1
|
Yang Y, Wu Y, Xiang L, Picardo M, Zhang C. Deciphering the role of skin aging in pigmentary disorders. Free Radic Biol Med 2025; 227:638-655. [PMID: 39674424 DOI: 10.1016/j.freeradbiomed.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Skin aging is a complex biological process involving intrinsic and extrinsic factors. Skin aging contains alterations at the tissue, cellular, and molecular levels. Currently, there is increasing evidence that skin aging occurs not only in time-dependent chronological aging but also plays a role in skin pigmentary disorders. This review provides an in-depth analysis of the impact of skin aging on different types of pigmentary disorders, including both hyperpigmentation disorders such as melasma and senile lentigo and hypopigmentation disorders such as vitiligo, idiopathic guttate hypomelanosis and graying of hair. In addition, we explore the mechanisms of skin aging on pigmentation regulation and suggest several potential therapeutic approaches for skin aging and aging-related pigmentary disorders.
Collapse
Affiliation(s)
- Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Yue Wu
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Mauro Picardo
- Istituto Dermopatico Immacolata, IDI-RCCS, Rome, Italy.
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China.
| |
Collapse
|
2
|
Chavan A, Skrutl L, Uliana F, Pfister M, Brändle F, Tirian L, Baptista D, Handler D, Burke D, Sintsova A, Beltrao P, Brennecke J, Jagannathan M. Multi-tissue characterization of the constitutive heterochromatin proteome in Drosophila identifies a link between satellite DNA organization and transposon repression. PLoS Biol 2025; 23:e3002984. [PMID: 39813297 PMCID: PMC11734925 DOI: 10.1371/journal.pbio.3002984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
Noncoding satellite DNA repeats are abundant at the pericentromeric heterochromatin of eukaryotic chromosomes. During interphase, sequence-specific DNA-binding proteins cluster these repeats from multiple chromosomes into nuclear foci known as chromocenters. Despite the pivotal role of chromocenters in cellular processes like genome encapsulation and gene repression, the associated proteins remain incompletely characterized. Here, we use 2 satellite DNA-binding proteins, D1 and Prod, as baits to characterize the chromocenter-associated proteome in Drosophila embryos, ovaries, and testes through quantitative mass spectrometry. We identify D1- and Prod-associated proteins, including known heterochromatin proteins as well as proteins previously unlinked to satellite DNA or chromocenters, thereby laying the foundation for a comprehensive understanding of cellular functions enabled by satellite DNA repeats and their associated proteins. Interestingly, we find that multiple components of the transposon-silencing piRNA pathway are associated with D1 and Prod in embryos. Using genetics, transcriptomics, and small RNA profiling, we show that flies lacking D1 during embryogenesis exhibit transposon expression and gonadal atrophy as adults. We further demonstrate that this gonadal atrophy can be rescued by mutating the checkpoint kinase, Chk2, which mediates germ cell arrest in response to transposon mobilization. Thus, we reveal that a satellite DNA-binding protein functions during embryogenesis to silence transposons, in a manner that is heritable across later stages of development.
Collapse
Affiliation(s)
- Ankita Chavan
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Life Sciences Zürich Graduate School, Zürich, Switzerland
- Bringing Materials to Life Consortium, Zürich, Switzerland
| | - Lena Skrutl
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Life Sciences Zürich Graduate School, Zürich, Switzerland
| | - Federico Uliana
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Bringing Materials to Life Consortium, Zürich, Switzerland
| | | | - Franziska Brändle
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Life Sciences Zürich Graduate School, Zürich, Switzerland
| | - Laszlo Tirian
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | | | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - David Burke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Anna Sintsova
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Pedro Beltrao
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Madhav Jagannathan
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Bringing Materials to Life Consortium, Zürich, Switzerland
| |
Collapse
|
3
|
Yang Q, Yu H, Du S, Li Q. Overexpression of CDC42 causes accumulation of DNA damage leading to failure of oogenesis in triploid Pacific oyster Crassostrea gigas. Int J Biol Macromol 2024; 282:136769. [PMID: 39490852 DOI: 10.1016/j.ijbiomac.2024.136769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Triploid Pacific oyster Crassostrea gigas exhibits notable differences in fecundity, with the majority being sterile individuals, referred to as female β, which produce few oocytes, while a minority are fertile individuals, referred to as female α, which produce abundant oocytes. However, the molecular mechanisms underlying these differences in triploid fecundity remain poorly understood. CDC42 has been implicated in processes related to increased DNA damage and genomic instability. Here, we investigate the crucial role of CDC42 in DNA damage repair during oogenesis in triploid C. gigas. Immunofluorescence analysis of γH2AX, a marker for DNA double-stranded breaks, showed significantly higher levels of DNA damage in gonadal cells of triploids compared to diploids, particularly in female β. Histological and ultrastructural analyses revealed abnormal germ cells, termed β gonia, characterized by giant nuclei condensed into irregular chromosome-like chromatin, present in triploid gonadal follicles. RNAseq and proteomic analyses revealed significantly elevated CDC42 expression in triploid gonads compared to the diploids. Inhibition of CDC42 activity in triploids using ZCL278, a CDC42-specific inhibitor, resulted in a significant reduction in DNA damage, increased oocyte numbers, and a decrease in β gonia count. Transcriptome profiling revealed that CDC42 inhibition upregulated the PI3K-AKT signaling pathway along with DNA repair activation. Overall, our findings suggest that overexpression of CDC42 during oogenesis in triploid C. gigas impedes DNA repair, leading to the accumulation of DNA damage, and consequently, oogenesis blockade and abnormal germ cell differentiation. Conversely, inhibition of CDC42 activity activates the PI3K-AKT signaling pathway and promotes DNA repair, thereby mitigating DNA damage and facilitating oogenesis in triploids. This study provides new insights into the molecular mechanisms of sterility in female triploid C. gigas.
Collapse
Affiliation(s)
- Qiong Yang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
4
|
Simmons C, Bradshaw TW, Armstrong AR. Methods to Analyze Nutritional and Inter-Organ Control of Drosophila Ovarian Germline Stem Cells. Methods Mol Biol 2023; 2677:81-97. [PMID: 37464236 DOI: 10.1007/978-1-0716-3259-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Physiological status, particularly dietary input, has major impacts on the Drosophila melanogaster ovarian germline stem cell lineage. Moreover, several studies have shed light on the role that inter-organ communication plays in coordinating whole-organism responses to changes in physiology. For example, nutrient-sensing signaling pathways function within the fat body to regulate germline stem cells and their progeny in the ovary. Together with its incredible genetic and cell biological toolkits, Drosophila serves as an amenable model organism to use for uncovering molecular mechanisms that underlie physiological control of adult stem cells. In this methods chapter, we describe a general dietary manipulation paradigm, genetic manipulation of adult adipocytes, and whole-mount ovary immunofluorescence to investigate physiological control of germline stem cells.
Collapse
Affiliation(s)
- Chad Simmons
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Tancia W Bradshaw
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Alissa R Armstrong
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
5
|
Chakravarti A, Thirimanne HN, Brown S, Calvi BR. Drosophila p53 isoforms have overlapping and distinct functions in germline genome integrity and oocyte quality control. eLife 2022; 11:61389. [PMID: 35023826 PMCID: PMC8758136 DOI: 10.7554/elife.61389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
p53 gene family members in humans and other organisms encode a large number of protein isoforms whose functions are largely undefined. Using Drosophila as a model, we find that a p53B isoform is expressed predominantly in the germline where it colocalizes with p53A into subnuclear bodies. It is only p53A, however, that mediates the apoptotic response to ionizing radiation in the germline and soma. In contrast, p53A and p53B are both required for the normal repair of meiotic DNA breaks, an activity that is more crucial when meiotic recombination is defective. We find that in oocytes with persistent DNA breaks p53A is also required to activate a meiotic pachytene checkpoint. Our findings indicate that Drosophila p53 isoforms have DNA lesion and cell type-specific functions, with parallels to the functions of mammalian p53 family members in the genotoxic stress response and oocyte quality control.
Collapse
Affiliation(s)
| | | | - Savanna Brown
- Department of Biology, Indiana University, Bloomington, United States
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, United States
| |
Collapse
|
6
|
Ishibashi JR, Keshri R, Taslim TH, Brewer DK, Chan TC, Lyons S, McManamen AM, Chen A, Del Castillo D, Ruohola-Baker H. Chemical Genetic Screen in Drosophila Germline Uncovers Small Molecule Drugs That Sensitize Stem Cells to Insult-Induced Apoptosis. Cells 2021; 10:cells10102771. [PMID: 34685753 PMCID: PMC8534514 DOI: 10.3390/cells10102771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells, in contrast to their more differentiated daughter cells, can endure genotoxic insults, escape apoptosis, and cause tumor recurrence. Understanding how normal adult stem cells survive and go to quiescence may help identify druggable pathways that cancer stem cells have co-opted. In this study, we utilize a genetically tractable model for stem cell survival in the Drosophila gonad to screen drug candidates and probe chemical-genetic interactions. Our study employs three levels of small molecule screening: (1) a medium-throughput primary screen in male germline stem cells (GSCs), (2) a secondary screen with irradiation and protein-constrained food in female GSCs, and (3) a tertiary screen in breast cancer organoids in vitro. Herein, we uncover a series of small molecule drug candidates that may sensitize cancer stem cells to apoptosis. Further, we have assessed these small molecules for chemical-genetic interactions in the germline and identified the NF-κB pathway as an essential and druggable pathway in GSC quiescence and viability. Our study demonstrates the power of the Drosophila stem cell niche as a model system for targeted drug discovery.
Collapse
Affiliation(s)
- Julien Roy Ishibashi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Riya Keshri
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Tommy Henry Taslim
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Daniel Kennedy Brewer
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Tung Ching Chan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Scott Lyons
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Anika Marie McManamen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Ashley Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Debra Del Castillo
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
7
|
Yang Y, Kong R, Goh FG, Somers WG, Hime GR, Li Z, Cai Y. dRTEL1 is essential for the maintenance of Drosophila male germline stem cells. PLoS Genet 2021; 17:e1009834. [PMID: 34644293 PMCID: PMC8513875 DOI: 10.1371/journal.pgen.1009834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Stem cells have the potential to maintain undifferentiated state and differentiate into specialized cell types. Despite numerous progress has been achieved in understanding stem cell self-renewal and differentiation, many fundamental questions remain unanswered. In this study, we identify dRTEL1, the Drosophila homolog of Regulator of Telomere Elongation Helicase 1, as a novel regulator of male germline stem cells (GSCs). Our genome-wide transcriptome analysis and ChIP-Seq results suggest that dRTEL1 affects a set of candidate genes required for GSC maintenance, likely independent of its role in DNA repair. Furthermore, dRTEL1 prevents DNA damage-induced checkpoint activation in GSCs. Finally, dRTEL1 functions to sustain Stat92E protein levels, the key player in GSC maintenance. Together, our findings reveal an intrinsic role of the DNA helicase dRTEL1 in maintaining male GSC and provide insight into the function of dRTEL1.
Collapse
Affiliation(s)
- Ying Yang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Feng Guang Goh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - W. Gregory Somers
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Nguyen TTN, Shim J, Song YH. Chk2-p53 and JNK in irradiation-induced cell death of hematopoietic progenitors and differentiated cells in Drosophila larval lymph gland. Biol Open 2021; 10:271116. [PMID: 34328173 PMCID: PMC8411456 DOI: 10.1242/bio.058809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
Ionizing radiation (IR) induces DNA double-strand breaks that activate the DNA damage response (DDR), which leads to cell cycle arrest, senescence, or apoptotic cell death. Understanding the DDR of stem cells is critical to tissue homeostasis and the survival of the organism. Drosophila hematopoiesis serves as a model system for sensing stress and environmental changes; however, their response to DNA damage remains largely unexplored. The Drosophila lymph gland is the larval hematopoietic organ, where stem-like progenitors proliferate and differentiate into mature blood cells called hemocytes. We found that apoptotic cell death was induced in progenitors and hemocytes after 40 Gy irradiation, with progenitors showing more resistance to IR-induced cell death compared to hemocytes at a lower dose. Furthermore, we found that Drosophila ATM (tefu), Chk2 (lok), p53, and reaper were necessary for IR-induced cell death in the progenitors. Notably, IR-induced cell death in mature hemocytes required tefu, Drosophila JNK (bsk), and reaper, but not lok or p53. In summary, we found that DNA damage induces apoptotic cell death in the late third instar larval lymph gland and identified lok/p53-dependent and -independent cell death pathways in progenitors and mature hemocytes, respectively.
Collapse
Affiliation(s)
- Tram Thi Ngoc Nguyen
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea.,Ilsong Institute of Life Science, Hallym University, Seoul 07247, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Han Song
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea.,Ilsong Institute of Life Science, Hallym University, Seoul 07247, Republic of Korea
| |
Collapse
|
9
|
Fan YY, Tang Q, Li Y, Li FH, Wu JH, Li WW, Yu HQ. Rapid and highly efficient genomic engineering with a novel iEditing device for programming versatile extracellular electron transfer of electroactive bacteria. Environ Microbiol 2021; 23:1238-1255. [PMID: 33369000 DOI: 10.1111/1462-2920.15374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/17/2022]
Abstract
The advances in synthetic biology bring exciting new opportunities to reprogram microorganisms with novel functionalities for environmental applications. For real-world applications, a genetic tool that enables genetic engineering in a stably genomic inherited manner is greatly desired. In this work, we design a novel genetic device for rapid and efficient genome engineering based on the intron-encoded homing-endonuclease empowered genome editing (iEditing). The iEditing device enables rapid and efficient genome engineering in Shewanella oneidensis MR-1, the representative strain of the electroactive bacteria group. Moreover, combining with the Red or RecET recombination system, the genome-editing efficiency was greatly improved, up to approximately 100%. Significantly, the iEditing device itself is eliminated simultaneously when genome editing occurs, thereby requiring no follow-up to remove the encoding system. Then, we develop a new extracellular electron transfer (EET) engineering strategy by programming the parallel EET systems to enhance versatile EET. The engineered strains exhibit sufficiently enhanced electron output and pollutant reduction ability. Furthermore, this device has demonstrated its great potential to be extended for genome editing in other important microbes. This work provides a useful and efficient tool for the rapid generation of synthetic microorganisms for various environmental applications.
Collapse
Affiliation(s)
- Yang-Yang Fan
- CAS Key Laboratory of Urban Pollutant Conversion, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.,Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qiang Tang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Li
- CAS Key Laboratory of Urban Pollutant Conversion, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.,Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Feng-He Li
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing-Hang Wu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
10
|
Myc plays an important role in Drosophila P-M hybrid dysgenesis to eliminate germline cells with genetic damage. Commun Biol 2020; 3:185. [PMID: 32322015 PMCID: PMC7176646 DOI: 10.1038/s42003-020-0923-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/24/2020] [Indexed: 11/08/2022] Open
Abstract
Genetic damage in the germline induced by P-element mobilization causes a syndrome known as P-M hybrid dysgenesis (HD), which manifests as elevated mutation frequency and loss of germline cells. In this study, we found that Myc plays an important role in eliminating germline cells in the context of HD. P-element mobilization resulted in downregulation of Myc expression in the germline. Myc knockdown caused germline elimination; conversely, Myc overexpression rescued the germline loss caused by P-element mobilization. Moreover, restoration of fertility by Myc resulted in the production of gametes with elevated mutation frequency and reduced ability to undergo development. Our results demonstrate that Myc downregulation mediates elimination of germline cells with accumulated genetic damage, and that failure to remove these cells results in increased production of aberrant gametes. Therefore, we propose that elimination of germline cells mediated by Myc downregulation is a quality control mechanism that maintains the genomic integrity of the germline.
Collapse
|
11
|
Ishibashi JR, Taslim TH, Ruohola-Baker H. Germline stem cell aging in the Drosophila ovary. CURRENT OPINION IN INSECT SCIENCE 2020; 37:57-62. [PMID: 32120010 DOI: 10.1016/j.cois.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The age-related decline of adult stem cells leads to loss of tissue homeostasis and contributes to organismal aging. Though the phenotypic hallmarks of aging are well-characterized at the organ or tissue level, the molecular processes that govern stem cell aging remain unclear. This review seeks to highlight recent research in stem cell aging in the Drosophila ovary and connect the discoveries in the fly to ongoing questions in stem cell aging.
Collapse
Affiliation(s)
- Julien Roy Ishibashi
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican St, Seattle, WA 98109, United States
| | - Tommy Henry Taslim
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican St, Seattle, WA 98109, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican St, Seattle, WA 98109, United States.
| |
Collapse
|
12
|
Kelleher ES, Lama J, Wang L. Uninvited guests: how transposable elements take advantage of Drosophila germline stem cells, and how stem cells fight back. CURRENT OPINION IN INSECT SCIENCE 2020; 37:49-56. [PMID: 32113144 DOI: 10.1016/j.cois.2019.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Transposable elements (TEs) are mobile genetic parasites that spread through host genomes by replicating in germline cells. New TE copies that arise in the genomes of germline stem cells (GSCs) are of particular value, because they are potentially transmitted to multiple offspring through the plethora of gametes arising from the same progenitor GSC. However, the fidelity of GSC genomes is also of utmost importance to the host in ensuring the production of abundant and fit offspring. Here we review tactics that TEs employ to replicate in Drosophila female GSCs, as well as mechanisms those cells use to defend against TEs. We also discuss the relationship between transposition and GSC loss, which is arbitrated through reduced signaling for self renewal, increased signaling for differentiation, and DNA damage response pathways.
Collapse
Affiliation(s)
- Erin S Kelleher
- Department of Biology and Biochemistry, University of Houston, United States.
| | - Jyoti Lama
- Department of Biology and Biochemistry, University of Houston, United States
| | - Luyang Wang
- Department of Biology and Biochemistry, University of Houston, United States
| |
Collapse
|
13
|
Sokolova OA, Mikhaleva EA, Kharitonov SL, Abramov YA, Gvozdev VA, Klenov MS. Special vulnerability of somatic niche cells to transposable element activation in Drosophila larval ovaries. Sci Rep 2020; 10:1076. [PMID: 31974416 PMCID: PMC6978372 DOI: 10.1038/s41598-020-57901-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
In the Drosophila ovary, somatic escort cells (ECs) form a niche that promotes differentiation of germline stem cell (GSC) progeny. The piRNA (Piwi-interacting RNA) pathway, which represses transposable elements (TEs), is required in ECs to prevent the accumulation of undifferentiated germ cells (germline tumor phenotype). The soma-specific piRNA cluster flamenco (flam) produces a substantial part of somatic piRNAs. Here, we characterized the biological effects of somatic TE activation on germ cell differentiation in flam mutants. We revealed that the choice between normal and tumorous phenotypes of flam mutant ovaries depends on the number of persisting ECs, which is determined at the larval stage. Accordingly, we found much more frequent DNA breaks in somatic cells of flam larval ovaries than in adult ECs. The absence of Chk2 or ATM checkpoint kinases dramatically enhanced oogenesis defects of flam mutants, in contrast to the germline TE-induced defects that are known to be mostly suppressed by сhk2 mutation. These results demonstrate a crucial role of checkpoint kinases in protecting niche cells against deleterious TE activation and suggest substantial differences between DNA damage responses in ovarian somatic and germ cells.
Collapse
Affiliation(s)
- Olesya A Sokolova
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Elena A Mikhaleva
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Sergey L Kharitonov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., 119991, Moscow, Russian Federation
| | - Yuri A Abramov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Vladimir A Gvozdev
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Mikhail S Klenov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation.
| |
Collapse
|
14
|
Durdevic Z, Ephrussi A. Germ Cell Lineage Homeostasis in Drosophila Requires the Vasa RNA Helicase. Genetics 2019; 213:911-922. [PMID: 31484689 PMCID: PMC6827371 DOI: 10.1534/genetics.119.302558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 11/18/2022] Open
Abstract
The conserved RNA helicase Vasa is required for germ cell development in many organisms. In Drosophila melanogaster loss of PIWI-interacting RNA pathway components, including Vasa, causes Chk2-dependent oogenesis arrest. However, whether the arrest is due to Chk2 signaling at a specific stage and whether continuous Chk2 signaling is required for the arrest is unknown. Here, we show that absence of Vasa during the germarial stages causes Chk2-dependent oogenesis arrest. Additionally, we report the age-dependent decline of the ovariole number both in flies lacking Vasa expression only in the germarium and in loss-of-function vasa mutant flies. We show that Chk2 activation exclusively in the germarium is sufficient to interrupt oogenesis and to reduce ovariole number in aging flies. Once induced in the germarium, Chk2-mediated arrest of germ cell development cannot be overcome by restoration of Vasa or by downregulation of Chk2 in the arrested egg chambers. These findings, together with the identity of Vasa-associated proteins identified in this study, demonstrate an essential role of the helicase in the germ cell lineage maintenance and indicate a function of Vasa in germline stem cell homeostasis.
Collapse
Affiliation(s)
- Zeljko Durdevic
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany
| |
Collapse
|
15
|
Wei Y, Bettedi L, Ting CY, Kim K, Zhang Y, Cai J, Lilly MA. The GATOR complex regulates an essential response to meiotic double-stranded breaks in Drosophila. eLife 2019; 8:e42149. [PMID: 31650955 PMCID: PMC6834368 DOI: 10.7554/elife.42149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/13/2019] [Indexed: 01/18/2023] Open
Abstract
The TORC1 regulator GATOR1/SEACIT controls meiotic entry and early meiotic events in yeast. However, how metabolic pathways influence meiotic progression in metazoans remains poorly understood. Here we examine the role of the TORC1 regulators GATOR1 and GATOR2 in the response to meiotic double-stranded breaks (DSB) during Drosophila oogenesis. We find that in mutants of the GATOR2 component mio, meiotic DSBs trigger the constitutive downregulation of TORC1 activity and a permanent arrest in oocyte growth. Conversely, in GATOR1 mutants, high TORC1 activity results in the delayed repair of meiotic DSBs and the hyperactivation of p53. Unexpectedly, we found that GATOR1 inhibits retrotransposon expression in the presence of meiotic DSBs in a pathway that functions in parallel to p53. Thus, our studies have revealed a link between oocyte metabolism, the repair of meiotic DSBs and retrotransposon expression.
Collapse
Affiliation(s)
- Youheng Wei
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Lucia Bettedi
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Chun-Yuan Ting
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Kuikwon Kim
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Yingbiao Zhang
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jiadong Cai
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Mary A Lilly
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
16
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
17
|
Park JH, Nguyen TTN, Lee EM, Castro-Aceituno V, Wagle R, Lee KS, Choi J, Song YH. Role of p53 isoforms in the DNA damage response during Drosophila oogenesis. Sci Rep 2019; 9:11473. [PMID: 31391501 PMCID: PMC6685966 DOI: 10.1038/s41598-019-47913-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
The tumor suppressor p53 is involved in the DNA damage response and induces cell cycle arrest or apoptosis upon DNA damage. Drosophila p53 encodes two isoforms, p53A and p53B, that induce apoptosis in somatic cells. To investigate the roles of Drosophila p53 isoforms in female germline cells, the DNA damage response was analyzed in the adult ovary. Early oogenesis was sensitive to irradiation and lok-, p53-, and hid-dependent cell death occurred rapidly after both low- and high-dose irradiation. Both p53 isoforms were responsible for this cell death. On the other hand, delayed cell death in mid-oogenesis was induced at a low level only after high-dose irradiation in a p53-independent manner. The daily egg production, which did not change after low-dose irradiation, was severely reduced after high-dose irradiation in p53 mutant females due to the loss of germline stem cells. When the p53A or p53B isoform was expressed in the germline cells in the p53 mutant females at levels that do not affect normal oogenesis, p53A, but not p53B, restored the fertility of the irradiated female. In summary, moderate expression of p53A is critical to maintain the function of germline stem cells during normal oogenesis as well as after high-dose irradiation.
Collapse
Affiliation(s)
- Ji-Hong Park
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Tram Thi Ngoc Nguyen
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Eun-Mi Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | | | - Ram Wagle
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Kwang-Soon Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Juyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Young-Han Song
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea. .,Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
18
|
DNA damage in aging, the stem cell perspective. Hum Genet 2019; 139:309-331. [PMID: 31324975 DOI: 10.1007/s00439-019-02047-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
DNA damage is one of the most consistent cellular process proposed to contribute to aging. The maintenance of genomic and epigenomic integrity is critical for proper function of cells and tissues throughout life, and this homeostasis is under constant strain from both extrinsic and intrinsic insults. Considering the relationship between lifespan and genotoxic burden, it is plausible that the longest-lived cellular populations would face an accumulation of DNA damage over time. Tissue-specific stem cells are multipotent populations residing in localized niches and are responsible for maintaining all lineages of their resident tissue/system throughout life. However, many of these stem cells are impacted by genotoxic stress. Several factors may dictate the specific stem cell population response to DNA damage, including the niche location, life history, and fate decisions after damage accrual. This leads to differential handling of DNA damage in different stem cell compartments. Given the importance of adult stem cells in preserving normal tissue function during an individual's lifetime, DNA damage sensitivity and accumulation in these compartments could have crucial implications for aging. Despite this, more support for direct functional effects driven by accumulated DNA damage in adult stem cell compartments is needed. This review will present current evidence for the accumulation and potential influence of DNA damage in adult tissue-specific stem cells and propose inquiry directions that could benefit individual healthspan.
Collapse
|
19
|
Loss of putzig in the germline impedes germ cell development by inducing cell death and new niche like microenvironments. Sci Rep 2019; 9:9108. [PMID: 31235815 PMCID: PMC6591254 DOI: 10.1038/s41598-019-45655-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Germline stem cell development and differentiation is tightly controlled by the surrounding somatic cells of the stem cell niche. In Drosophila females, cells of the niche emit various signals including Dpp and Wg to balance stem cell renewal and differentiation. Here, we show that the gene pzg is autonomously required in cells of the germline to sustain the interplay between niche and stem cells. Loss of pzg impairs stem cell differentiation and provokes the death of cells in the germarium. As a consequence of pzg loss, increased growth signalling activity predominantly of Dpp and Wg/Wnt, was observed, eventually disrupting the balance of germ cell self-renewal and differentiation. Whereas in the soma, apoptosis-induced compensatory growth is well established, the induction of self-renewal signals during oogenesis cannot compensate for dying germ cells, albeit inducing a new niche-like microenvironment. Instead, they impair the further development of germ cells and cause in addition a forward and feedback loop of cell death.
Collapse
|
20
|
Liu K, Zhang Q, Pan F, Wang XD, Wenjing H, Tong H. Expression of circular RNAs in gynecological tumors: A systematic review. Medicine (Baltimore) 2019; 98:e15736. [PMID: 31096536 PMCID: PMC6531081 DOI: 10.1097/md.0000000000015736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The rapid development of bioinformatic technology is boosting the discovery of components hiding in the darkness. As a type of universal, conservative, tissue-specific and stable molecules, circular RNA (circRNA) is a class of endogenous non-coding RNA that has no 5' cap and 3' poly(A) tail and forms a covalently closed continuous loop. At present, 3 types of circRNAs including exonic circRNA (ecRNA), intronic circRNA (ciRNA), and axon-intronic circRNA have been reported. Nowadays informatic technology and high-throughput sequencing have verified the abundance of endogenous circRNAs in eukaryocytes, with predominantly expressed in the cell cytoplasm. Their unique sequences endow them with special functions, such as miRNA sponge, selective transcription or splicing, and attaching to RNA-binding proteins. DATA SOURCES This review was based on articles published in PubMed databases up to January, 2019, with the following keywords: "circular RNA", "database", and "reproductive tumor" (Flow chart). OBJECTIVES Original articles and reviews on the topics were selected. RESULTS Studies have uncovered the interplay between circRNAs and the development of ovarian epithelial tumors, ovarian carcinoma, and cervical carcinoma, which suggesting the potential of circRNAs as biomarkers or therapeutic targets for human diseases. CONCLUSIONS Circular RNA has been found to play a role in gynecological tumors diseases. Meanwhile, we reviewed the studies on how CircularRNA participate in gynecological tumors, which provides a basis for the study of CircularRNA in gynecological tumors.
Collapse
Affiliation(s)
- Kangsheng Liu
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital
| | - Qin Zhang
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine
| | - Feng Pan
- Department of Andrology, Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital
| | - Xiang Dong Wang
- Department of Clinical Laboratory, Nanjing Chest Hospital, Medical School of Southeast University
| | - Hu Wenjing
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital
| | - Hua Tong
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Khan C, Muliyil S, Rao BJ. Genome Damage Sensing Leads to Tissue Homeostasis in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 345:173-224. [PMID: 30904193 DOI: 10.1016/bs.ircmb.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA repair is a critical cellular process required for the maintenance of genomic integrity. It is now well appreciated that cells employ several DNA repair pathways to take care of distinct types of DNA damage. It is also well known that a cascade of signals namely DNA damage response or DDR is activated in response to DNA damage which comprise cellular responses, such as cell cycle arrest, DNA repair and cell death, if the damage is irreparable. There is also emerging literature suggesting a cross-talk between DNA damage signaling and several signaling networks within a cell. Moreover, cell death players themselves are also well known to engage in processes outside their canonical function of apoptosis. This chapter attempts to build a link between DNA damage, DDR and signaling from the studies mainly conducted in mammals and Drosophila model systems, with a special emphasis on their relevance in overall tissue homeostasis and development.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sonia Muliyil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - B J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
22
|
Kelleher ES, Jaweria J, Akoma U, Ortega L, Tang W. QTL mapping of natural variation reveals that the developmental regulator bruno reduces tolerance to P-element transposition in the Drosophila female germline. PLoS Biol 2018; 16:e2006040. [PMID: 30376574 PMCID: PMC6207299 DOI: 10.1371/journal.pbio.2006040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
Transposable elements (TEs) are obligate genetic parasites that propagate in host genomes by replicating in germline nuclei, thereby ensuring transmission to offspring. This selfish replication not only produces deleterious mutations—in extreme cases, TE mobilization induces genotoxic stress that prohibits the production of viable gametes. Host genomes could reduce these fitness effects in two ways: resistance and tolerance. Resistance to TE propagation is enacted by germline-specific small-RNA-mediated silencing pathways, such as the Piwi-interacting RNA (piRNA) pathway, and is studied extensively. However, it remains entirely unknown whether host genomes may also evolve tolerance by desensitizing gametogenesis to the harmful effects of TEs. In part, the absence of research on tolerance reflects a lack of opportunity, as small-RNA-mediated silencing evolves rapidly after a new TE invades, thereby masking existing variation in tolerance. We have exploited the recent historical invasion of the Drosophila melanogaster genome by P-element DNA transposons in order to study tolerance of TE activity. In the absence of piRNA-mediated silencing, the genotoxic stress imposed by P-elements disrupts oogenesis and, in extreme cases, leads to atrophied ovaries that completely lack germline cells. By performing quantitative trait locus (QTL) mapping on a panel of recombinant inbred lines (RILs) that lack piRNA-mediated silencing of P-elements, we uncovered multiple QTL that are associated with differences in tolerance of oogenesis to P-element transposition. We localized the most significant QTL to a small 230-kb euchromatic region, with the logarithm of the odds (LOD) peak occurring in the bruno locus, which codes for a critical and well-studied developmental regulator of oogenesis. Genetic, cytological, and expression analyses suggest that bruno dosage modulates germline stem cell (GSC) loss in the presence of P-element activity. Our observations reveal segregating variation in TE tolerance for the first time, and implicate gametogenic regulators as a source of tolerant variants in natural populations. Transposable elements (TEs), or “jumping genes,” are mobile fragments of selfish DNA that leave deleterious mutations and DNA damage in their wake as they spread through host genomes. Their harmful effects are known to select for resistance by the host, in which the propagation of TEs is regulated and reduced. Here, we study for the first time whether host cells might also exhibit tolerance to TEs, by reducing their harmful effects without directly controlling their movement. By taking advantage of a panel of wild-type Drosophila melanogaster that lack resistance to P-element DNA transposons, we identified a small region of the genome that influences tolerance of P-element activity. We further demonstrate that a gene within that region, bruno, strongly influences the negative effects of P-element mobilization on the fly. When bruno dosage is reduced, the fertility of females carrying mobile P-elements is enhanced. The bruno locus encodes a protein with no known role in TE regulation but multiple well-characterized functions in oogenesis. We propose that bruno function reduces tolerance of the developing oocyte to DNA damage that is caused by P-elements.
Collapse
Affiliation(s)
- Erin S. Kelleher
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
- * E-mail:
| | - Jaweria Jaweria
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
| | - Uchechukwu Akoma
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lily Ortega
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
| | - Wenpei Tang
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
| |
Collapse
|
23
|
Barton LJ, Duan T, Ke W, Luttinger A, Lovander KE, Soshnev AA, Geyer PK. Nuclear lamina dysfunction triggers a germline stem cell checkpoint. Nat Commun 2018; 9:3960. [PMID: 30262885 PMCID: PMC6160405 DOI: 10.1038/s41467-018-06277-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
LEM domain (LEM-D) proteins are conserved components of the nuclear lamina (NL) that contribute to stem cell maintenance through poorly understood mechanisms. The Drosophila emerin homolog Otefin (Ote) is required for maintenance of germline stem cells (GSCs) and gametogenesis. Here, we show that ote mutants carry germ cell-specific changes in nuclear architecture that are linked to GSC loss. Strikingly, we found that both GSC death and gametogenesis are rescued by inactivation of the DNA damage response (DDR) kinases, ATR and Chk2. Whereas the germline checkpoint draws from components of the DDR pathway, genetic and cytological features of the GSC checkpoint differ from the canonical pathway. Instead, structural deformation of the NL correlates with checkpoint activation. Despite remarkably normal oogenesis, rescued oocytes do not support embryogenesis. Taken together, these data suggest that NL dysfunction caused by Otefin loss triggers a GSC-specific checkpoint that contributes to maintenance of gamete quality. Otefin is a nuclear lamina protein required for survival of Drosophila germ stem cells. Here the authors show that nuclear lamina dysfunction resulting from loss of Otefin activates a DNA damage-independent germ stem cell-specific checkpoint, mediated by the ATR and Chk2 kinases, which ensures that healthy gametes are passed on to the next generation.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Department of Cell Biology, Skirball Institute, NYU School of Medicine, 540 First Avenue, New York, NY, 10016, USA
| | - Tingting Duan
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Wenfan Ke
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Department of Biology, University of Virginia, 485 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Amy Luttinger
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kaylee E Lovander
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexey A Soshnev
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
24
|
Feng L, Shi Z, Xie J, Ma B, Chen X. Enhancer of polycomb maintains germline activity and genome integrity in Drosophila testis. Cell Death Differ 2018; 25:1486-1502. [PMID: 29362481 PMCID: PMC6113212 DOI: 10.1038/s41418-017-0056-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/20/2017] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
Tissue homeostasis depends on the ability of tissue-specific adult stem cells to maintain a balance between proliferation and differentiation, as well as ensure DNA damage repair. Here, we use the Drosophila male germline stem cell system to study how a chromatin factor, enhancer of polycomb [E(Pc)], regulates the proliferation-to-differentiation (mitosis-to-meiosis) transition and DNA damage repair. We identified two critical targets of E(Pc). First, E(Pc) represses CycB transcription, likely through modulating H4 acetylation. Second, E(Pc) is required for accumulation of an important germline differentiation factor, Bag-of-marbles (Bam), through post-transcriptional regulation. When E(Pc) is downregulated, increased CycB and decreased Bam are both responsible for defective mitosis-to-meiosis transition in the germline. Moreover, DNA double-strand breaks (DSBs) accumulate upon germline inactivation of E(Pc) under both physiological condition and recovery from heat shock-induced endonuclease expression. Failure of robust DSB repair likely leads to germ cell loss. Finally, compromising the activity of Tip60, a histone acetyltransferase, leads to germline defects similar to E(Pc) loss-of-function, suggesting that E(Pc) acts cooperatively with Tip60. Together, our data demonstrate that E(Pc) has pleiotropic roles in maintaining male germline activity and genome integrity. Our findings will help elucidate the in vivo molecular mechanisms of E(Pc).
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Biology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Zhen Shi
- Department of Biology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Geometry Technologies LLC, 6-302, 289 Bisheng Lane, Zhangjiang, Shanghai, 201204, China
| | - Jing Xie
- Department of Biology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Clinical Research Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital; School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Binbin Ma
- Department of Biology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Clinical Research Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital; School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
25
|
Chromosome Healing Is Promoted by the Telomere Cap Component Hiphop in Drosophila. Genetics 2017; 207:949-959. [PMID: 28942425 DOI: 10.1534/genetics.117.300317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
The addition of a new telomere onto a chromosome break, a process termed healing, has been studied extensively in organisms that utilize telomerase to maintain their telomeres. In comparison, relatively little is known about how new telomeres are constructed on broken chromosomes in organisms that do not use telomerase. Chromosome healing was studied in somatic and germline cells of Drosophila melanogaster, a nontelomerase species. We observed, for the first time, that broken chromosomes can be healed in somatic cells. In addition, overexpression of the telomere cap component Hiphop increased the survival of somatic cells with broken chromosomes, while the cap component HP1 did not, and overexpression of the cap protein HOAP decreased their survival. In the male germline, Hiphop overexpression greatly increased the transmission of healed chromosomes. These results indicate that Hiphop can stimulate healing of a chromosome break. We suggest that this reflects a unique function of Hiphop: it is capable of seeding formation of a new telomeric cap on a chromosome end that lacks a telomere.
Collapse
|
26
|
Artoni F, Kreipke RE, Palmeira O, Dixon C, Goldberg Z, Ruohola-Baker H. Loss of foxo rescues stem cell aging in Drosophila germ line. eLife 2017; 6:27842. [PMID: 28925355 PMCID: PMC5644957 DOI: 10.7554/elife.27842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022] Open
Abstract
Aging stem cells lose the capacity to properly respond to injury and regenerate their residing tissues. Here, we utilized the ability of Drosophila melanogaster germline stem cells (GSCs) to survive exposure to low doses of ionizing radiation (IR) as a model of adult stem cell injury and identified a regeneration defect in aging GSCs: while aging GSCs survive exposure to IR, they fail to reenter the cell cycle and regenerate the germline in a timely manner. Mechanistically, we identify foxo and mTOR homologue, Tor as important regulators of GSC quiescence following exposure to ionizing radiation. foxo is required for entry in quiescence, while Tor is essential for cell cycle reentry. Importantly, we further show that the lack of regeneration in aging germ line stem cells after IR can be rescued by loss of foxo. Stem cells are unspecialized cells that have the unique ability to replace dead cells and repair damaged tissues. To give rise to new cells, stem cells need to divide. This process, known as the cell cycle, includes several stages and is regulated by many different genes. For example, in many organisms, a gene called foxo helps cells respond to stress and to regulate the cell cycle and cell death. Defects in this gene have been linked to age-related diseases, such as cancer and Alzheimer’s disease. Previous research has shown that foxo can also regulate Tor – a gene that helps cells to divide and grow. As we age, stem cells become less efficient at regenerating tissues, especially after exposure to toxins and radiation. However, until now, it was not known how stem cells control their division after injury and during aging, and what role these two genes play in injured and aging stem cells. Now, Artoni, Kreipke et al. used germline stem cells from fly ovaries to investigate how young and old stem cells respond to injury. In young flies, foxo paused the cell cycle of the damaged stem cells. After 24 hours, Tor was able to overcome the action of foxo, and the stem cells resumed dividing and regenerating the damaged tissue. However, in old stem cells, foxo and Tor were misregulated and the stem cells could not restart dividing or repairing tissue after injury. When the levels of foxo in old stem cells were experimentally reduced, their ability to regenerate the tissue was restored. These discoveries provide new insights into how stem cells respond to injury and suggest that stem cell aging may be a reversible process. A next step will be to investigate why foxo and Tor are misregulated during aging and how these two genes interact with each another. In future, this could help develop new anti-aging therapies that can restore the body’s natural ability to repair itself following injury. Moreover, since cancer cells can become resistant to conventional cancer treatment by withdrawing from the cell cycle, developing new treatments that target foxo and Tor could help beat cancer and prevent its reoccurrence.
Collapse
Affiliation(s)
- Filippo Artoni
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, United States
| | - Rebecca E Kreipke
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, United States
| | - Ondina Palmeira
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, United States.,Nucleus of Multidisciplinary Research, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil
| | - Connor Dixon
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, United States
| | - Zachary Goldberg
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, United States
| |
Collapse
|
27
|
Ma X, Zhu X, Han Y, Story B, Do T, Song X, Wang S, Zhang Y, Blanchette M, Gogol M, Hall K, Peak A, Anoja P, Xie T. Aubergine Controls Germline Stem Cell Self-Renewal and Progeny Differentiation via Distinct Mechanisms. Dev Cell 2017; 41:157-169.e5. [DOI: 10.1016/j.devcel.2017.03.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/10/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023]
|