstract
Neuronal migration is a fundamental biological process that underlies proper brain development and neuronal circuit formation. In the developing cerebral cortex, distinct neuronal populations, producing excitatory, inhibitory and modulatory neurotransmitters, are generated in different germinative areas and migrate along various routes to reach their final positions within the cortex. Different technical approaches and experimental models have been adopted to study the mechanisms regulating neuronal migration in the cortex. In this review, we will discuss the most common in vitro, ex vivo and in vivo techniques to visualize and study cortical neuronal migration.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Department of Oncology, University of Cambridge, Hutchison-MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, Milan 20133, Italy.
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, Milan 20133, Italy.
| | - Valentina Andre'
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, Milan 20133, Italy.
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, Milan 20133, Italy.
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
19
|
Breuss MW, Hansen AH, Landler L, Keays DA. Brain-specific knockin of the pathogenic Tubb5 E401K allele causes defects in motor coordination and prepulse inhibition. Behav Brain Res 2017; 323:47-55. [PMID: 28130172 DOI: 10.1016/j.bbr.2017.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 01/24/2023]
Abstract
The generation, migration, and differentiation of neurons requires the functional integrity of the microtubule cytoskeleton. Mutations in the tubulin gene family are known to cause various neurological diseases including lissencephaly, ocular motor disorders, polymicrogyria and amyotrophic lateral sclerosis. We have previously reported that mutations in TUBB5 cause microcephaly that is accompanied by severe intellectual impairment and motor delay. Here we present the characterization of a Tubb5 mouse model that allows for the conditional expression of the pathogenic E401K mutation. Homozygous knockin animals exhibit a severe reduction in brain size and in body weight. These animals do not show any significant impairment in general activity, anxiety, or in the acoustic startle response, however, present with notable defects in motor coordination. When assessed on the static rod apparatus mice took longer to orient and often lost their balance completely. Interestingly, mutant animals also showed defects in prepulse inhibition, a phenotype associated with sensorimotor gating and considered an endophenotype for schizophrenia. This study provides insight into the behavioral consequences of tubulin gene mutations.
Collapse
Affiliation(s)
- Martin W Breuss
- IMP, Research Institute of Molecular Pathology, Vienna 1030, Austria.
| | - Andi H Hansen
- IMP, Research Institute of Molecular Pathology, Vienna 1030, Austria
| | - Lukas Landler
- IMP, Research Institute of Molecular Pathology, Vienna 1030, Austria
| | - David A Keays
- IMP, Research Institute of Molecular Pathology, Vienna 1030, Austria.
| |
Collapse
|
20
|
ZIKA virus elicits P53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly. Cell Death Dis 2016; 7:e2440. [PMID: 27787521 PMCID: PMC5133962 DOI: 10.1038/cddis.2016.266] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 12/30/2022]
Abstract
Epidemiological evidence from the current outbreak of Zika virus (ZIKV) and recent studies in animal models indicate a strong causal link between ZIKV and microcephaly. ZIKV infection induces cell-cycle arrest and apoptosis in proliferating neural progenitors. However, the mechanisms leading to these phenotypes are still largely obscure. In this report, we explored the possible similarities between transcriptional responses induced by ZIKV in human neural progenitors and those elicited by three different genetic mutations leading to severe forms of microcephaly in mice. We found that the strongest similarity between all these conditions is the activation of common P53 downstream genes. In agreement with these observations, we report that ZIKV infection increases total P53 levels and nuclear accumulation, as well as P53 Ser15 phosphorylation, correlated with genotoxic stress and apoptosis induction. Interestingly, increased P53 activation and apoptosis are induced not only in cells expressing high levels of viral antigens but also in cells showing low or undetectable levels of the same proteins. These results indicate that P53 activation is an early and specific event in ZIKV-infected cells, which could result from cell-autonomous and/or non-cell-autonomous mechanisms. Moreover, we highlight a small group of P53 effector proteins that could act as critical mediators, not only in ZIKV-induced microcephaly but also in many genetic microcephaly syndromes.
Collapse
|
21
|
Breuss M, Fritz T, Gstrein T, Chan K, Ushakova L, Yu N, Vonberg FW, Werner B, Elling U, Keays DA. Mutations in the murine homologue of TUBB5 cause microcephaly by perturbing cell cycle progression and inducing p53-associated apoptosis. J Cell Sci 2016. [DOI: 10.1242/jcs.190165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|