1
|
Liu F, Aziz RB, Wang Y, Xuan X, Yu M, Qi Z, Chen X, Wu Q, Qu Z, Dong T, Li S, Fang J, Wang C. Identification of VvAGL Genes Reveals Their Network's Involvement in the Modulation of Seed Abortion via Responding Multi-Hormone Signals in Grapevines. Int J Mol Sci 2024; 25:9849. [PMID: 39337335 PMCID: PMC11432271 DOI: 10.3390/ijms25189849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The formation of seedless traits is regulated by multiple factors. AGLs, which belong to the MADS-box family, were reported to be important regulators in this process; however, the underlying mechanism remains elusive. Here, we identified the VvAGL sub-family genes during the seed abortion process in seedless grapevine cv. 'JingkeJing' and found 40 differentially expressed VvAGL members and 1069 interacting proteins in this process. Interestingly, almost all members and their interacting proteins involved in the tryptophan metabolic pathway (K14486) and participated in the phytohormone signalling (KO04075) pathway, including the growth hormone (IAA), salicylic acid (SA), abscisic acid (ABA), cytokinin (CTK), and ethylene signalling pathways. The promoters of AGL sub-family genes contain cis-elements in response to hormones such as IAA, ABA, CTK, SA, and ETH, implying that they might respond to multi-hormone signals and involve in hormone signal transductions. Further expression analysis revealed VvAGL6-2, VvAGL11, VvAGL62-11, and VvAGL15 had the highest expression at the critical period of seed abortion, and there were positive correlations between ETH-VvAGL15-VvAGL6-2, ABA-VvAGL80, and SA-VvAGL62 in promoting seed abortion but negative feedback between IAA-VvAGL15-VvAGL6-2 and CTK-VvAGL11. Furthermore, many genes in the IAA, ABA, SA, CTK, and ETH pathways had a special expressional pattern in the seed, whereby we developed a regulatory network mediated by VvAGLs by responding to multihormonal crosstalk during grape seed abortion. Our findings provide new insights into the regulatory network of VvAGLs in multi-hormone signalling to regulate grape seed abortion, which could be helpful in the molecular breeding of high-quality seedless grapes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (F.L.); (R.B.A.); (Y.W.); (X.X.); (M.Y.); (Z.Q.); (X.C.); (Q.W.); (Z.Q.); (T.D.); (S.L.); (J.F.)
| |
Collapse
|
2
|
Adhikari PB, Kasahara RD. An Overview on MADS Box Members in Plants: A Meta-Review. Int J Mol Sci 2024; 25:8233. [PMID: 39125803 PMCID: PMC11311456 DOI: 10.3390/ijms25158233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Most of the studied MADS box members are linked to flowering and fruit traits. However, higher volumes of studies on type II of the two types so far suggest that the florigenic effect of the gene members could just be the tip of the iceberg. In the current study, we used a systematic approach to obtain a general overview of the MADS box members' cross-trait and multifactor associations, and their pleiotropic potentials, based on a manually curated local reference database. While doing so, we screened for the co-occurrence of terms of interest within the title or abstract of each reference, with a threshold of three hits. The analysis results showed that our approach can retrieve multi-faceted information on the subject of study (MADS box gene members in the current case), which could otherwise have been skewed depending on the authors' expertise and/or volume of the literature reference base. Overall, our study discusses the roles of MADS box members in association with plant organs and trait-linked factors among plant species. Our assessment showed that plants with most of the MADS box member studies included tomato, apple, and rice after Arabidopsis. Furthermore, based on the degree of their multi-trait associations, FLC, SVP, and SOC1 are suggested to have relatively higher pleiotropic potential among others in plant growth, development, and flowering processes. The approach devised in this study is expected to be applicable for a basic understanding of any study subject of interest, regardless of the depth of prior knowledge.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- Biotechnology and Bioscience Research Center, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
3
|
Song M, Zhang Y, Jia Q, Huang S, An R, Chen N, Zhu Y, Mu J, Hu S. Systematic analysis of MADS-box gene family in the U's triangle species and targeted mutagenesis of BnaAG homologs to explore its role in floral organ identity in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 13:1115513. [PMID: 36714735 PMCID: PMC9878456 DOI: 10.3389/fpls.2022.1115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
MADS-box transcription factors play an important role in regulating floral organ development and participate in environmental responses. To date, the MADS-box gene family has been widely identified in Brassica rapa (B. rapa), Brassica oleracea (B. oleracea), and Brassica napus (B. napus); however, there are no analogous reports in Brassica nigra (B. nigra), Brassica juncea (B. juncea), and Brassica carinata (B. carinata). In this study, a whole-genome survey of the MADS-box gene family was performed for the first time in the triangle of U species, and a total of 1430 MADS-box genes were identified. Based on the phylogenetic relationship and classification of MADS-box genes in Arabidopsis thaliana (A. thaliana), 1430 MADS-box genes were categorized as M-type subfamily (627 genes), further divided into Mα, Mβ, Mγ, and Mδ subclades, and MIKC-type subfamily (803 genes), further classified into 35 subclades. Gene structure and conserved protein motifs of MIKC-type MADS-box exhibit diversity and specificity among different subclades. Comparative analysis of gene duplication events and syngenic gene pairs among different species indicated that polyploidy is beneficial for MIKC-type gene expansion. Analysis of transcriptome data within diverse tissues and stresses in B. napus showed tissue-specific expression of MIKC-type genes and a broad response to various abiotic stresses, particularly dehydration stress. In addition, four representative floral organ mutants (wtl, feml, aglf-2, and aglf-1) in the T0 generation were generated by editing four AGAMOUS (BnaAG) homoeologs in B. napus that enriched the floral organ variant phenotype. In brief, this study provides useful information for investigating the function of MADS-box genes and contributes to revealing the regulatory mechanisms of floral organ development in the genetic improvement of new varieties.
Collapse
Affiliation(s)
- Min Song
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Qingli Jia
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Nana Chen
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Signatures of selection in recently domesticated macadamia. Nat Commun 2022; 13:242. [PMID: 35017544 PMCID: PMC8752631 DOI: 10.1038/s41467-021-27937-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Macadamia is a high value nut crop that is recently domesticated, ideal for testing the effect of artificial selection. Here, we sequence the genome of Hawaiian cultivar ‘Kau’ and assemble into 794 Mb in 14 pseudo-chromosomes with 37,728 genes. Genome analysis reveals a whole-genome duplication event, occurred 46.8 million years ago. Gene expansions occurred in gene families involves in fatty acid biosynthesis. Gene duplication of MADS-Box transcription factors in proanthocyanidin biosynthesis are relevant for seed coat development. Genome re-sequencing of 112 accessions reveals the origin of Hawaiian cultivars from Mount Bauple in southeast Queensland in Australia. Selective sweeps are detected in macadamia cultivars, including genes involved in fatty acid biosynthesis, seed coat development, and heat stress response. Such strong effects of artificial selection in few generations reveals the genomic basis for ‘one-step operation’ for clonal crop domestication. The knowledge gained could accelerate domestication of new crops from wild species. Macadamia is a recently domesticated nut crop. Here, the authors report the genome assembly of Hawaiian cultivar ‘Kau’ and conduct population genomic analyses to reveal the origin of Hawaiian cultivars and the genomic basis for one-step operation for the clonal crop domestication.
Collapse
|
5
|
Gao P, Quilichini TD, Yang H, Li Q, Nilsen KT, Qin L, Babic V, Liu L, Cram D, Pasha A, Esteban E, Condie J, Sidebottom C, Zhang Y, Huang Y, Zhang W, Bhowmik P, Kochian LV, Konkin D, Wei Y, Provart NJ, Kagale S, Smith M, Patterson N, Gillmor CS, Datla R, Xiang D. Evolutionary divergence in embryo and seed coat development of U's Triangle Brassica species illustrated by a spatiotemporal transcriptome atlas. THE NEW PHYTOLOGIST 2022; 233:30-51. [PMID: 34687557 DOI: 10.1111/nph.17759] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The economically valuable Brassica species include the six related members of U's Triangle. Despite the agronomic and economic importance of these Brassicas, the impacts of evolution and relatively recent domestication events on the genetic landscape of seed development have not been comprehensively examined in these species. Here we present a 3D transcriptome atlas for the six species of U's Triangle, producing a unique resource that captures gene expression data for the major subcompartments of the seed, from the unfertilized ovule to the mature embryo and seed coat. This comprehensive dataset for seed development in tetraploid and ancestral diploid Brassicas provides new insights into evolutionary divergence and expression bias at the gene and subgenome levels during the domestication of these valued crop species. Comparisons of gene expression associated with regulatory networks and metabolic pathways operating in the embryo and seed coat during seed development reveal differences in storage reserve accumulation and fatty acid metabolism among the six Brassica species. This study illustrates the genetic underpinnings of seed traits and the selective pressures placed on seed production, providing an immense resource for continued investigation of Brassica polyploid biology, genomics and evolution.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Hui Yang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kirby T Nilsen
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB, R7C 1A1, Canada
| | - Li Qin
- College of Art & Science, University of Saskatchewan, 9 Campus Dr, Saskatoon, SK, S7N 5A5, Canada
| | - Vivijan Babic
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Li Liu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Dustin Cram
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Asher Pasha
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Janet Condie
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Christine Sidebottom
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yan Zhang
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wentao Zhang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - David Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yangdou Wei
- College of Art & Science, University of Saskatchewan, 9 Campus Dr, Saskatoon, SK, S7N 5A5, Canada
| | - Nicholas J Provart
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Mark Smith
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, México
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
6
|
Cai H, Liu L, Zhang M, Chai M, Huang Y, Chen F, Yan M, Su Z, Henderson I, Palanivelu R, Chen X, Qin Y. Spatiotemporal control of miR398 biogenesis, via chromatin remodeling and kinase signaling, ensures proper ovule development. THE PLANT CELL 2021; 33:1530-1553. [PMID: 33570655 PMCID: PMC8254498 DOI: 10.1093/plcell/koab056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/02/2021] [Indexed: 05/11/2023]
Abstract
The coordinated development of sporophytic and gametophytic tissues is essential for proper ovule patterning and fertility. However, the mechanisms regulating their integrated development remain poorly understood. Here, we report that the Swi2/Snf2-Related1 (SWR1) chromatin-remodeling complex acts with the ERECTA receptor kinase-signaling pathway to control female gametophyte and integument growth in Arabidopsis thaliana by inhibiting transcription of the microRNA gene MIR398c in early-stage megagametogenesis. Moreover, pri-miR398c is transcribed in the female gametophyte but is then translocated to and processed in the ovule sporophytic tissues. Together, SWR1 and ERECTA also activate ARGONAUTE10 (AGO10) expression in the chalaza; AGO10 sequesters miR398, thereby ensuring the expression of three AGAMOUS-LIKE (AGL) genes (AGL51, AGL52, and AGL78) in the female gametophyte. In the context of sexual organ morphogenesis, these findings suggest that the spatiotemporal control of miRNA biogenesis, resulting from coordination between chromatin remodeling and cell signaling, is essential for proper ovule development in Arabidopsis.
Collapse
Affiliation(s)
- Hanyang Cai
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Liu
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Man Zhang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengnan Chai
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youmei Huang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangqian Chen
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Maokai Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhenxia Su
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ian Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | | | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, United States
| | - Yuan Qin
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Author for correspondence:
| |
Collapse
|
7
|
Zablatzká L, Balarynová J, Klčová B, Kopecký P, Smýkal P. Anatomy and Histochemistry of Seed Coat Development of Wild ( Pisum sativum subsp. elatius (M. Bieb.) Asch. et Graebn. and Domesticated Pea ( Pisum sativum subsp. sativum L.). Int J Mol Sci 2021; 22:4602. [PMID: 33925728 PMCID: PMC8125792 DOI: 10.3390/ijms22094602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
In angiosperms, the mature seed consists of embryo, endosperm, and a maternal plant-derived seed coat (SC). The SC plays a role in seed filling, protects the embryo, mediates dormancy and germination, and facilitates the dispersal of seeds. SC properties have been modified during the domestication process, resulting in the removal of dormancy, mediated by SC impermeability. This study compares the SC anatomy and histochemistry of two wild (JI64 and JI1794) and two domesticated (cv. Cameor and JI92) pea genotypes. Histochemical staining of five developmental stages: 13, 21, 27, 30 days after anthesis (DAA), and mature dry seeds revealed clear differences between both pea types. SC thickness is established early in the development (13 DAA) and is primarily governed by macrosclereid cells. Polyanionic staining by Ruthenium Red indicated non homogeneity of the SC, with a strong signal in the hilum, the micropyle, and the upper parts of the macrosclereids. High peroxidase activity was detected in both wild and cultivated genotypes and increased over the development peaking prior to desiccation. The detailed knowledge of SC anatomy is important for any molecular or biochemical studies, including gene expression and proteomic analysis, especially when comparing different genotypes and treatments. Analysis is useful for other crop-to-wild-progenitor comparisons of economically important legume crops.
Collapse
Affiliation(s)
- Lenka Zablatzká
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| | - Jana Balarynová
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| | - Barbora Klčová
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| | - Pavel Kopecký
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
- Genetic Resources for Vegetables and Specialty Crops, Crop Research Institute, Šlechtitelů 29, 783 71 Olomouc, Czech Republic
| | - Petr Smýkal
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (L.Z.); (J.B.); (B.K.); (P.K.)
| |
Collapse
|
8
|
Lu J, Le Hir R, Gómez-Páez DM, Coen O, Péchoux C, Jasinski S, Magnani E. The nucellus: between cell elimination and sugar transport. PLANT PHYSIOLOGY 2021; 185:478-490. [PMID: 33721907 PMCID: PMC8133628 DOI: 10.1093/plphys/kiaa045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 05/29/2023]
Abstract
The architecture of the seed is shaped by the processes of tissue partitioning, which determines the volume ratio of maternal and zygotic tissues, and nutrient partitioning, which regulates nutrient distribution among tissues. In angiosperms, early seed development is characterized by antagonistic development of the nucellus maternal tissue and the endosperm fertilization product to become the main sugar sink. This process marked the evolution of angiosperms and outlines the most ancient seed architectures. In Arabidopsis, the endosperm partially eliminates the nucellus and imports sugars from the seed coat. Here, we show that the nucellus is symplasmically connected to the chalaza, the seed nutrient unloading zone, and works as both a sugar sink and source alongside the seed coat. After fertilization, the transient nucellus accumulates starch early on and releases it in the apoplasmic space during its elimination. By contrast, the persistent nucellus exports sugars toward the endosperm through the SWEET4 hexose facilitator. Finally, we analyzed sugar metabolism and transport in the transparent testa 16 mutant, which fails to undergo nucellus cell elimination, which shed light on the coordination between tissue and nutrient partitioning. Overall, this study identifies a path of sugar transport in the Arabidopsis seed and describes a link between sugar redistribution and the nucellus cell-elimination program.
Collapse
Affiliation(s)
- Jing Lu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405 Orsay Cedex, France
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Dennys-Marcela Gómez-Páez
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Olivier Coen
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405 Orsay Cedex, France
| | - Christine Péchoux
- INRAE, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | - Sophie Jasinski
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| |
Collapse
|
9
|
Renard J, Niñoles R, Martínez-Almonacid I, Gayubas B, Mateos-Fernández R, Bissoli G, Bueso E, Serrano R, Gadea J. Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics. PLANT, CELL & ENVIRONMENT 2020; 43:2523-2539. [PMID: 32519347 DOI: 10.1111/pce.13822] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 05/26/2023]
Abstract
Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant, Arabidopsis thaliana, for natural ageing and for three accelerated ageing methods. Genome-wide analysis, using publicly available single-nucleotide polymorphisms (SNPs) data sets, identified multiple genomic regions associated with variation in seed longevity. Reverse genetics of 20 candidate genes in Columbia ecotype resulted in seven genes positive for seed longevity (PSAD1, SSLEA, SSTPR, DHAR1, CYP86A8, MYB47 and SPCH) and five negative ones (RBOHD, RBOHE, RBOHF, KNAT7 and SEP3). In this uniform genetic background, natural and accelerated ageing methods provided similar results for seed-longevity in knock-out mutants. The NADPH oxidases (RBOHs), the dehydroascorbate reductase (DHAR1) and the photosystem I subunit (PSAD1) highlight the important role of oxidative stress on seed ageing. The cytochrome P-450 hydroxylase, CYP86A8, and the transcription factors, MYB47, KNAT7 and SEP3, support the protecting role of the seed coat during seed ageing.
Collapse
Affiliation(s)
- Joan Renard
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-C.S.I.C., Valencia, Spain
| | - Regina Niñoles
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-C.S.I.C., Valencia, Spain
| | - Irene Martínez-Almonacid
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-C.S.I.C., Valencia, Spain
| | - Beatriz Gayubas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-C.S.I.C., Valencia, Spain
| | - Rubén Mateos-Fernández
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-C.S.I.C., Valencia, Spain
| | - Gaetano Bissoli
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-C.S.I.C., Valencia, Spain
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-C.S.I.C., Valencia, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-C.S.I.C., Valencia, Spain
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-C.S.I.C., Valencia, Spain
| |
Collapse
|
10
|
Wang L, Li Y, Jin X, Liu L, Dai X, Liu Y, Zhao L, Zheng P, Wang X, Liu Y, Lin D, Qin Y. Floral transcriptomes reveal gene networks in pineapple floral growth and fruit development. Commun Biol 2020; 3:500. [PMID: 32913289 PMCID: PMC7483743 DOI: 10.1038/s42003-020-01235-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/12/2020] [Indexed: 11/12/2022] Open
Abstract
Proper flower development is essential for sexual reproductive success and the setting of fruits and seeds. The availability of a high quality genome sequence for pineapple makes it an excellent model for studying fruit and floral organ development. In this study, we sequenced 27 different pineapple floral samples and integrated nine published RNA-seq datasets to generate tissue- and stage-specific transcriptomic profiles. Pairwise comparisons and weighted gene co-expression network analysis successfully identified ovule-, stamen-, petal- and fruit-specific modules as well as hub genes involved in ovule, fruit and petal development. In situ hybridization confirmed the enriched expression of six genes in developing ovules and stamens. Mutant characterization and complementation analysis revealed the important role of the subtilase gene AcSBT1.8 in petal development. This work provides an important genomic resource for functional analysis of pineapple floral organ growth and fruit development and sheds light on molecular networks underlying pineapple reproductive organ growth.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingyue Jin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Liu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaozhuan Dai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanhui Liu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lihua Zhao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ping Zheng
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Yeqiang Liu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Deshu Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Qin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
11
|
Matilla AJ. Auxin: Hormonal Signal Required for Seed Development and Dormancy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E705. [PMID: 32492815 PMCID: PMC7356396 DOI: 10.3390/plants9060705] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
The production of viable seeds is a key event in the life cycle of higher plants. Historically, abscisic acid (ABA) and gibberellin (GAs) were considered the main hormones that regulate seed formation. However, auxin has recently emerged as an essential player that modulates, in conjunction with ABA, different cellular processes involved in seed development as well as the induction, regulation and maintenance of primary dormancy (PD). This review examines and discusses the key role of auxin as a signaling molecule that coordinates seed life. The cellular machinery involved in the synthesis and transport of auxin, as well as their cellular and tissue compartmentalization, is crucial for the development of the endosperm and seed-coat. Thus, auxin is an essential compound involved in integuments development, and its transport from endosperm is regulated by AGAMOUS-LIKE62 (AGL62) whose transcript is specifically expressed in the endosperm. In addition, recent biochemical and genetic evidence supports the involvement of auxins in PD. In this process, the participation of the transcriptional regulator ABA INSENSITIVE3 (ABI3) is critical, revealing a cross-talk between auxin and ABA signaling. Future experimental aimed at advancing knowledge of the role of auxins in seed development and PD are also discussed.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Coen O, Lu J, Xu W, De Vos D, Péchoux C, Domergue F, Grain D, Lepiniec L, Magnani E. Deposition of a cutin apoplastic barrier separating seed maternal and zygotic tissues. BMC PLANT BIOLOGY 2019; 19:304. [PMID: 31291882 PMCID: PMC6617593 DOI: 10.1186/s12870-019-1877-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/09/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND In flowering plants, proper seed development is achieved through the constant interplay of fertilization products, embryo and endosperm, and maternal tissues. Communication between these compartments is supposed to be tightly regulated at their interfaces. Here, we characterize the deposition pattern of an apoplastic lipid barrier between the maternal inner integument and fertilization products in Arabidopsis thaliana seeds. RESULTS We demonstrate that an apoplastic lipid barrier is first deposited by the ovule inner integument and undergoes de novo cutin deposition following central cell fertilization and relief of the FERTILIZATION INDEPENDENT SEED Polycomb group repressive mechanism. In addition, we show that the WIP zinc-finger TRANSPARENT TESTA 1 and the MADS-Box TRANSPARENT TESTA 16 transcription factors act maternally to promote its deposition by regulating cuticle biosynthetic pathways. Finally, mutant analyses indicate that this apoplastic barrier allows correct embryo sliding along the seed coat. CONCLUSIONS Our results revealed that the deposition of a cutin apoplastic barrier between seed maternal and zygotic tissues is part of the seed coat developmental program.
Collapse
Affiliation(s)
- Olivier Coen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405 Orsay Cedex, France
| | - Jing Lu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405 Orsay Cedex, France
| | - Wenjia Xu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Delphine De Vos
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Christine Péchoux
- INRA, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Cedex, 78352 Jouy-en-Josas, France
| | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, University of Bordeaux, UMR 5200, CNRS /, 71 av. E. Bourleaux, CS 20032, 33140 Villenave d’Ornon, France
| | - Damaris Grain
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| |
Collapse
|
13
|
Coen O, Lu J, Xu W, Pateyron S, Grain D, Péchoux C, Lepiniec L, Magnani E. A TRANSPARENT TESTA Transcriptional Module Regulates Endothelium Polarity. FRONTIERS IN PLANT SCIENCE 2019; 10:1801. [PMID: 32117351 PMCID: PMC7015901 DOI: 10.3389/fpls.2019.01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/23/2019] [Indexed: 05/06/2023]
Abstract
Seeds have greatly contributed to the successful colonization of land by plants. Compared to spores, seeds carry nutrients, rely less on water for germination, provide a higher degree of protection against biotic and abiotic stresses, and can disperse in different ways. Such advantages are, to a great extent, provided by the seed coat. The evolution of a multi-function seed-coat is inheritably linked to the evolution of tissue polarity, which allows the development of morphologically and functionally distinct domains. Here, we show that the endothelium, the innermost cell layer of the seed coat, displays distinct morphological features along the proximal-distal axis. Furthermore, we identified a TRANSPARENT TESTA transcriptional module that contributes to establishing endothelium polarity and responsiveness to fertilization. Finally, we characterized its downstream gene pathway by whole-genome transcriptional analyses. We speculate that such a regulatory module might have been responsible for the evolution of morphological diversity in seed shape, micropylar pore formation, and cuticle deposition.
Collapse
Affiliation(s)
- Olivier Coen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, Orsay, France
| | - Jing Lu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, Orsay, France
| | - Wenjia Xu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
| | - Stéphanie Pateyron
- TranscriptOmic Platform of IPS2, Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
| | - Damaris Grain
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
| | - Christine Péchoux
- INRA, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
- *Correspondence: Enrico Magnani,
| |
Collapse
|
14
|
Francoz E, Lepiniec L, North HM. Seed coats as an alternative molecular factory: thinking outside the box. PLANT REPRODUCTION 2018; 31:327-342. [PMID: 30056618 DOI: 10.1007/s00497-018-0345-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/13/2018] [Indexed: 05/15/2023]
Abstract
Seed coats as commodities. Seed coats play important roles in the protection of the embryo from biological attack and physical damage by the environment as well as dispersion strategies. A significant part of the energy devoted by the mother plant to seed production is channeled into the production of the cell layers and metabolites that surround the embryo. Nevertheless, in crop species these are often discarded post-harvest and are a wasted resource that could be processed to yield co-products. The production of novel compounds from existing metabolites is also a possibility. A number of macromolecules are already accumulated in these maternal layers that could be exploited in industrial applications either directly or via green chemistry, notably flavonoids, lignin, lignan, polysaccharides, lipid polyesters and waxes. Here, we summarize our knowledge of the in planta biosynthesis pathways of these macromolecules and their molecular regulation as well as potential applications. We also outline recent work aimed at providing further tools for increasing yields of existing molecules or the development of novel biotech approaches, as well as trial studies aimed at exploiting this underused resource.
Collapse
Affiliation(s)
- Edith Francoz
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
15
|
Karmann J, Müller B, Hammes UZ. The long and winding road: transport pathways for amino acids in Arabidopsis seeds. PLANT REPRODUCTION 2018; 31:253-261. [PMID: 29549431 DOI: 10.1007/s00497-018-0334-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/07/2018] [Indexed: 05/02/2023]
Abstract
Pathways for assimilates. During their life cycle, plants alternate between a haploid stage, the gametophyte, and a diploid stage, the sporophyte. In higher plants, meiosis generates the gametophyte deeply embedded in the maternal tissue of the flower. The megaspore mother cell undergoes meiosis, and then, the surviving megaspore of the four megaspores produced undergoes mitotic divisions and finally gives rise to the female gametophyte, consisting of the egg cell, two synergids, the central cell, which due to the fusion of two nuclei is diploid (double haploid) in Arabidopsis and most angiosperms and the antipods, whose number is not fixed and varies significantly between species (Yadegari and Drews in Plant Cell 16(Suppl):S133-S141, 2004). The maternal tissues that harbor the female gametophyte and the female gametophyte are referred to as the ovule (Fig. 1). Double fertilization of the egg cell and the central cell by the two generative nuclei of the pollen leads to the diploid embryo and the endosperm, respectively (Hamamura et al. in Curr Opin Plant Biol 15:70-77, 2012). Upon fertilization, the ovule is referred to as the seed. Seeds combine two purposes: to harbor storage compounds for use by the embryo upon germination and to protect the embryo until the correct conditions for germination are encountered. As a consequence, seeds are the plant tissue that is of highest nutritional value and the human diet, by a considerable amount, consists of seeds or seed-derived products. Amino acids are of special interest, because plants serve as the main source for the so-called essential amino acids, that animals cannot synthesize de novo and are therefore often a limiting factor for human growth and development (WHO in Protein and amino acid requirements in human nutrition. WHO technical report series, WHO, Geneva, 2007). The plant embryo needs amino acids for general protein synthesis, and additionally they are used to synthesize storage proteins in the seeds of certain plants, e.g., legumes as a resource to support the growth of the seedling after germination. The support of the embryo depends on transport processes that occur between the mother plant and the seed tissues including the embryo. In this review, we will focus on the processes of unloading amino acids from the phloem and their post-phloem transport. We will further highlight similarities between amino acid transport and the transport of the main assimilate and osmolyte, sucrose. Finally, we will discuss similarities and differences between different plant species in terms of structural aspects but for the molecular aspects we are almost exclusively focusing on Arabidopsis. Fig. 1 Vascularization of the Arabidopsis ovule and seed. Plants expressing ER-localized mCherry under control of the companion cell-specific SUC2 promoter and ER-localized GFP under control of the sieve element marker PD1 as described (Müller et al. 2015) are shown to visualize the phloem in the funiculus and the chalazal regions. a Overview over an ovule. FG: female gametophyte. b A magnification of the region marked by a square in panel a. c Overview over a seed. ES: endosperm; E: embryo. d A magnification of the region marked by a square in panel c. The arrows in b and d point to the terminal companion cell and arrowheads to terminal sieve elements.
Collapse
Affiliation(s)
- Julia Karmann
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany
| | - Benedikt Müller
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany
| | - Ulrich Z Hammes
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Strasse 8, 85354, Freising, Germany.
| |
Collapse
|
16
|
Hashimoto K, Miyashima S, Sato-Nara K, Yamada T, Nakajima K. Functionally Diversified Members of the MIR165/6 Gene Family Regulate Ovule Morphogenesis in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:1017-1026. [PMID: 29462472 DOI: 10.1093/pcp/pcy042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/14/2018] [Indexed: 05/03/2023]
Abstract
The ovules of flowering plants consist of a central embryo sac and surrounding layers of the inner and outer integument. As these structural units eventually give rise to the embryo/endosperm and seed coat, respectively, a precisely organized ovule structure is essential for successful fertilization and seed production. In Arabidopsis thaliana, correct ovule patterning depends on the restricted expression of the CLASS III HOMEODOMAIN LEUCINE ZIPPER (HD-ZIP III) gene PHABULOSA (PHB) in the apical region of the incipient inner integument, which in turn is regulated via post-transcriptional suppression by miR165 and miR166 (miR165/6) derived from multiple MIR165/6 genes. While a common subset of MIR165/6 genes regulate PHB expression in the root meristem, leaf primordium and embryo, it is unknown whether the same MIR165/6 subset also regulate PHB expression during ovule development. Furthermore, it is unclear where in the ovule primordia miR165/6 are produced. Here, we show that a distinct set of MIR165/6 genes that are highly expressed in the small regions of early ovule primordia restrict the PHB expression domain to promote integument formation. MIR165/6 genes that function in ovule development are phylogenetically distinct from those acting in roots and leaf primordia. Taken together, our data suggest that members of the MIR165/6 gene family are diversified in their expression capacity to establish elaborate PHB expression patterns depending on the developmental context, thereby allowing HD-ZIP III transcription factors to regulate multiple aspects of plant development.
Collapse
Affiliation(s)
- Kayo Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506 Japan
| | - Shunsuke Miyashima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| | - Kumi Sato-Nara
- Research Group of Biological Sciences, Division of Natural Sciences, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506 Japan
| | - Toshihiro Yamada
- School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192 Japan
| | - Keiji Nakajima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
17
|
Fiume E, Coen O, Xu W, Lepiniec L, Magnani E. Developmental patterning of sub-epidermal cells in the outer integument of Arabidopsis seeds. PLoS One 2017; 12:e0188148. [PMID: 29141031 PMCID: PMC5687734 DOI: 10.1371/journal.pone.0188148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/01/2017] [Indexed: 11/18/2022] Open
Abstract
The seed, the reproductive unit of angiosperms, is generally protected by the seed coat. The seed coat is made of one or two integuments, each comprising two epidermal cells layers and, in some cases, extra sub-epidermal cell layers. The thickness of the seed-coat affects several aspects of seed biology such as dormancy, germination and mortality. In Arabidopsis, the inner integument displays one or two sub-epidermal cell layers that originate from periclinal cell divisions of the innermost epidermal cell layer. By contrast, the outer integument was considered to be two-cell layered. Here, we show that sub-epidermal chalazal cells grow in between the epidermal outer integument cell layers to create an incomplete three-cell layered outer integument. We found that the MADS box transcription factor TRANSPARENT TESTA 16 represses growth of the chalaza and formation of sub-epidermal outer integument cells. Finally, we demonstrate that sub-epidermal cells of the outer and inner integument respond differently to the repressive mechanism mediated by FERTILIZATION INDEPENDENT SEED Polycomb group proteins and to fertilization signals. Our data suggest that integument cell origin rather than sub-epidermal cell position underlies different responses to fertilization.
Collapse
Affiliation(s)
- Elisa Fiume
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
| | - Olivier Coen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
- Ecole Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, Orsay, France
| | - Wenjia Xu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Versailles, France
- * E-mail:
| |
Collapse
|
18
|
Fiume E, Coen O, Xu W, Lepiniec L, Magnani E. Growth of the Arabidopsis sub-epidermal integument cell layers might require an endosperm signal. PLANT SIGNALING & BEHAVIOR 2017; 12:e1339000. [PMID: 28613109 PMCID: PMC5616150 DOI: 10.1080/15592324.2017.1339000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The seed, the reproductive unit of angiosperms, is physically protected by the seed coat. The seed coat develops from the ovule integuments after fertilization. The Arabidopsis ovule integuments are made of 5-6 cell layers of epidermal and sub-epidermal origin. The growth of the epidermal integument cell layers responds to an endosperm signal mediated by the AGAMOUS-LIKE 62 MADS box transcription factor with limited embryo contribution. By contrast, the sub-epidermal integument cell layers require the embryo to expand whereas the role of the endosperm is still unclear. Here, we analyzed the development of the sub-epidermal integument cell layers in agl62 mutant seeds, which undergo premature endosperm cellularization and arrest. Our data suggest that embryo and endosperm are both necessary to trigger the expansion of the sub-epidermal integument cell layers.
Collapse
Affiliation(s)
- Elisa Fiume
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, France
| | - Olivier Coen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, France
- Ecole Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, France
| | - Wenjia Xu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, France
- CONTACT Enrico Magnani Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles, Cedex, France
| |
Collapse
|