1
|
Hu X, Cheng S, Liu S, Zhou M, Liu J, Wei J, Lan Y, Zhai Y, Luo X, Dong M, Xiong Z, Huang W, Zhao C. Fast shape memory function and personalized PLTMC/SIM/MBG composite scaffold for bone regeneration. Mater Today Bio 2025; 32:101791. [PMID: 40416784 PMCID: PMC12098156 DOI: 10.1016/j.mtbio.2025.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/27/2025] Open
Abstract
Orthopedic clinical practice faces significant challenges in treating critical-sized bone defects due to extensive tissue damage and prolonged healing. To address these limitations, this study integrated shape-memory polymers with 3D printing to engineer bioactive scaffolds composed of poly(l-lactide-co-trimethylene carbonate) (PLTMC), simvastatin (SIM), and mesoporous bioactive glass (MBG) via low-temperature rapid prototyping. The PLTMC/SIM/MBG composite scaffold exhibited exceptional porosity (78.5 % ± 1.5 %) and load-bearing compressive strength (66.33 ± 1.44 MPa at 30 % MBG). In addition, its thermoresponsive shape-memory behavior enabled intraoperative molding to precisely conform to defect geometries, while the sustained release of SIM and MBG ionic exchange together created a bioactive microenvironment. Mechanistically, the scaffold activated the Wnt pathway to enhance the osteogenic differentiation of mesenchymal stem cells, maintaining cytocompatibility. In vivo, directional bone regeneration occurred along the degradable scaffold, driven by synergistic topographical guidance from 3D-printed pores and biochemical cues from SIM and MBG. The shape-adaptive design preserved mechanical continuity with the host bone during remodeling. These results demonstrate a personalized solution for large defects, merging surgical adaptability through shape-memory functionality with bioactive efficacy via structural and biochemical synergy, overcoming the limitations of conventional implants in anatomical matching and regenerative performance.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610081, PR China
| | - Shengwen Cheng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Senrui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Minchang Zhou
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610081, PR China
| | - Junyan Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiaying Wei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Yixuan Lan
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610081, PR China
| | - Yu Zhai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaohong Luo
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610081, PR China
| | - Mingfei Dong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Zu Xiong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| | - Chen Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, 400016, Chongqing, PR China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
2
|
Ebihara S, Owada Y, Ono M. FGF7 as an essential mediator for the onset of ankylosing enthesitis related to psoriatic dermatitis. Life Sci Alliance 2025; 8:e202403073. [PMID: 39919800 PMCID: PMC11806258 DOI: 10.26508/lsa.202403073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
IL-17A plays an important role in the pathology of psoriasis and psoriatic arthritis (PsA). However, the pathogenic association between the skin and joint manifestations in PsA is not completely understood. In this study, we initially observed that IL-17A and FGF7 induced endochondral ossification in the mouse entheseal histoculture. Importantly, the responses of endochondral ossification by IL-17A stimulation were strongly inhibited by the treatment of a blocking antibody to FGF receptor 2IIIb, which is the receptor of FGF7, suggesting that FGF7 acts as a downstream factor of IL-17A in the endochondral ossification in the culture. Next, using the animal PsA model, the administration of an anti-FGF receptor 2IIIb antibody resulted in significant suppression of ankylosing enthesitis but not dermatitis. Collectively, our findings indicate that augmented IL-17A in PsA dermatitis induces the elevation of FGF7 levels in joint enthesis and results in a non-redundant role of FGF7 signaling in the development of ankylosing enthesitis in PsA.
Collapse
Affiliation(s)
- Shin Ebihara
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masao Ono
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Clinical Laboratory, National Hospital Organization Mito Medical Center, Ibaraki-machi, Japan
| |
Collapse
|
3
|
Mathavan N, Singh A, Marques FC, Günther D, Kuhn GA, Wehrle E, Müller R. Spatial transcriptomics in bone mechanomics: Exploring the mechanoregulation of fracture healing in the era of spatial omics. SCIENCE ADVANCES 2025; 11:eadp8496. [PMID: 39742473 DOI: 10.1126/sciadv.adp8496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
In recent decades, the field of bone mechanobiology has sought experimental techniques to unravel the molecular mechanisms governing the phenomenon of mechanically regulated fracture healing. Each cell within a fracture site resides within different local microenvironments characterized by different levels of mechanical strain; thus, preserving the spatial location of each cell is critical in relating cellular responses to mechanical stimuli. Our spatial transcriptomics-based "mechanomics" platform facilitates spatially resolved analysis of the molecular profiles of cells with respect to their local in vivo mechanical environment by integrating time-lapsed in vivo micro-computed tomography, spatial transcriptomics, and micro-finite element analysis. We investigate the transcriptomic responses of cells as a function of the local strain magnitude by identifying the differential expression of genes in regions of high and low strain within a fracture site. Our platform thus has the potential to address fundamental open questions within the field and to discover mechano-responsive targets to enhance fracture healing.
Collapse
Affiliation(s)
| | - Amit Singh
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Denise Günther
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
King JS, Wan M, Wagley Y, Stestiv M, Kalajzic I, Hankenson KD, Sanjay A. Signaling pathways associated with Lgr6 to regulate osteogenesis. Bone 2024; 187:117207. [PMID: 39033993 DOI: 10.1016/j.bone.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Fracture management largely relies on the bone's inherent healing capabilities and, when necessary, surgical intervention. Currently, there are limited osteoinductive therapies to promote healing, making targeting skeletal stem/progenitor cells (SSPCs) a promising avenue for therapeutic development. A limiting factor for this approach is our incomplete understanding of the molecular mechanisms governing SSPCs' behavior. We have recently identified that the Leucine-rich repeat-containing G-protein coupled receptor 6 (Lgr6) is expressed in sub-populations of SSPCs, and is required for maintaining bone volume during adulthood and for proper fracture healing. Lgr family members (Lgr4-6) are markers of stem cell niches and play a role in tissue regeneration primarily by binding R-Spondin (Rspo1-4). This interaction promotes canonical Wnt (cWnt) signaling by stabilizing Frizzled receptors. Interestingly, our findings here indicate that Lgr6 may also influence cWnt-independent pathways. Remarkably, Lgr6 expression was enhanced during Bmp-mediated osteogenesis of both human and murine cells. Using biochemical approaches, RNA sequencing, and bioinformatic analysis of published single-cell data, we found that elements of BMP signaling, including its target gene, pSMAD, and gene ontology pathways, are downregulated in the absence of Lgr6. Our findings uncover a molecular interdependency between the Bmp pathway and Lgr6, offering new insights into osteogenesis and potential targets for enhancing fracture healing.
Collapse
Affiliation(s)
- Justin S King
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Matthew Wan
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Marta Stestiv
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Archana Sanjay
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA.
| |
Collapse
|
5
|
Hemati S, Hatamian-Zarmi A, Halabian R, Ghiasi M, Salimi A. Schizophyllan promotes osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Mol Biol Rep 2023; 50:10037-10045. [PMID: 37902909 DOI: 10.1007/s11033-023-08877-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Bioactive polysaccharides are a promising way for bone disease prevention with high efficiency. Schizophyllan (SPG) is a polysaccharide derived from a species of fungus with anticancer, antitumor, and anti-inflammatory effects. In the present study, for the first time, the cell proliferation, osteogenic markers, mineral deposition, and osteogenic gene expression of human adipose tissue-derived mesenchymal stem cells (hADMSCs) grown on SPG were evaluated by in vitro assays. METHODS AND RESULTS The cytotoxicity of SPG was measured using the MTT assay and acridine orange staining. Differentiation of hADMSCs was assessed using alkaline phosphatase (ALP) activity test, cellular calcium content assay, and mineralized matrix staining. To this end, Alizarin red S, von Kossa staining, and the expression of bone-specific markers, including ALP, Runx2, and osteonectin, were used by real-time RT-PCR over a 2-week period. According to the results, SPG at 10 µg/ml concentration was determined as the optimal dosage for differentiation studies. The results of osteogenic differentiation tests showed that compared to the control groups in vitro, SPG enhanced the osteogenic markers and mineralization as well as upregulation of the expression of bone specific genes in differentiated hADMSCs during differentiation. CONCLUSIONS The results revealed that SPG could be applied as effective factor for osteogenic differentiation in the future. The current study provides insights into the hADMSC-based treatment and introduces promising therapeutic material for individuals who suffer from bone defects and injuries.
Collapse
Affiliation(s)
- Saideh Hemati
- Department of Cellular and Molecular Biology, Faculty of Biology, Science and Research Branch of Islamic Azad University, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Riege D, Herschel S, Heintze L, Fenkl T, Wesseler F, Sievers S, Peifer C, Schade D. Identification of Maleimide-Fused Carbazoles as Novel Noncanonical Bone Morphogenetic Protein Synergizers. ACS Pharmacol Transl Sci 2023; 6:1207-1220. [PMID: 37588754 PMCID: PMC10426274 DOI: 10.1021/acsptsci.3c00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 08/18/2023]
Abstract
Morphogenic signaling pathways govern embryonic development and tissue homeostasis on the cellular level. Precise control of such signaling events paves the way for innovative therapeutic approaches in the field of regenerative medicine. In line with these notions, bone morphogenic protein (BMP) is a major osteogenic driver and pharmacological stimulation of BMP signaling holds supreme potential for diseases and defects of the skeleton. Efforts to identify small-molecule modalities that activate or potentiate the BMP pathway have primarily been focused on the canonical signaling cascade. Here, we describe the phenotypic identification and development of specific carbazolomaleimides 2 as novel noncanonical BMP synergizers with submicromolar osteogenic cellular potency. The devised chemical tools are characterized to specifically regulate Id gene expression in a SMAD-independent, yet highly BMP-dependent fashion. Mechanistic studies revealed that GSK3 inhibition and increased β-catenin levels are partly responsible for this activity. The utility of the new BMP synergizer profile was further exemplified by showing how the synergistic action of canonical and noncanonical BMP enhancers additively amplifies BMP-dependent osteogenic outputs. Carbazolomaleimide 2b serves as a new and unique pharmacological tool for the modulation and study of the BMP pathway.
Collapse
Affiliation(s)
- Daniel Riege
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Sven Herschel
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Linda Heintze
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Teresa Fenkl
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Fabian Wesseler
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Sonja Sievers
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Christian Peifer
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Dennis Schade
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Partner Site Kiel, DZHK,
German Center for Cardiovascular Research, 24105
Kiel, Germany
| |
Collapse
|
7
|
Duan J, Li H, Wang C, Yao J, Jin Y, Zhao J, Zhang Y, Liu M, Sun H. BMSC-derived extracellular vesicles promoted osteogenesis via Axin2 inhibition by delivering MiR-16-5p. Int Immunopharmacol 2023; 120:110319. [PMID: 37216799 DOI: 10.1016/j.intimp.2023.110319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/15/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Osteoporosis (OP) is a systemic bone disease caused by an imbalance in osteogenesis and osteoclastic resorption. Extracellular vesicles (EVs)-encapsulated miRNAs from bone mesenchymal stem cells (BMSCs) have been reported to participate in osteogenesis. MiR-16-5p is one of the miRNAs that regulates osteogenic differentiation; however, studies have shown that its role in osteogenesis is controversial. Thus, this study aims to investigate the role of miR-16-5p from BMSC-derived extracellular vesicles (EVs) in osteogenic differentiation and uncover the underlying mechanisms. In this study, we used an ovariectomized (OVX) mouse model and an H2O2-treated BMSCs model to investigate the effects of BMSC-derived EVs and EV-encapsulated miR-16-5p on OP and the underlying mechanisms. Our results proved that the miR-16-5p level was significantly decreased in H2O2-treated BMSCs, bone tissues of OVX mice, and lumbar lamina tissues from osteoporotic women. EVs-encapsulated miR-16-5p from BMSCs could promote osteogenic differentiation. Moreover, the miR-16-5p mimics promoted osteogenic differentiation of H2O2-treated BMSCs, and the effects exerted by miR-16-5p were mediated by targeting Axin2, a scaffolding protein of GSK3β that negatively regulates the Wnt/β-catenin signaling pathway. This study provides evidence that EVs-encapsulated miR-16-5p from BMSCs could promote osteogenic differentiation by repressing Axin2.
Collapse
Affiliation(s)
- Jiaxin Duan
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Hao Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China; Academy of Integrative Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China.
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Jialin Yao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Jianyu Zhao
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Yukun Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Department of Basic Medicine, Chongqing Three Gorges Medical College, Wanzhou, Chongqing, China.
| | - Mozhen Liu
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China; Academy of Integrative Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China.
| |
Collapse
|
8
|
Parisi L, Mockenhaupt C, Rihs S, Mansour F, Katsaros C, Degen M. Consistent downregulation of the cleft lip/palate-associated genes IRF6 and GRHL3 in carcinomas. Front Oncol 2022; 12:1023072. [PMID: 36457487 PMCID: PMC9706198 DOI: 10.3389/fonc.2022.1023072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2023] Open
Abstract
Interferon Regulatory Factor 6 (IRF6) and Grainyhead Like Transcription Factor 3 (GRHL3) are transcription factors that orchestrate gene regulatory networks required for the balance between keratinocyte differentiation and proliferation. Absence of either protein results in the lack of a normal stratified epidermis with keratinocytes failing to stop proliferating and to terminally differentiate. Numerous pathological variants within IRF6 and GRHL3 have been identified in orofacial cleft-affected individuals and expression of the two transcription factors has been found to be often dysregulated in cancers. However, whether orofacial cleft-associated IRF6 and GRHL3 variants in patients might also affect their cancer risk later in life, is not clear yet. The fact that the role of IRF6 and GRHL3 in cancer remains controversial makes this question even more challenging. Some studies identified IRF6 and GRHL3 as oncogenes, while others could attribute tumor suppressive functions to them. Trying to solve this apparent conundrum, we herein aimed to characterize IRF6 and GRHL3 function in various types of carcinomas. We screened multiple cancer and normal cell lines for their expression, and subsequently proceeded with functional assays in cancer cell lines. Our data uncovered consistent downregulation of IRF6 and GRHL3 in all types of carcinomas analyzed. Reduced levels of IRF6 and GRHL3 were found to be associated with several tumorigenic properties, such as enhanced cell proliferation, epithelial mesenchymal transition, migration and reduced differentiation capacity. Based on our findings, IRF6 and GRHL3 can be considered as tumor suppressor genes in various carcinomas, which makes them potential common etiological factors for cancer and CLP in a fraction of CLP-affected patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Okagu IU, Ezeorba TPC, Aguchem RN, Ohanenye IC, Aham EC, Okafor SN, Bollati C, Lammi C. A Review on the Molecular Mechanisms of Action of Natural Products in Preventing Bone Diseases. Int J Mol Sci 2022; 23:ijms23158468. [PMID: 35955603 PMCID: PMC9368769 DOI: 10.3390/ijms23158468] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
The drugs used for treating bone diseases (BDs), at present, elicit hazardous side effects that include certain types of cancers and strokes, hence the ongoing quest for the discovery of alternatives with little or no side effects. Natural products (NPs), mainly of plant origin, have shown compelling promise in the treatments of BDs, with little or no side effects. However, the paucity in knowledge of the mechanisms behind their activities on bone remodeling has remained a hindrance to NPs’ adoption. This review discusses the pathological development of some BDs, the NP-targeted components, and the actions exerted on bone remodeling signaling pathways (e.g., Receptor Activator of Nuclear Factor κ B-ligand (RANKL)/monocyte/macrophage colony-stimulating factor (M-CSF)/osteoprotegerin (OPG), mitogen-activated protein kinase (MAPK)s/c-Jun N-terminal kinase (JNK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1), Bone Morphogenetic Protein 2 (BMP2)-Wnt/β-catenin, PhosphatidylInositol 3-Kinase (PI3K)/protein kinase B (Akt)/Glycogen Synthase Kinase 3 Beta (GSK3β), and other signaling pathways). Although majority of the studies on the osteoprotective properties of NPs against BDs were conducted ex vivo and mostly on animals, the use of NPs for treating human BDs and the prospects for future development remain promising.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Timothy P. C. Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Rita N. Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Ikenna C. Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Emmanuel C. Aham
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sunday N. Okafor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria;
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-02-5031-9372
| |
Collapse
|
10
|
Gasperoni JG, Fuller JN, Darido C, Wilanowski T, Dworkin S. Grainyhead-like (Grhl) Target Genes in Development and Cancer. Int J Mol Sci 2022; 23:ijms23052735. [PMID: 35269877 PMCID: PMC8911041 DOI: 10.3390/ijms23052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Grainyhead-like (GRHL) factors are essential, highly conserved transcription factors (TFs) that regulate processes common to both natural cellular behaviours during embryogenesis, and de-regulation of growth and survival pathways in cancer. Serving to drive the transcription, and therefore activation of multiple co-ordinating pathways, the three GRHL family members (GRHL1-3) are a critical conduit for modulating the molecular landscape that guides cellular decision-making processes during proliferation, epithelial-mesenchymal transition (EMT) and migration. Animal models and in vitro approaches harbouring GRHL loss or gain-of-function are key research tools to understanding gene function, which gives confidence that resultant phenotypes and cellular behaviours may be translatable to humans. Critically, identifying and characterising the target genes to which these factors bind is also essential, as they allow us to discover and understand novel genetic pathways that could ultimately be used as targets for disease diagnosis, drug discovery and therapeutic strategies. GRHL1-3 and their transcriptional targets have been shown to drive comparable cellular processes in Drosophila, C. elegans, zebrafish and mice, and have recently also been implicated in the aetiology and/or progression of a number of human congenital disorders and cancers of epithelial origin. In this review, we will summarise the state of knowledge pertaining to the role of the GRHL family target genes in both development and cancer, primarily through understanding the genetic pathways transcriptionally regulated by these factors across disparate disease contexts.
Collapse
Affiliation(s)
- Jemma G. Gasperoni
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Jarrad N. Fuller
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Charbel Darido
- The Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
- Correspondence:
| |
Collapse
|
11
|
Lopez-Letayf S, Arie I, Araidy S, Abu El-Naaj I, Pitaru S, Arzate H. Human oral mucosa-derived neural crest-like stem cells differentiate into functional osteoprogenitors that contribute to regeneration of critical size calvaria defects. J Periodontal Res 2021; 57:305-315. [PMID: 34839539 DOI: 10.1111/jre.12960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Regeneration of large bony defects is an unmet medical need. The therapeutic effect of fully developed bony constructs engineered in vitro from mineralized scaffold and adult stem cells is hampered by deficient long-term graft integration. The purpose of the present study was to investigate the regenerative capacity of a bony primordial construct consisting of human oral mucosa stem cells (hOMSC)-derived osteoprogenitors and absorbable Gelfoam® sponges. METHODS Gingiva and alveolar mucosa-derived hOMSC were differentiated into osteoprogenitors (Runx2 and osterix positive) and loaded into Gelfoam® sponges to generate primordial hOMSC constructs. These were implanted into critical size calvaria defects in the rat. Defects treated with human dermal fibroblasts (HDF) constructs; Gelfoam® sponges and untreated defects served as controls. RESULTS After 120-day post-implantation defects treated with hOMSC constructs, HDF constructs and gelatin and untreated defects exhibited 86%, 30%, 21%, and 9% of new bone formation, respectively. Immunofluorescence analysis for human nuclear antigen (HNA), bone sialoprotein (BSP), and osteocalcin (OCN) revealed viable hOMSC-derived osteoblasts and osteocytes that formed most of the cell population of the newly formed bone at 30 and 120 days post surgery. Few HNA-positive HDF that were negative for BSP and OCN were identified together with inflammatory cells in the soft tissue adjacent to new bone formation only at 30 days post implantation. CONCLUSION Collectively, the results demonstrate that primordial in vitro engineered constructs consisting of hOMSC-derived osteoprogenitors and absorbable gelatin almost completely regenerate critical size defects in an immunocompetent xenogeneic animal by differentiating into functional osteoblasts that retain the immunomodulatory ability of naïve hOMSC.
Collapse
Affiliation(s)
- Sonia Lopez-Letayf
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Cd. Universitaria, Mexico City, Mexico
| | - Ina Arie
- Department of Oral Biology, School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shareef Araidy
- Department of Cranio-Maxillofacial Surgery, Baruch Padeh Medical Center, Poria, Israel
| | - Imad Abu El-Naaj
- Department of Cranio-Maxillofacial Surgery, Baruch Padeh Medical Center, Poria, Israel
| | - Sandu Pitaru
- Department of Oral Biology, School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Higinio Arzate
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Cd. Universitaria, Mexico City, Mexico
| |
Collapse
|
12
|
Miyamoto S, Yoshikawa H, Nakata K. Axial mechanical loading to ex vivo mouse long bone regulates endochondral ossification and endosteal mineralization through activation of the BMP-Smad pathway during postnatal growth. Bone Rep 2021; 15:101088. [PMID: 34141832 PMCID: PMC8188257 DOI: 10.1016/j.bonr.2021.101088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/19/2021] [Accepted: 05/01/2021] [Indexed: 01/12/2023] Open
Abstract
Mechanical loading contributes to bone development, growth, and metabolism. However, the mechanisms underlying long bone mineralization via changes in loading during the growth period are unclear. The aim of the present study was to investigate the regulatory mechanisms underlying endochondral ossification and endosteal mineralization by developing an ex vivo organ culture model with cyclic axial mechanical loads. The metacarpal bones of 3-week-old C57BL/6 mice were exposed to mechanical loading (0, 7.8, and 78 mN) for 1 h/day for 4 days. Histomorphometry revealed that axial mechanical loading regulated the thickness of the calcified zone in the growth plate and endosteal mineralization in the diaphysis in a load-dependent manner. Mechanical loading also resulted in load-dependent upregulation of endochondral ossification and bone mineralization-related genes, including bone morphogenetic protein 2 (Bmp2). Recombinant human BMP-2 administration caused similar changes in tissue structures. Conversely, inhibition of the BMP-Smad pathway diminished the stimulatory effects of mechanical loading and BMP-2 administration, suggesting that the effects of mechanical loading may be exerted through activation of the BMP-Smad pathway with the results of gene ontology and pathway analyses. Mechanical loading increased alkaline phosphatase activity and decreased carbonic anhydrase IX (Car9) mRNA expression, resulting in a significant pH increase in the culture supernatant. We hypothesize that, through activation of the BMP-Smad pathway, mechanical loading downregulates Car9, which may alkalize the local milieu, thereby inducing bone formation and long bone mineralization. Our results showed that cyclic axial mechanical loading increased endochondral ossification and endosteal mineralization in developing mouse long bones, which may have resulted from changes in the pH, ALP activity, and Pi/PPi of the extracellular environment. These findings advance our understanding of the regulation of mineralization mechanisms by mechanical loading mediated through activation of the BMP-Smad pathway.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Ken Nakata
- Medicine for Sports and Performing Arts, Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Yu S, Guo J, Sun Z, Lin C, Tao H, Zhang Q, Cui Y, Zuo H, Lin Y, Chen S, Liu H, Chen Z. BMP2-dependent gene regulatory network analysis reveals Klf4 as a novel transcription factor of osteoblast differentiation. Cell Death Dis 2021; 12:197. [PMID: 33608506 PMCID: PMC7895980 DOI: 10.1038/s41419-021-03480-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Transcription factors (TFs) regulate the expression of target genes, inducing changes in cell morphology or activities needed for cell fate determination and differentiation. The BMP signaling pathway is widely regarded as one of the most important pathways in vertebrate skeletal biology, of which BMP2 is a potent inducer, governing the osteoblast differentiation of bone marrow stromal cells (BMSCs). However, the mechanism by which BMP2 initiates its downstream transcription factor cascade and determines the direction of differentiation remains largely unknown. In this study, we used RNA-seq, ATAC-seq, and animal models to characterize the BMP2-dependent gene regulatory network governing osteoblast lineage commitment. Sp7-Cre; Bmp2fx/fx mice (BMP2-cKO) were generated and exhibited decreased bone density and lower osteoblast number (n > 6). In vitro experiments showed that BMP2-cKO mouse bone marrow stromal cells (mBMSCs) had an impact on osteoblast differentiation and deficient cell proliferation. Osteogenic medium induced mBMSCs from BMP2-cKO mice and control were subjected to RNA-seq and ATAC-seq analysis to reveal differentially expressed TFs, along with their target open chromatin regions. Combined with H3K27Ac CUT&Tag during osteoblast differentiation, we identified 2338 BMP2-dependent osteoblast-specific active enhancers. Motif enrichment assay revealed that over 80% of these elements were directly targeted by RUNX2, DLX5, MEF2C, OASIS, and KLF4. We deactivated Klf4 in the Sp7 + lineage to validate the role of KLF4 in osteoblast differentiation of mBMSCs. Compared to the wild-type, Sp7-Cre; Klf4fx/+ mice (KLF4-Het) were smaller in size and had abnormal incisors resembling BMP2-cKO mice. Additionally, KLF4-Het mice had fewer osteoblasts and decreased osteogenic ability. RNA-seq and ATAC-seq revealed that KLF4 mainly "co-bound" with RUNX2 to regulate downstream genes. Given the significant overlap between KLF4- and BMP2-dependent NFRs and enriched motifs, our findings outline a comprehensive BMP2-dependent gene regulatory network specifically governing osteoblast differentiation of the Sp7 + lineage, in which Klf4 is a novel transcription factor.
Collapse
Affiliation(s)
- Shuaitong Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jinqiang Guo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zheyi Sun
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chujiao Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huangheng Tao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qian Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu Cui
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuxiu Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Liu S, Wang C, Bai J, Li X, Yuan J, Shi Z, Mao N. Involvement of circRNA_0007059 in the regulation of postmenopausal osteoporosis by promoting the microRNA-378/BMP-2 axis. Cell Biol Int 2020; 45:447-455. [PMID: 33200464 DOI: 10.1002/cbin.11502] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023]
Abstract
Increasing evidence suggests that postmenopausal osteoporosis (PMO), a severe disturbance, imposes heavy physical, psychosocial, and financial burdens and dramatically influences the quality of life of postmenopausal women. Circular RNAs (circRNAs) and microRNAs (miRs) play important roles in the occurrence and development of PMO. However, the roles of circRNAs and miRs in osteoporosis regulation still need to be further investigated. circRNAs with different expression levels in patients with PMO were screened via RNA-seq and bioinformatics analysis. We found that circ_0007059 was upregulated in patients with PMO and during osteoclastogenesis of human bone marrow stromal cells (hBMSCs). Next, we investigated the effect of circ_0007059 overexpression during osteoclastogenesis of hBMSCs. circ_0007059 overexpression attenuated hBMSC differentiation into osteoclasts in vitro. This was demonstrated by downregulated bone morphogenetic protein 2 (BMP-2) expression, upregulated osteoclast-specific gene expression, and TRAP staining. circ_0007059 was demonstrated to directly target miR-378, which in turn targeted BMP-2 via bioinformatics analysis and the dual-luciferase reporter assay. Transfection of the miR-378 mimic reversed the effect of circ_0007059 on the osteoclastogenesis of hBMSCs. These results suggest that circ_0007059 plays an important role in osteoclastogenesis via the miR-378/BMP-2 signaling pathway. Targeting the circ_0007059/miR-378/BMP-2 axis is possibly a novel idea in osteoporosis treatment.
Collapse
Affiliation(s)
- Shu Liu
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chao Wang
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jinyi Bai
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoming Li
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jiabin Yuan
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhicai Shi
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ningfang Mao
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
15
|
Li X, Ren G, Cai C, Yang X, Nie L, Jing X, Li C. TNF‑α regulates the osteogenic differentiation of bone morphogenetic factor 9 adenovirus‑transduced rat follicle stem cells via Wnt signaling. Mol Med Rep 2020; 22:3141-3150. [PMID: 32945435 PMCID: PMC7453510 DOI: 10.3892/mmr.2020.11439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
Periodontitis is a chronic infectious disease that alters the cellular microenvironment and promotes bone absorption. Bone morphogenetic protein 9 (BMP9) serves an important role in proliferation and differentiation, and tumor necrosis factor‑alpha (TNF‑α) is an important contributor to bone resorption. The present study aimed to investigate the effect of osteogenic differentiation in the presence of BMP9 and TNF‑α in rat follicle stem cells (rDFCs). rDFCs were transfected with adenoviruses expressing BMP9 (AdBMP9) and the expression levels of important proteins [BMP9, β‑catenin, glycogen synthase kinase 3β (GSK3β), phosphorylated‑GSK3β, calcium/calmodulin dependent protein kinase II and nemo like kinase] were determined using western blotting. The effect of osteogenesis was analyzed using reverse transcription‑quantitative PCR, in addition to alkaline phosphatase, Alizarin Red S, and hematoxylin and eosin staining methods. The results of the present study revealed that TNF‑α activated the canonical Wnt signaling pathway and suppressed osteogenesis. High concentrations of Dickkopf 1 (DKK1) reduced the osteogenic differentiation of AdBMP9‑transduced rDFCs, whereas low concentrations of DKK1 promoted BMP9‑induced bone formation, which was discovered to partially act via the canonical and non‑canonical Wnt signaling pathways. In conclusion, the findings of the present study suggested that the enhanced promoting effect of BMP9 alongside the treatment with low concentrations of DKK1 may be useful for treating periodontitis bone absorption.
Collapse
Affiliation(s)
- Xinyue Li
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Ge Ren
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Changjun Cai
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Xia Yang
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Li Nie
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Xueqin Jing
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Conghua Li
- Department of Outpatients, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
16
|
Lyons DC, Perry KJ, Batzel G, Henry JQ. BMP signaling plays a role in anterior-neural/head development, but not organizer activity, in the gastropod Crepidula fornicata. Dev Biol 2020; 463:135-157. [PMID: 32389712 PMCID: PMC7444637 DOI: 10.1016/j.ydbio.2020.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
BMP signaling is involved in many aspects of metazoan development, with two of the most conserved functions being to pattern the dorsal-ventral axis and to specify neural versus epidermal fates. An active area of research within developmental biology asks how BMP signaling was modified over evolution to build disparate body plans. Animals belonging to the superclade Spiralia/Lophotrochozoa are excellent experimental subjects for studying the evolution of BMP signaling because a highly conserved, stereotyped early cleavage program precedes the emergence of distinct body plans. In this study we examine the role of BMP signaling in one representative, the slipper snail Crepidula fornicata. We find that mRNAs encoding BMP pathway components (including the BMP ligand decapentaplegic, and BMP antagonists chordin and noggin-like proteins) are not asymmetrically localized along the dorsal-ventral axis in the early embryo, as they are in other species. Furthermore, when BMP signaling is perturbed by adding ectopic recombinant BMP4 protein, or by treating embryos with the selective Activin receptor-like kinase-2 (ALK-2) inhibitor Dorsomorphin Homolog 1 (DMH1), we observe no obvious effects on dorsal-ventral patterning within the posterior (post-trochal) region of the embryo. Instead, we see effects on head development and the balance between neural and epidermal fates specifically within the anterior, pre-trochal tissue derived from the 1q1 lineage. Our experiments define a window of BMP signaling sensitivity that ends at approximately 44-48 hours post fertilization, which occurs well after organizer activity has ended and after the dorsal-ventral axis has been determined. When embryos were exposed to BMP4 protein during this window, we observed morphogenetic defects leading to the separation of the anterior, 1q lineage from the rest of the embryo. The 1q-derived organoid remained largely undifferentiated and was radialized, while the post-trochal portion of the embryo developed relatively normally and exhibited clear signs of dorsal-ventral patterning. When embryos were exposed to DMH1 during the same time interval, we observed defects in the head, including protrusion of the apical plate, enlarged cerebral ganglia and ectopic ocelli, but otherwise the larvae appeared normal. No defects in shell development were noted following DMH1 treatments. The varied roles of BMP signaling in the development of several other spiralians have recently been examined. We discuss our results in this context, and highlight the diversity of developmental mechanisms within spiral-cleaving animals.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Scripps Institution of Oceanography, U.C. San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Kimberly J Perry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Grant Batzel
- Scripps Institution of Oceanography, U.C. San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jonathan Q Henry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
17
|
Seeherman HJ, Berasi SP, Brown CT, Martinez RX, Juo ZS, Jelinsky S, Cain MJ, Grode J, Tumelty KE, Bohner M, Grinberg O, Orr N, Shoseyov O, Eyckmans J, Chen C, Morales PR, Wilson CG, Vanderploeg EJ, Wozney JM. A BMP/activin A chimera is superior to native BMPs and induces bone repair in nonhuman primates when delivered in a composite matrix. Sci Transl Med 2020; 11:11/489/eaar4953. [PMID: 31019025 DOI: 10.1126/scitranslmed.aar4953] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/19/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic protein (BMP)/carriers approved for orthopedic procedures achieve efficacy superior or equivalent to autograft bone. However, required supraphysiological BMP concentrations have been associated with potential local and systemic adverse events. Suboptimal BMP/receptor binding and rapid BMP release from approved carriers may contribute to these outcomes. To address these issues and improve efficacy, we engineered chimeras with increased receptor binding by substituting BMP-6 and activin A receptor binding domains into BMP-2 and optimized a carrier for chimera retention and tissue ingrowth. BV-265, a BMP-2/BMP-6/activin A chimera, demonstrated increased binding affinity to BMP receptors, including activin-like kinase-2 (ALK2) critical for bone formation in people. BV-265 increased BMP intracellular signaling, osteogenic activity, and expression of bone-related genes in murine and human cells to a greater extent than BMP-2 and was not inhibited by BMP antagonist noggin or gremlin. BV-265 induced larger ectopic bone nodules in rats compared to BMP-2 and was superior to BMP-2, BMP-2/6, and other chimeras in nonhuman primate bone repair models. A composite matrix (CM) containing calcium-deficient hydroxyapatite granules suspended in a macroporous, fenestrated, polymer mesh-reinforced recombinant human type I collagen matrix demonstrated improved BV-265 retention, minimal inflammation, and enhanced handling. BV-265/CM was efficacious in nonhuman primate bone repair models at concentrations ranging from 1/10 to 1/30 of the BMP-2/absorbable collagen sponge (ACS) concentration approved for clinical use. Initial toxicology studies were negative. These results support evaluations of BV-265/CM as an alternative to BMP-2/ACS in clinical trials for orthopedic conditions requiring augmented healing.
Collapse
Affiliation(s)
| | - Stephen P Berasi
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, MA 02115, USA
| | | | - Robert X Martinez
- Department of Inflammation and Immunology, Pfizer Inc., Cambridge, MA 02139, USA
| | - Z Sean Juo
- Biomedical Design, Pfizer Inc., Cambridge, MA 02139, USA
| | - Scott Jelinsky
- Department of Inflammation and Immunology, Pfizer Inc., Cambridge, MA 02139, USA
| | - Michael J Cain
- Department of Inflammation and Immunology, Pfizer Inc., Cambridge, MA 02139, USA
| | - Jaclyn Grode
- Bioventus Surgical, Bioventus LLC, Boston, MA 02215, USA
| | | | - Marc Bohner
- Robert Mathys Stiftung (RMS) Foundation, Bettlach 2544, Switzerland
| | | | - Nadav Orr
- CollPlant Ltd., Ness Ziona 74140, Israel
| | | | - Jeroen Eyckmans
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Christopher Chen
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | | | | | | | - John M Wozney
- Bioventus Surgical, Bioventus LLC, Boston, MA 02215, USA
| |
Collapse
|
18
|
Yu W, Zhang H, A L, Yang S, Zhang J, Wang H, Zhou Z, Zhou Y, Zhao J, Jiang Z. Enhanced bioactivity and osteogenic property of carbon fiber reinforced polyetheretherketone composites modified with amino groups. Colloids Surf B Biointerfaces 2020; 193:111098. [PMID: 32498001 DOI: 10.1016/j.colsurfb.2020.111098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
Polyetheretherketone (PEEK) is considered as a potential dental and orthopedic implant material owing to its favorable thermal and chemical stability, biocompatibility and mechanical properties. However, the inherent bio-inert and inferior osseointegration of PEEK have hampered its clinical application. In addition, carbon fiber is widely used as a filler to reinforce polymers for sturdy composites owing to its high strength, modulus, etc. In the study, carbon fiber reinforced PEEK (CPEEK) composites were fabricated and modified with amino groups by plasma-enhanced chemical vapor deposition surface modification technique. The surface characterization of composites was evaluated by FE-SEM, EDS, AFM, Water contact angle, XPS and FTIR, which revealed that amino groups were successfully incorporated on the modified CPEEK surface and significantly increased the hydrophilicity. In vitro study, cell adhesion, proliferation, ALP activity, ECM mineralization, real-time PCR analysis, and ELISA analysis showed the adhesion, proliferation and osteogenic differentiation of MG-63 cells on the amino group-modified CPEEK surface were higher than the CPEEK, equal to or better than pure titanium. Hence, the results indicated that the amino group-modified CPEEK possessed enhanced bioactivity and osteogenic property, which may be a potential candidate material for dental implants.
Collapse
Affiliation(s)
- Wanqi Yu
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Haibo Zhang
- Engineering Research Center of High Performance Plastic, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lan A
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shihui Yang
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jingjie Zhang
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Hanchi Wang
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhe Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yanmin Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jinghui Zhao
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China.
| | - Zhenhua Jiang
- Engineering Research Center of High Performance Plastic, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
19
|
Zhu S, Bennett S, Kuek V, Xiang C, Xu H, Rosen V, Xu J. Endothelial cells produce angiocrine factors to regulate bone and cartilage via versatile mechanisms. Am J Cancer Res 2020; 10:5957-5965. [PMID: 32483430 PMCID: PMC7255007 DOI: 10.7150/thno.45422] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Blood vessels are conduits distributed throughout the body, supporting tissue growth and homeostasis by the transport of cells, oxygen and nutrients. Endothelial cells (ECs) form the linings of the blood vessels, and together with pericytes, are essential for organ development and tissue homeostasis through producing paracrine signalling molecules, called angiocrine factors. In the skeletal system, ECs - derived angiocrine factors, combined with bone cells-released angiogenic factors, orchestrate intercellular crosstalk of the bone microenvironment, and the coupling of angiogenesis-to-osteogenesis. Whilst the involvement of angiogenic factors and the blood vessels of the skeleton is relatively well established, the impact of ECs -derived angiocrine factors on bone and cartilage homeostasis is gradually emerging. In this review, we survey ECs - derived angiocrine factors, which are released by endothelial cells of the local microenvironment and by distal organs, and act specifically as regulators of skeletal growth and homeostasis. These may potentially include angiocrine factors with osteogenic property, such as Hedgehog, Notch, WNT, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), insulin-like growth factor (IGF), and platelet-derived growth factor (PDGF). Understanding the versatile mechanisms by which ECs-derived angiocrine factors orchestrate bone and cartilage homeostasis, and pathogenesis, is an important step towards the development of therapeutic potential for skeletal diseases.
Collapse
|
20
|
Hong W, Zhang W. Hesperidin promotes differentiation of alveolar osteoblasts via Wnt/β-Catenin signaling pathway. J Recept Signal Transduct Res 2020; 40:442-448. [PMID: 32308087 DOI: 10.1080/10799893.2020.1752718] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wei Hong
- Department of Stomatology, Jingmen No.1 People’s Hospital, Jingmen, China
| | - Wenjie Zhang
- Department of Stomatology, Jingmen No.1 People’s Hospital, Jingmen, China
| |
Collapse
|
21
|
Xiong Y, Chen L, Yan C, Endo Y, Mi B, Liu G. The lncRNA Rhno1/miR-6979-5p/BMP2 Axis Modulates Osteoblast Differentiation. Int J Biol Sci 2020; 16:1604-1615. [PMID: 32226305 PMCID: PMC7097916 DOI: 10.7150/ijbs.38930] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
The roles of long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs) as regulators of mRNA expression in various diseases have recently been reported. Osteoblast differentiation is the vital process which mediates bone formation and fracture healing. In present study, we found microRNA-6979-5p (miR-6979-5p) to be the most differentially expressed miRNA between normal bone and calluses of mice, and overexpression of miR-6979-5p was negatively associated with osteoblast differentiation. Through luciferase assays, we found evidence that bone morphogenetic protein 2 (BMP2) is a miR-6979-5p target gene that positively regulates osteoblast differentiation. We further identified the lncRNA Rhno1 as a competing endogenous RNA (ceRNA) of miR-6979-5p, and we verified that it was able to influence osteoblast differentiation both in vitro and in vivo. In summary, our data indicates that the lncRNA Rhno1/miR-6979-5p/BMP2 axis is a significant regulatory mechanism controlling osteoblast differentiation, and it may thus offer a novel therapeutic strategy for fracture healing.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, 02215, USA
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
22
|
Tan GK, Pryce BA, Stabio A, Brigande JV, Wang C, Xia Z, Tufa SF, Keene DR, Schweitzer R. Tgfβ signaling is critical for maintenance of the tendon cell fate. eLife 2020; 9:52695. [PMID: 31961320 PMCID: PMC7025861 DOI: 10.7554/elife.52695] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Studies of cell fate focus on specification, but little is known about maintenance of the differentiated state. In this study, we find that the mouse tendon cell fate requires continuous maintenance in vivo and identify an essential role for TGFβ signaling in maintenance of the tendon cell fate. To examine the role of TGFβ signaling in tenocyte function the TGFβ type II receptor (Tgfbr2) was targeted in the Scleraxis-expressing cell lineage using the ScxCre deletor. Tendon development was not disrupted in mutant embryos, but shortly after birth tenocytes lost differentiation markers and reverted to a more stem/progenitor state. Viral reintroduction of Tgfbr2 to mutants prevented and even rescued tenocyte dedifferentiation suggesting a continuous and cell autonomous role for TGFβ signaling in cell fate maintenance. These results uncover the critical importance of molecular pathways that maintain the differentiated cell fate and a key role for TGFβ signaling in these processes.
Collapse
Affiliation(s)
- Guak-Kim Tan
- Research Division, Shriners Hospital for Children, Portland, United States
| | - Brian A Pryce
- Research Division, Shriners Hospital for Children, Portland, United States
| | - Anna Stabio
- Research Division, Shriners Hospital for Children, Portland, United States
| | - John V Brigande
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, United States
| | - ChaoJie Wang
- Computational Biology Program, Oregon Health & Science University, Portland, United States
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, United States
| | - Sara F Tufa
- Research Division, Shriners Hospital for Children, Portland, United States
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, United States
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, United States.,Department of Orthopedics, Oregon Health & Science University, Portland, United States
| |
Collapse
|
23
|
Paiva KBS, Maas CS, dos Santos PM, Granjeiro JM, Letra A. Extracellular Matrix Composition and Remodeling: Current Perspectives on Secondary Palate Formation, Cleft Lip/Palate, and Palatal Reconstruction. Front Cell Dev Biol 2019; 7:340. [PMID: 31921852 PMCID: PMC6923686 DOI: 10.3389/fcell.2019.00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Craniofacial development comprises a complex process in humans in which failures or disturbances frequently lead to congenital anomalies. Cleft lip with/without palate (CL/P) is a common congenital anomaly that occurs due to variations in craniofacial development genes, and may occur as part of a syndrome, or more commonly in isolated forms (non-syndromic). The etiology of CL/P is multifactorial with genes, environmental factors, and their potential interactions contributing to the condition. Rehabilitation of CL/P patients requires a multidisciplinary team to perform the multiple surgical, dental, and psychological interventions required throughout the patient's life. Despite progress, lip/palatal reconstruction is still a major treatment challenge. Genetic mutations and polymorphisms in several genes, including extracellular matrix (ECM) genes, soluble factors, and enzymes responsible for ECM remodeling (e.g., metalloproteinases), have been suggested to play a role in the etiology of CL/P; hence, these may be considered likely targets for the development of new preventive and/or therapeutic strategies. In this context, investigations are being conducted on new therapeutic approaches based on tissue bioengineering, associating stem cells with biomaterials, signaling molecules, and innovative technologies. In this review, we discuss the role of genes involved in ECM composition and remodeling during secondary palate formation and pathogenesis and genetic etiology of CL/P. We also discuss potential therapeutic approaches using bioactive molecules and principles of tissue bioengineering for state-of-the-art CL/P repair and palatal reconstruction.
Collapse
Affiliation(s)
- Katiúcia Batista Silva Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clara Soeiro Maas
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pâmella Monique dos Santos
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Mauro Granjeiro
- Clinical Research Laboratory in Dentistry, Federal Fluminense University, Niterói, Brazil
- Directory of Life Sciences Applied Metrology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Ariadne Letra
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston, TX, United States
- Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, United States
- Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston, TX, United States
| |
Collapse
|
24
|
Li X, Chen D, Jing X, Li C. DKK1 and TNF-alpha influence osteogenic differentiation of adBMP9-infected-rDFCs. Oral Dis 2019; 26:360-369. [PMID: 31733158 DOI: 10.1111/odi.13235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/12/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Rat dental follicle cells (rDFCs) function as precursor cells of periodontal tissues. Bone morphogenetic protein (BMP9) plays an important role in proliferation and differentiation. Tumour necrosis factor-alpha (TNF-alpha) is an important contributor to bone resorption. Wnt canonical pathway can be inhibited by Dickkopf 1 (DKK1). The aim of the study was to enhance the osteogenesis of BMP9 treated rDFCs in an inflammatory environment and elucidate the mechanism. MATERIALS AND METHODS rDFCs were infected by adenoviruses expressing BMP9 (adBMP9). Expression levels of proteins and genes were measured by Western blotting and qPCR. The effect on osteogenesis was evaluated by measuring the activity of alkaline phosphatase (ALP), observation of Alizarin Red S and haematoxylin and eosin staining. RESULTS TNF-alpha activated the canonical Wnt pathway and inhibited the non-canonical pathway. DKK1 suppressed the canonical pathway and promoted the non-canonical pathway. Addition of TNF-alpha or DKK1 inhibited BMP9/Smad pathway. However, this inhibition was reduced by the addition of DKK1 with TNF-alpha. CONCLUSIONS DKK1 reduces the inhibitory effects of TNF-alpha in adBMP9-infected-rDFCs, possibly through interaction with the Smad signalling pathway and Wnt pathways. These findings may lead to a novel approach for the treatment of periodontitis-related alveolar bone defects.
Collapse
Affiliation(s)
- Xinyue Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dongcai Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xueqin Jing
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Conghua Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
25
|
Zhou Y, Lin J, Shao J, Zuo Q, Wang S, Wolff A, Nguyen DT, Rintoul L, Du Z, Gu Y, Peng YY, Ramshaw JAM, Long X, Xiao Y. Aberrant activation of Wnt signaling pathway altered osteocyte mineralization. Bone 2019; 127:324-333. [PMID: 31260814 DOI: 10.1016/j.bone.2019.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Mineralization of bone is a dynamic process, involving a complex interplay between cells, secreted macromolecules, signaling pathways, and enzymatic reactions; the dysregulation of bone mineralization may lead to serious skeletal disorders, including hypophosphatemic rickets, osteoporosis, and rheumatoid arthritis. Very few studies have reported the role of osteocytes - the most abundant bone cells in the skeletal system and the major orchestrators of bone remodeling in bone mineralization, which is owed to their nature of being deeply embedded in the mineralized bone matrix. The Wnt/β-catenin signaling pathway is actively involved in various life processes including osteogenesis; however, the role of Wnt/β-catenin signaling in the terminal mineralization of bone, especially in the regulation of osteocytes, is largely unknown. This research demonstrates that during the terminal mineralization process, the Wnt/β-catenin pathway is downregulated, and when Wnt/β-catenin signaling is activated in osteocytes, dendrite development is suppressed and the expression of dentin matrix protein 1 (DMP1) is inhibited. Aberrant activation of Wnt/β-catenin signaling in osteocytes leads to the spontaneous deposition of extra-large mineralized nodules on the surface of collagen fibrils. The altered mineral crystal structure and decreased bonding force between minerals and the organic matrix indicate the inferior integration of minerals and collagen. In conclusion, Wnt/β-catenin signaling plays a critical role in the terminal differentiation of osteocytes and as such, targeting Wnt/β-catenin signaling in osteocytes may serve as a potential therapeutic approach for the management of bone-related diseases.
Collapse
Affiliation(s)
- Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 51050, China; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Jinying Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Implantology, Affiliated Stomatological Hospital of Xiamen Medical College, Fujian 361000, China; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Jin Shao
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Qiliang Zuo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Implantology, Affiliated Stomatological Hospital of Xiamen Medical College, Fujian 361000, China; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Shengfang Wang
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Annalena Wolff
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Dung Trung Nguyen
- Department of Engineering and Computer Science, Seattle Pacific University, Seattle, WA 98119, USA.
| | - Llew Rintoul
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Yuantong Gu
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Yong Y Peng
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia.
| | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Yin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 51050, China; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| |
Collapse
|
26
|
Yu L, Liu Y. circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis. Biochem Biophys Res Commun 2019; 516:546-550. [DOI: 10.1016/j.bbrc.2019.06.087] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/16/2019] [Indexed: 01/19/2023]
|
27
|
Xie L, Mao M, Wang C, Zhang L, Pan Z, Shi J, Duan X, Jia S, Jiang B. Potential Biomarkers for Primary Open-Angle Glaucoma Identified by Long Noncoding RNA Profiling in the Aqueous Humor. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:739-752. [DOI: 10.1016/j.ajpath.2018.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022]
|
28
|
Salazar VS, Capelo LP, Cantù C, Zimmerli D, Gosalia N, Pregizer S, Cox K, Ohte S, Feigenson M, Gamer L, Nyman JS, Carey DJ, Economides A, Basler K, Rosen V. Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the murine periosteal niche. eLife 2019; 8:42386. [PMID: 30735122 PMCID: PMC6386520 DOI: 10.7554/elife.42386] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Two decades after signals controlling bone length were discovered, the endogenous ligands determining bone width remain unknown. We show that postnatal establishment of normal bone width in mice, as mediated by bone-forming activity of the periosteum, requires BMP signaling at the innermost layer of the periosteal niche. This developmental signaling center becomes quiescent during adult life. Its reactivation however, is necessary for periosteal growth, enhanced bone strength, and accelerated fracture repair in response to bone-anabolic therapies used in clinical orthopedic settings. Although many BMPs are expressed in bone, periosteal BMP signaling and bone formation require only Bmp2 in the Prx1-Cre lineage. Mechanistically, BMP2 functions downstream of Lrp5/6 pathway to activate a conserved regulatory element upstream of Sp7 via recruitment of Smad1 and Grhl3. Consistent with our findings, human variants of BMP2 and GRHL3 are associated with increased risk of fractures.
Collapse
Affiliation(s)
- Valerie S Salazar
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States.,Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Luciane P Capelo
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States.,Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudio Cantù
- Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland.,Wallenberg Centre for Molecular Medicine, Department of Clinical and Experimental Medicine (IKE), Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Dario Zimmerli
- Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | | - Steven Pregizer
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| | - Karen Cox
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| | - Satoshi Ohte
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States.,Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Marina Feigenson
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| | - Laura Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, United States
| | | | | | | | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| |
Collapse
|
29
|
Zhu H, Wang M, Zhao C, Li R, Yang J, Pei G, Ye T, Zuo X, Liu L, Chong Lee Shin OLS, Zhu F, Sun J, Xu H, Zhao Z, Cao C, Wang Y, Yang Q, Xu G, Zeng R, Yao Y. GAG and collagen II attenuate glucocorticoid-induced osteoporosis by regulating NF-κB and MAPK signaling. Am J Transl Res 2018; 10:1762-1772. [PMID: 30018717 PMCID: PMC6038062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
As a component of collagen II, glycosaminoglycan (GAG) has a relatively close relationship with bone metabolism. GAG and collagen II have been proven to promote connection of the bone trabecular structure. However, the exact mechanism remains unknown. In this study, we aimed to determine the concrete effect and the mechanism of GAG and collagen II on glucocorticoid-induced osteoporosis. We implanted prednisolone pellets subcutaneously in mice to mimic glucocorticoid-induced osteoporosis. GAG was administered intragastrically every day for 60 days. The results demonstrated a protective effect of GAG and collagen II on glucocorticoid-induced osteoporosis. Trabecular number and connection density increased after treatment with GAG and collagen II. We generated bone marrow-derived macrophages to explore the effect of GAG and collagen II on osteoclast differentiation. We collected cell protein and RNA in the presence of macrophage colony-stimulating factor (M-CSF) and receptor activator for nuclear factor-κB ligand (RANKL) and found that GAG and collagen II inhibited the NF-κB and MAPK pathways, thereby down-regulating osteoclast differentiation molecules such as matrix metallopeptidase 9 (MMP 9) and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc-1). Our findings suggest that GAG and collagen II may have therapeutic potential of patients with glucocorticoid-induced osteoporosis in clinical settings.
Collapse
Affiliation(s)
- Han Zhu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Meng Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Chengjun Zhao
- Wuhan Huge Biotechnology Co., LtdNO. 630, Hanyang Ave, Wuhan, Hubei, China
| | - Ruosong Li
- Wuhan Huge Biotechnology Co., LtdNO. 630, Hanyang Ave, Wuhan, Hubei, China
| | - Juan Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Guangchang Pei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Ting Ye
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Xuezhi Zuo
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Liu Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Octavia LS Chong Lee Shin
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Fengming Zhu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Jie Sun
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Huzi Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Zhi Zhao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Chujin Cao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Yuxi Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Qian Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Rui Zeng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Ying Yao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, Hubei, China
| |
Collapse
|
30
|
Malik Z, Alexiou M, Hallgrimsson B, Economides AN, Luder HU, Graf D. Bone Morphogenetic Protein 2 Coordinates Early Tooth Mineralization. J Dent Res 2018; 97:835-843. [PMID: 29489425 DOI: 10.1177/0022034518758044] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Formation of highly organized dental hard tissues is a complex process involving sequential and ordered deposition of an extracellular scaffold, followed by its mineralization. Odontoblast and ameloblast differentiation involves reciprocal and sequential epithelial-mesenchymal interactions. Similar to early tooth development, various Bmps are expressed during this process, although their functions have not been explored in detail. Here, we investigated the role of odontoblast-derived Bmp2 for tooth mineralization using Bmp2 conditional knockout mice. In developing molars, Bmp2LacZ reporter mice revealed restricted expression of Bmp2 in early polarized and functional odontoblasts while it was not expressed in mature odontoblasts. Loss of Bmp2 in neural crest cells, which includes all dental mesenchyme, caused a delay in dentin and enamel deposition. Immunohistochemistry for nestin and dentin sialoprotein (Dsp) revealed polarization defects in odontoblasts, indicative of a role for Bmp2 in odontoblast organization. Surprisingly, pSmad1/5/8, an indicator of Bmp signaling, was predominantly reduced in ameloblasts, with reduced expression of amelogenin ( Amlx), ameloblastin ( Ambn), and matrix metalloproteinase ( Mmp20). Quantitative real-time polymerase chain reaction (RT-qPCR) analysis and immunohistochemistry showed that loss of Bmp2 resulted in increased expression of the Wnt antagonists dickkopf 1 ( Dkk1) in the epithelium and sclerostin ( Sost) in mesenchyme and epithelium. Odontoblasts showed reduced Wnt signaling, which is important for odontoblast differentiation, and a strong reduction in dentin sialophosphoprotein ( Dspp) but not collagen 1 a1 ( Col1a1) expression. Mature Bmp2-deficient teeth, which were obtained by transplanting tooth germs from Bmp2-deficient embryos under a kidney capsule, showed a dentinogenesis imperfecta type II-like appearance. Micro-computed tomography and scanning electron microscopy revealed reduced dentin and enamel thickness, indistinguishable primary and secondary dentin, and deposition of ectopic osteodentin. This establishes that Bmp2 provides an early temporal, nonredundant signal for directed and organized tooth mineralization.
Collapse
Affiliation(s)
- Z Malik
- 1 School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - M Alexiou
- 1 School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - B Hallgrimsson
- 2 Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, AB, Canada
| | | | - H U Luder
- 4 Institute of Oral Biology, Centre for Dental Medicine, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - D Graf
- 1 School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,5 Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Marie PJ, Cohen-Solal M. The Expanding Life and Functions of Osteogenic Cells: From Simple Bone-Making Cells to Multifunctional Cells and Beyond. J Bone Miner Res 2018; 33:199-210. [PMID: 29206311 DOI: 10.1002/jbmr.3356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
Abstract
During the last three decades, important progress in bone cell biology and in human and mouse genetics led to major advances in our understanding of the life and functions of cells of the osteoblast lineage. Previously unrecognized sources of osteogenic cells have been identified. Novel cellular and molecular mechanisms controlling osteoblast differentiation and senescence have been determined. New mechanisms of communications between osteogenic cells, osteocytes, osteoclasts, and chondrocytes, as well as novel links between osteogenic cells and blood vessels have been identified. Additionally, cells of the osteoblast lineage were shown to be important components of the hematopoietic niche and to be implicated in hematologic dysfunctions and malignancy. Lastly, unexpected interactions were found between osteogenic cells and several soft tissues, including the central nervous system, gut, muscle, fat, and testis through the release of paracrine factors, making osteogenic cells multifunctional regulatory cells, in addition to their bone-making function. These discoveries considerably enlarged our vision of the life and functions of osteogenic cells, which may lead to the development of novel therapeutics with immediate applications in bone disorders. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martine Cohen-Solal
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
32
|
Kokabu S, Rosen V. BMP3 expression by osteoblast lineage cells is regulated by canonical Wnt signaling. FEBS Open Bio 2017; 8:168-176. [PMID: 29435407 PMCID: PMC5794463 DOI: 10.1002/2211-5463.12347] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Bone morphogenetic protein (BMP) and canonical Wnt (cWnt) signaling factors are both known to regulate bone mass, fracture risk, fracture repair, and osteoblastogenesis. BMP3 is the most abundant BMP and negatively regulates osteoblastogenesis and bone mass. Thus, identifying the mechanism by which BMP3 acts to depress bone formation may allow for the development of new therapeutics useful in the treatment for osteopenia and osteoporosis. Here, we report that cWnt signaling stimulates BMP3 expression in osteoblast (OB) lineage cells. The expression of BMP3 increases with OB differentiation. Treatment of cells with various cWnt proteins stimulated BMP3 expression. Mice with enhanced cWnt signaling had high expression levels of BMP3. Our data suggest that reduction in BMP3 levels may contribute beneficially to the positive effect of cWnt agonists on bone mass.
Collapse
Affiliation(s)
- Shoichiro Kokabu
- Department of Developmental Biology Harvard School of Dental Medicine Boston MA USA.,Division of Molecular Signaling and Biochemistry Department of Health Promotion Kyushu Dental University Kitakyushu Japan.,Department of Oral and Maxillofacial Surgery Faculty of Medicine Saitama Medical University Moroyama-machiIruma-gun Japan
| | - Vicki Rosen
- Department of Developmental Biology Harvard School of Dental Medicine Boston MA USA
| |
Collapse
|
33
|
Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature 2017; 545:234-237. [PMID: 28467818 PMCID: PMC5815871 DOI: 10.1038/nature22306] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 03/27/2017] [Indexed: 12/16/2022]
Abstract
Wnt proteins modulate cell proliferation and differentiation and the self-renewal of stem cells by inducing β-catenin-dependent signalling through the Wnt receptor frizzled (FZD) and the co-receptors LRP5 and LRP6 to regulate cell fate decisions and the growth and repair of several tissues. The 19 mammalian Wnt proteins are cross-reactive with the 10 FZD receptors, and this has complicated the attribution of distinct biological functions to specific FZD and Wnt subtype interactions. Furthermore, Wnt proteins are modified post-translationally by palmitoylation, which is essential for their secretion, function and interaction with FZD receptors. As a result of their acylation, Wnt proteins are very hydrophobic and require detergents for purification, which presents major obstacles to the preparation and application of recombinant Wnt proteins. This hydrophobicity has hindered the determination of the molecular mechanisms of Wnt signalling activation and the functional importance of FZD subtypes, and the use of Wnt proteins as therapeutic agents. Here we develop surrogate Wnt agonists, water-soluble FZD-LRP5/LRP6 heterodimerizers, with FZD5/FZD8-specific and broadly FZD-reactive binding domains. Similar to WNT3A, these Wnt agonists elicit a characteristic β-catenin signalling response in a FZD-selective fashion, enhance the osteogenic lineage commitment of primary mouse and human mesenchymal stem cells, and support the growth of a broad range of primary human organoid cultures. In addition, the surrogates can be systemically expressed and exhibit Wnt activity in vivo in the mouse liver, regulating metabolic liver zonation and promoting hepatocyte proliferation, resulting in hepatomegaly. These surrogates demonstrate that canonical Wnt signalling can be activated by bi-specific ligands that induce receptor heterodimerization. Furthermore, these easily produced, non-lipidated Wnt surrogate agonists facilitate functional studies of Wnt signalling and the exploration of Wnt agonists for translational applications in regenerative medicine.
Collapse
|
34
|
Lai K, Xi Y, Miao X, Jiang Z, Wang Y, Wang H, Yang G. PTH coatings on titanium surfaces improved osteogenic integration by increasing expression levels of BMP-2/Runx2/Osterix. RSC Adv 2017. [DOI: 10.1039/c7ra09738g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The aim of this experiment was to assemble parathyroid hormone (PTH) coatings on titanium surfaces and evaluate the effect on implant osseointegration.
Collapse
Affiliation(s)
- Kaichen Lai
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Yue Xi
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Xiaoyan Miao
- Department of Science and Education
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Zhiwei Jiang
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Ying Wang
- Department of Oral Medicine
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Huiming Wang
- Department of Oral and Maxillofacial Surgery
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Guoli Yang
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| |
Collapse
|