1
|
Zhang L, Chu Q, Jiang S, Shao B. Integration of Mendelian Randomization to explore the genetic influences of pediatric sepsis: a focus on RGL4, ATP9A, MAP3K7CL, and DDX11L2. BMC Pediatr 2025; 25:66. [PMID: 39871218 PMCID: PMC11770931 DOI: 10.1186/s12887-025-05424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025] Open
Abstract
OBJECTIVE This study aims to explore the genetic characteristics of pediatric sepsis through a combined analysis of multiple methods, including Mendelian Randomization (MR), differential gene expression analysis, and immune cell infiltration assessment. It explores their potential as biomarkers for sepsis risk and their involvement in immune-related pathways. METHODS Differential expression analysis was performed using public datasets to identify genes with significant expression changes between pediatric sepsis patients and healthy controls. MR analysis utilized genome-wide significant SNPs as instrumental variables to assess causal relationships between gene expression and sepsis risk. Bi-directional MR was conducted to assess both forward and reverse causality. FDR correction was applied to adjust for multiple comparisons in MR results. Immune cell infiltration analysis was performed to investigate the genes' roles in immune responses, and findings were validated with independent datasets. ROC curves were constructed to assess predictive performance. RESULTS Differential expression analysis identified significant changes in RGL4,ATP9A,MAP3K7CL, and DDX11L2. MR analysis revealed causal associations between these genes and sepsis risk, with RGL4 and ATP9A upregulated (inflammatory roles), and MAP3K7CL and DDX11L2 downregulated (protective roles). Bi-directional MR found no significant reverse causality. Immune cell analysis showed associations with key immune cell types, and ROC analysis demonstrated strong predictive potential. CONCLUSION RGL4,ATP9A,MAP3K7CL, and DDX11L2 play important roles in pediatric sepsis risk and immune response regulation, offering insights into genetic and immune mechanisms that may inform future sepsis research and treatment.
Collapse
Affiliation(s)
- Liuzhao Zhang
- Department of Critical Care Medicine, Anhui Jing'an Medicine Hospital, Hefei, 230032, China
| | - Quanwang Chu
- Department of Critical Care Medicine, Anhui Jing'an Medicine Hospital, Hefei, 230032, China
| | - Shuyue Jiang
- Department of Critical Care Medicine, Anhui Jing'an Medicine Hospital, Hefei, 230032, China
| | - Bo Shao
- Department of Pathology, Anhui Provincial Children's Hospital, 39 Wangjiang East Road, Hefei, Anhui, 230051, China.
| |
Collapse
|
2
|
Gehrs S, Jakab M, Gutjahr E, Gu Z, Weichenhan D, Mallm JP, Mogler C, Schlesner M, Plass C, Schlereth K, Augustin HG. The spatial zonation of the murine placental vasculature is specified by epigenetic mechanisms. Dev Cell 2025:S1534-5807(24)00776-7. [PMID: 39814015 DOI: 10.1016/j.devcel.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/08/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
The labyrinthian fetoplacental capillary network is vital for proper nourishment of the developing embryo. Dysfunction of the maternal-fetal circulation is a primary cause of placental insufficiency. Here, we show that the spatial zonation of the murine placental labyrinth vasculature is controlled by flow-regulated epigenetic mechanisms. Spatiotemporal transcriptomic profiling identified a gradual change in the expression of epigenetic enzymes, including the de novo DNA methyltransferase 3a (DNMT3A). Loss of Dnmt3a resulted in DNA hypomethylation and perturbation of zonated placental gene expression. The resulting global DNA hypomethylation impaired the angiogenic capacity of endothelial cells. Global or endothelium-predominant deletion of Dnmt3a resulted in impaired placental vascularization and fetal growth retardation (FGR). Human placental endothelial gene expression profiling associated preeclampsia with reduced DNMT3A expression. Collectively, our study identified DMNT3A as critical methylome-regulator of placental endothelial gene expression and function with clinical implications for placental dysfunction, as it occurs during preeclampsia or FGR.
Collapse
Affiliation(s)
- Stephanie Gehrs
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
| | - Moritz Jakab
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Ewgenija Gutjahr
- Institute of Pathology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Zuguang Gu
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, 69120 Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, 86159 Augsburg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Katharina Schlereth
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| |
Collapse
|
3
|
Dobner S, Tóth F, de Rooij LPMH. A high-resolution view of the heterogeneous aging endothelium. Angiogenesis 2024; 27:129-145. [PMID: 38324119 PMCID: PMC11021252 DOI: 10.1007/s10456-023-09904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Vascular endothelial cell (EC) aging has a strong impact on tissue perfusion and overall cardiovascular health. While studies confined to the investigation of aging-associated vascular readouts in one or a few tissues have already drastically expanded our understanding of EC aging, single-cell omics and other high-resolution profiling technologies have started to illuminate the intricate molecular changes underlying endothelial aging across diverse tissues and vascular beds at scale. In this review, we provide an overview of recent insights into the heterogeneous adaptations of the aging vascular endothelium. We address critical questions regarding tissue-specific and universal responses of the endothelium to the aging process, EC turnover dynamics throughout lifespan, and the differential susceptibility of ECs to acquiring aging-associated traits. In doing so, we underscore the transformative potential of single-cell approaches in advancing our comprehension of endothelial aging, essential to foster the development of future innovative therapeutic strategies for aging-associated vascular conditions.
Collapse
Affiliation(s)
- Sarah Dobner
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fanni Tóth
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Laura P M H de Rooij
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
4
|
Préau L, Lischke A, Merkel M, Oegel N, Weissenbruch M, Michael A, Park H, Gradl D, Kupatt C, le Noble F. Parenchymal cues define Vegfa-driven venous angiogenesis by activating a sprouting competent venous endothelial subtype. Nat Commun 2024; 15:3118. [PMID: 38600061 PMCID: PMC11006894 DOI: 10.1038/s41467-024-47434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Formation of organo-typical vascular networks requires cross-talk between differentiating parenchymal cells and developing blood vessels. Here we identify a Vegfa driven venous sprouting process involving parenchymal to vein cross-talk regulating venous endothelial Vegfa signaling strength and subsequent formation of a specialized angiogenic cell, prefabricated with an intact lumen and pericyte coverage, termed L-Tip cell. L-Tip cell selection in the venous domain requires genetic interaction between vascular Aplnra and Kdrl in a subset of venous endothelial cells and exposure to parenchymal derived Vegfa and Apelin. Parenchymal Esm1 controls the spatial positioning of venous sprouting by fine-tuning local Vegfa availability. These findings may provide a conceptual framework for understanding how Vegfa generates organo-typical vascular networks based on the selection of competent endothelial cells, induced via spatio-temporal control of endothelial Kdrl signaling strength involving multiple parenchymal derived cues generated in a tissue dependent metabolic context.
Collapse
Affiliation(s)
- Laetitia Préau
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
- Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany
| | - Anna Lischke
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Melanie Merkel
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Neslihan Oegel
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Maria Weissenbruch
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Andria Michael
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Hongryeol Park
- Dept. Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Roentgen Strasse 20, 48149, Muenster, Germany
| | - Dietmar Gradl
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, and DZHK (German Center for Cardiovascular Research), partner site Munich, Munich, Germany
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany.
- Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany.
- Institute of Experimental Cardiology, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
5
|
Pinheiro EA, DeKeyser JM, Lenny B, Sapkota Y, Burridge PW. Nilotinib-induced alterations in endothelial cell function recapitulate clinical vascular phenotypes independent of ABL1. Sci Rep 2024; 14:7123. [PMID: 38532120 DOI: 10.1038/s41598-024-57686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Nilotinib is a highly effective treatment for chronic myeloid leukemia but has been consistently associated with the development of nilotinib-induced arterial disease (NAD) in a subset of patients. To date, which cell types mediate this effect and whether NAD results from on-target mechanisms is unknown. We utilized human induced pluripotent stem cells (hiPSCs) to generate endothelial cells and vascular smooth muscle cells for in vitro study of NAD. We found that nilotinib adversely affects endothelial proliferation and migration, in addition to increasing intracellular nitric oxide. Nilotinib did not alter endothelial barrier function or lipid uptake. No effect of nilotinib was observed in vascular smooth muscle cells, suggesting that NAD is primarily mediated through endothelial cells. To evaluate whether NAD results from enhanced inhibition of ABL1, we generated multiple ABL1 knockout lines. The effects of nilotinib remained unchanged in the absence of ABL1, suggesting that NAD results from off- rather than on-target signaling. The model established in the present study can be applied to future mechanistic and patient-specific pharmacogenomic studies.
Collapse
Affiliation(s)
- Emily A Pinheiro
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, 320 E Superior St, Searle 8-525, Chicago, IL, 60611, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, 320 E Superior St, Searle 8-525, Chicago, IL, 60611, USA
| | - Brian Lenny
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, 38105, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, 38105, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, 320 E Superior St, Searle 8-525, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Madonna R. Unvealing organ-specific endothelial heterogeneity and its dysfunction. Vascul Pharmacol 2023; 153:107248. [PMID: 38043759 DOI: 10.1016/j.vph.2023.107248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
|
7
|
Frolov A, Lobov A, Kabilov M, Zainullina B, Tupikin A, Shishkova D, Markova V, Sinitskaya A, Grigoriev E, Markova Y, Kutikhin A. Multi-Omics Profiling of Human Endothelial Cells from the Coronary Artery and Internal Thoracic Artery Reveals Molecular but Not Functional Heterogeneity. Int J Mol Sci 2023; 24:15032. [PMID: 37834480 PMCID: PMC10573276 DOI: 10.3390/ijms241915032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Major adverse cardiovascular events occurring upon coronary artery bypass graft surgery are typically accompanied by endothelial dysfunction. Total arterial revascularisation, which employs both left and right internal thoracic arteries instead of the saphenous vein to create a bypass, is associated with better mid- and long-term outcomes. We suggested that molecular profiles of human coronary artery endothelial cells (HCAECs) and human internal mammary artery endothelial cells (HITAECs) are coherent in terms of transcriptomic and proteomic signatures, which were then investigated by RNA sequencing and ultra-high performance liquid chromatography-mass spectrometry, respectively. Both HCAECs and HITAECs overexpressed molecules responsible for the synthesis of extracellular matrix (ECM) components, basement membrane assembly, cell-ECM adhesion, organisation of intercellular junctions, and secretion of extracellular vesicles. HCAECs were characterised by higher enrichment with molecular signatures of basement membrane construction, collagen biosynthesis and folding, and formation of intercellular junctions, whilst HITAECs were notable for augmented pro-inflammatory signaling, intensive synthesis of proteins and nitrogen compounds, and enhanced ribosome biogenesis. Despite HCAECs and HITAECs showing a certain degree of molecular heterogeneity, no specific markers at the protein level have been identified. Coherence of differentially expressed molecular categories in HCAECs and HITAECs suggests synergistic interactions between these ECs in a bypass surgery scenario.
Collapse
Affiliation(s)
- Alexey Frolov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Arseniy Lobov
- Laboratory for Regenerative Biomedicine, Research Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretskiy Prospekt, St. Petersburg 194064, Russia;
| | - Marsel Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Prospekt Akademika Lavrentieva, Novosibirsk 630090, Russia; (M.K.); (A.T.)
| | - Bozhana Zainullina
- Centre for Molecular and Cell Technologies, Research Park, Saint Petersburg State University, 7/9 Universitetskaya Embankment, St. Petersburg 199034, Russia;
| | - Alexey Tupikin
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Prospekt Akademika Lavrentieva, Novosibirsk 630090, Russia; (M.K.); (A.T.)
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Anna Sinitskaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Evgeny Grigoriev
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Yulia Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| |
Collapse
|
8
|
Stabile AM, Pistilli A, Mariangela R, Rende M, Bartolini D, Di Sante G. New Challenges for Anatomists in the Era of Omics. Diagnostics (Basel) 2023; 13:2963. [PMID: 37761332 PMCID: PMC10529314 DOI: 10.3390/diagnostics13182963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Anatomic studies have traditionally relied on macroscopic, microscopic, and histological techniques to investigate the structure of tissues and organs. Anatomic studies are essential in many fields, including medicine, biology, and veterinary science. Advances in technology, such as imaging techniques and molecular biology, continue to provide new insights into the anatomy of living organisms. Therefore, anatomy remains an active and important area in the scientific field. The consolidation in recent years of some omics technologies such as genomics, transcriptomics, proteomics, and metabolomics allows for a more complete and detailed understanding of the structure and function of cells, tissues, and organs. These have been joined more recently by "omics" such as radiomics, pathomics, and connectomics, supported by computer-assisted technologies such as neural networks, 3D bioprinting, and artificial intelligence. All these new tools, although some are still in the early stages of development, have the potential to strongly contribute to the macroscopic and microscopic characterization in medicine. For anatomists, it is time to hitch a ride and get on board omics technologies to sail to new frontiers and to explore novel scenarios in anatomy.
Collapse
Affiliation(s)
- Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Ruggirello Mariangela
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Desirée Bartolini
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| |
Collapse
|
9
|
Dragoni S, Turowski P. Vascular Signalling. Cells 2023; 12:2038. [PMID: 37626847 PMCID: PMC10453014 DOI: 10.3390/cells12162038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
In all vertebrates, closed blood and open lymph circulatory systems are essential for the delivery of nutrients and oxygen to tissues, waste clearance, and immune function [...].
Collapse
Affiliation(s)
- Silvia Dragoni
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Patric Turowski
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
10
|
Schmid CD, Olsavszky V, Reinhart M, Weyer V, Trogisch FA, Sticht C, Winkler M, Kürschner SW, Hoffmann J, Ola R, Staniczek T, Heineke J, Straub BK, Mittler J, Schledzewski K, ten Dijke P, Richter K, Dooley S, Géraud C, Goerdt S, Koch P. ALK1 controls hepatic vessel formation, angiodiversity, and angiocrine functions in hereditary hemorrhagic telangiectasia of the liver. Hepatology 2023; 77:1211-1227. [PMID: 35776660 PMCID: PMC10026949 DOI: 10.1002/hep.32641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS In hereditary hemorrhagic telangiectasia (HHT), severe liver vascular malformations are associated with mutations in the Activin A Receptor-Like Type 1 ( ACVRL1 ) gene encoding ALK1, the receptor for bone morphogenetic protein (BMP) 9/BMP10, which regulates blood vessel development. Here, we established an HHT mouse model with exclusive liver involvement and adequate life expectancy to investigate ALK1 signaling in liver vessel formation and metabolic function. APPROACH AND RESULTS Liver sinusoidal endothelial cell (LSEC)-selective Cre deleter line, Stab2-iCreF3 , was crossed with Acvrl1 -floxed mice to generate LSEC-specific Acvrl1 -deficient mice ( Alk1HEC-KO ). Alk1HEC-KO mice revealed hepatic vascular malformations and increased posthepatic flow, causing right ventricular volume overload. Transcriptomic analyses demonstrated induction of proangiogenic/tip cell gene sets and arterialization of hepatic vessels at the expense of LSEC and central venous identities. Loss of LSEC angiokines Wnt2 , Wnt9b , and R-spondin-3 ( Rspo3 ) led to disruption of metabolic liver zonation in Alk1HEC-KO mice and in liver specimens of patients with HHT. Furthermore, prion-like protein doppel ( Prnd ) and placental growth factor ( Pgf ) were upregulated in Alk1HEC-KO hepatic endothelial cells, representing candidates driving the organ-specific pathogenesis of HHT. In LSEC in vitro , stimulation or inhibition of ALK1 signaling counter-regulated Inhibitors of DNA binding (ID)1-3, known Alk1 transcriptional targets. Stimulation of ALK1 signaling and inhibition of ID1-3 function confirmed regulation of Wnt2 and Rspo3 by the BMP9/ALK1/ID axis. CONCLUSIONS Hepatic endothelial ALK1 signaling protects from development of vascular malformations preserving organ-specific endothelial differentiation and angiocrine signaling. The long-term surviving Alk1HEC-KO HHT model offers opportunities to develop targeted therapies for this severe disease.
Collapse
Affiliation(s)
- Christian David Schmid
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Victor Olsavszky
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Manuel Reinhart
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vanessa Weyer
- Department of Neuroradiology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Radiation Oncology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Felix A. Trogisch
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Carsten Sticht
- Core Facility Platform Mannheim, NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Manuel Winkler
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sina W. Kürschner
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Hoffmann
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roxana Ola
- Department of Cardiovascular Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Theresa Staniczek
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Joerg Heineke
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Beate K. Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg‐University Mainz, Mainz, Germany
| | - Jens Mittler
- Department of General, Visceral, and Transplant Surgery, University Medical Center of the Johannes Gutenberg‐University Mainz, Mainz, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter ten Dijke
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karsten Richter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp‐Sebastian Koch
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
Becker LM, Chen SH, Rodor J, de Rooij LPMH, Baker AH, Carmeliet P. Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovasc Res 2023; 119:6-27. [PMID: 35179567 PMCID: PMC10022871 DOI: 10.1093/cvr/cvac018] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
Abstract
Endothelial cells (ECs) constitute the inner lining of vascular beds in mammals and are crucial for homeostatic regulation of blood vessel physiology, but also play a key role in pathogenesis of many diseases, thereby representing realistic therapeutic targets. However, it has become evident that ECs are heterogeneous, encompassing several subtypes with distinct functions, which makes EC targeting and modulation in diseases challenging. The rise of the new single-cell era has led to an emergence of studies aimed at interrogating transcriptome diversity along the vascular tree, and has revolutionized our understanding of EC heterogeneity from both a physiological and pathophysiological context. Here, we discuss recent landmark studies aimed at teasing apart the heterogeneous nature of ECs. We cover driving (epi)genetic, transcriptomic, and metabolic forces underlying EC heterogeneity in health and disease, as well as current strategies used to combat disease-enriched EC phenotypes, and propose strategies to transcend largely descriptive heterogeneity towards prioritization and functional validation of therapeutically targetable drivers of EC diversity. Lastly, we provide an overview of the most recent advances and hurdles in single EC OMICs.
Collapse
Affiliation(s)
| | | | | | | | - Andrew H Baker
- Corresponding authors. Tel: +32 16 32 62 47, E-mail: (P.C.); Tel: +44 (0)131 242 6774, E-mail: (A.H.B.)
| | - Peter Carmeliet
- Corresponding authors. Tel: +32 16 32 62 47, E-mail: (P.C.); Tel: +44 (0)131 242 6774, E-mail: (A.H.B.)
| |
Collapse
|
12
|
Gurung S, Restrepo NK, Chestnut B, Klimkaite L, Sumanas S. Single-cell transcriptomic analysis of vascular endothelial cells in zebrafish embryos. Sci Rep 2022; 12:13065. [PMID: 35906287 PMCID: PMC9338088 DOI: 10.1038/s41598-022-17127-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial cells exhibit substantial phenotypic and transcriptional heterogeneity which is established during early embryogenesis. However, the molecular mechanisms involved in establishing endothelial cell diversity are still not well understood. Zebrafish has emerged as an advantageous model to study vascular development. Despite its importance, the single-cell transcriptomic profile of vascular endothelial cells during zebrafish development is still missing. To address this, we applied single-cell RNA-sequencing (scRNA-seq) of vascular endothelial cells isolated from zebrafish embryos at the 24 hpf stage. Six distinct clusters or subclusters related to vascular endothelial cells were identified which include arterial, two venous, cranial, endocardial and endothelial progenitor cell subtypes. Furthermore, we validated our findings by characterizing novel markers for arterial, venous, and endocardial cells. We experimentally confirmed the presence of two transcriptionally different venous cell subtypes, demonstrating heterogeneity among venous endothelial cells at this early developmental stage. This dataset will be a valuable resource for future functional characterization of vascular endothelial cells and interrogation of molecular mechanisms involved in the establishment of their heterogeneity and cell-fate decisions.
Collapse
Affiliation(s)
- Suman Gurung
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA
| | - Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Laurita Klimkaite
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, 560 Channelside Dr, Tampa, FL, 33602, USA.
| |
Collapse
|
13
|
Hetzer MW, Bersini S. Beyond Static Pipes: Mechanisms and In Vitro Models of Vascular Aging. Cold Spring Harb Perspect Med 2022; 12:a041180. [PMID: 35101902 PMCID: PMC9310951 DOI: 10.1101/cshperspect.a041180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The vascular system is a key player for the maintenance of healthy tissues, suggesting how the physiological decline of blood vessel functionality during aging could be a major contributor of organ degeneration. While basic research studies have begun to pinpoint potential mechanisms of vascular aging, it is now critical to translate them into therapeutically relevant options. Microphysiological systems represent a powerful tool to precisely control which combinations of stimuli are provided to in vitro reconstructed blood vessels and to analyze their functional consequences. After highlighting key aspects of vascular aging, this review discusses in vitro models that are able to recapitulate relevant features of blood vessel damage during aging. Strategies to improve current in vitro systems so that they will more faithfully recapitulate vascular aging are proposed, emphasizing the importance of combining in vivo models with microphysiological systems for an effective translation of vascular aging biomarkers and therapies to the clinical level.
Collapse
Affiliation(s)
- Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Simone Bersini
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
14
|
Gómez-Salinero JM, Izzo F, Lin Y, Houghton S, Itkin T, Geng F, Bram Y, Adelson RP, Lu TM, Inghirami G, Xiang JZ, Lis R, Redmond D, Schreiner R, Rabbany SY, Landau DA, Schwartz RE, Rafii S. Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell 2022; 29:593-609.e7. [PMID: 35364013 PMCID: PMC9290393 DOI: 10.1016/j.stem.2022.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/29/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
Abstract
The liver vascular network is patterned by sinusoidal and hepatocyte co-zonation. How intra-liver vessels acquire their hierarchical specialized functions is unknown. We study heterogeneity of hepatic vascular cells during mouse development through functional and single-cell RNA-sequencing. The acquisition of sinusoidal endothelial cell identity is initiated during early development and completed postnatally, originating from a pool of undifferentiated vascular progenitors at E12. The peri-natal induction of the transcription factor c-Maf is a critical switch for the sinusoidal identity determination. Endothelium-restricted deletion of c-Maf disrupts liver sinusoidal development, aberrantly expands postnatal liver hematopoiesis, promotes excessive postnatal sinusoidal proliferation, and aggravates liver pro-fibrotic sensitivity to chemical insult. Enforced c-Maf overexpression in generic human endothelial cells switches on a liver sinusoidal transcriptional program that maintains hepatocyte function. c-Maf represents an inducible intra-organotypic and niche-responsive molecular determinant of hepatic sinusoidal cell identity and lays the foundation for the strategies for vasculature-driven liver repair.
Collapse
Affiliation(s)
- Jesus Maria Gómez-Salinero
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Franco Izzo
- Division of Hematology and Medical Oncology, Department of Medicine, and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Yang Lin
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sean Houghton
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tomer Itkin
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Fuqiang Geng
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert P Adelson
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Tyler M Lu
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Raphael Lis
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sina Y Rabbany
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Dan A Landau
- Division of Hematology and Medical Oncology, Department of Medicine, and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Grant ZL, Hickey PF, Abeysekera W, Whitehead L, Lewis SM, Symons RCA, Baldwin TM, Amann-Zalcenstein D, Garnham AL, Smyth GK, Thomas T, Voss AK, Coultas L. The histone acetyltransferase HBO1 promotes efficient tip cell sprouting during angiogenesis. Development 2021; 148:272249. [PMID: 34550360 DOI: 10.1242/dev.199581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
Blood vessel growth and remodelling are essential during embryonic development and disease pathogenesis. The diversity of endothelial cells (ECs) is transcriptionally evident and ECs undergo dynamic changes in gene expression during vessel growth and remodelling. Here, we investigated the role of the histone acetyltransferase HBO1 (KAT7), which is important for activating genes during development and for histone H3 lysine 14 acetylation (H3K14ac). Loss of HBO1 and H3K14ac impaired developmental sprouting angiogenesis and reduced pathological EC overgrowth in the retinal endothelium. Single-cell RNA sequencing of retinal ECs revealed an increased abundance of tip cells in Hbo1-deficient retinas, which led to EC overcrowding in the retinal sprouting front and prevented efficient tip cell migration. We found that H3K14ac was highly abundant in the endothelial genome in both intra- and intergenic regions, suggesting that HBO1 acts as a genome organiser that promotes efficient tip cell behaviour necessary for sprouting angiogenesis. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Zoe L Grant
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sabrina M Lewis
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Robert C A Symons
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Australia.,Department of Surgery, University of Melbourne, Parkville, 3010, Australia.,Department of Ophthalmology, Royal Melbourne Hospital, Parkville, 3050, Australia
| | - Tracey M Baldwin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Daniela Amann-Zalcenstein
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Leigh Coultas
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
16
|
Endothelial Heterogeneity in Development and Wound Healing. Cells 2021; 10:cells10092338. [PMID: 34571987 PMCID: PMC8469713 DOI: 10.3390/cells10092338] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
The vasculature is comprised of endothelial cells that are heterogeneous in nature. From tissue resident progenitors to mature differentiated endothelial cells, the diversity of these populations allows for the formation, maintenance, and regeneration of the vascular system in development and disease, particularly during situations of wound healing. Additionally, the de-differentiation and plasticity of different endothelial cells, especially their capacity to undergo endothelial to mesenchymal transition, has also garnered significant interest due to its implication in disease progression, with emphasis on scarring and fibrosis. In this review, we will pinpoint the seminal discoveries defining the phenotype and mechanisms of endothelial heterogeneity in development and disease, with a specific focus only on wound healing.
Collapse
|
17
|
Fan Z, Turiel G, Ardicoglu R, Ghobrial M, Masschelein E, Kocijan T, Zhang J, Tan G, Fitzgerald G, Gorski T, Alvarado-Diaz A, Gilardoni P, Adams CM, Ghesquière B, De Bock K. Exercise-induced angiogenesis is dependent on metabolically primed ATF3/4 + endothelial cells. Cell Metab 2021; 33:1793-1807.e9. [PMID: 34358431 PMCID: PMC8432967 DOI: 10.1016/j.cmet.2021.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/18/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022]
Abstract
Exercise is a powerful driver of physiological angiogenesis during adulthood, but the mechanisms of exercise-induced vascular expansion are poorly understood. We explored endothelial heterogeneity in skeletal muscle and identified two capillary muscle endothelial cell (mEC) populations that are characterized by differential expression of ATF3/4. Spatial mapping showed that ATF3/4+ mECs are enriched in red oxidative muscle areas while ATF3/4low ECs lie adjacent to white glycolytic fibers. In vitro and in vivo experiments revealed that red ATF3/4+ mECs are more angiogenic when compared with white ATF3/4low mECs. Mechanistically, ATF3/4 in mECs control genes involved in amino acid uptake and metabolism and metabolically prime red (ATF3/4+) mECs for angiogenesis. As a consequence, supplementation of non-essential amino acids and overexpression of ATF4 increased proliferation of white mECs. Finally, deleting Atf4 in ECs impaired exercise-induced angiogenesis. Our findings illustrate that spatial metabolic angiodiversity determines the angiogenic potential of muscle ECs.
Collapse
Affiliation(s)
- Zheng Fan
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Guillermo Turiel
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Raphaela Ardicoglu
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland; Laboratory of Molecular and Behavioral Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich 8057, Switzerland
| | - Moheb Ghobrial
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland; Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Evi Masschelein
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Tea Kocijan
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Jing Zhang
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Ge Tan
- Functional Genomics Center Zürich, ETH/University of Zürich, Zürich 8093, Switzerland
| | - Gillian Fitzgerald
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Tatiane Gorski
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Abdiel Alvarado-Diaz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Paola Gilardoni
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland
| | - Christopher M Adams
- Division of Endocrinology, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium; Metabolomics Expertise Center, Department of Oncology, Cancer Institute, KU Leuven, Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich 8603, Switzerland.
| |
Collapse
|
18
|
Ryan AR, England AR, Chaney CP, Cowdin MA, Hiltabidle M, Daniel E, Gupta AK, Oxburgh L, Carroll TJ, Cleaver O. Vascular deficiencies in renal organoids and ex vivo kidney organogenesis. Dev Biol 2021; 477:98-116. [PMID: 34000274 PMCID: PMC8382085 DOI: 10.1016/j.ydbio.2021.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022]
Abstract
Chronic kidney disease (CKD) and end stage renal disease (ESRD) are increasingly frequent and devastating conditions that have driven a surge in the need for kidney transplantation. A stark shortage of organs has fueled interest in generating viable replacement tissues ex vivo for transplantation. One promising approach has been self-organizing organoids, which mimic developmental processes and yield multicellular, organ-specific tissues. However, a recognized roadblock to this approach is that many organoid cell types fail to acquire full maturity and function. Here, we comprehensively assess the vasculature in two distinct kidney organoid models as well as in explanted embryonic kidneys. Using a variety of methods, we show that while organoids can develop a wide range of kidney cell types, as previously shown, endothelial cells (ECs) initially arise but then rapidly regress over time in culture. Vasculature of cultured embryonic kidneys exhibit similar regression. By contrast, engraftment of kidney organoids under the kidney capsule results in the formation of a stable, perfused vasculature that integrates into the organoid. This work demonstrates that kidney organoids offer a promising model system to define the complexities of vascular-nephron interactions, but the establishment and maintenance of a vascular network present unique challenges when grown ex vivo.
Collapse
Affiliation(s)
- Anne R Ryan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alicia R England
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher P Chaney
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mitzy A Cowdin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Max Hiltabidle
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward Daniel
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Thomas J Carroll
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
19
|
Kim H, Wang M, Paik DT. Endothelial-Myocardial Angiocrine Signaling in Heart Development. Front Cell Dev Biol 2021; 9:697130. [PMID: 34277641 PMCID: PMC8281241 DOI: 10.3389/fcell.2021.697130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/10/2021] [Indexed: 12/23/2022] Open
Abstract
Vascular endothelial cells are a multifunctional cell type with organotypic specificity in their function and structure. In this review, we discuss various subpopulations of endothelial cells in the mammalian heart, which spatiotemporally regulate critical cellular and molecular processes of heart development via unique sets of angiocrine signaling pathways. In particular, elucidation of intercellular communication among the functional cell types in the developing heart has recently been accelerated by the use of single-cell sequencing. Specifically, we overview the heterogeneic nature of cardiac endothelial cells and their contribution to heart tube and chamber formation, myocardial trabeculation and compaction, and endocardial cushion and valve formation via angiocrine pathways.
Collapse
Affiliation(s)
- Hyeonyu Kim
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Mingqiang Wang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - David T Paik
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
20
|
Stone OA, Zhou B, Red-Horse K, Stainier DYR. Endothelial ontogeny and the establishment of vascular heterogeneity. Bioessays 2021; 43:e2100036. [PMID: 34145927 DOI: 10.1002/bies.202100036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
The establishment of distinct cellular identities was pivotal during the evolution of Metazoa, enabling the emergence of an array of specialized tissues with different functions. In most animals including vertebrates, cell specialization occurs in response to a combination of intrinsic (e.g., cellular ontogeny) and extrinsic (e.g., local environment) factors that drive the acquisition of unique characteristics at the single-cell level. The first functional organ system to form in vertebrates is the cardiovascular system, which is lined by a network of endothelial cells whose organ-specific characteristics have long been recognized. Recent genetic analyses at the single-cell level have revealed that heterogeneity exists not only at the organ level but also between neighboring endothelial cells. Thus, how endothelial heterogeneity is established has become a key question in vascular biology. Drawing upon evidence from multiple organ systems, here we will discuss the role that lineage history may play in establishing endothelial heterogeneity.
Collapse
Affiliation(s)
- Oliver A Stone
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kristy Red-Horse
- Department of Biology, Stanford Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
21
|
Nguyen J, Lin YY, Gerecht S. The next generation of endothelial differentiation: Tissue-specific ECs. Cell Stem Cell 2021; 28:1188-1204. [PMID: 34081899 DOI: 10.1016/j.stem.2021.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) sense and respond to fluid flow and regulate immune cell trafficking in all organs. Despite sharing the same mesodermal origin, ECs exhibit heterogeneous tissue-specific characteristics. Human pluripotent stem cells (hPSCs) can potentially be harnessed to capture this heterogeneity and further elucidate endothelium behavior to satisfy the need for increased accuracy and breadth of disease models and therapeutics. Here, we review current strategies for hPSC differentiation to blood vascular ECs and their maturation into continuous, fenestrated, and sinusoidal tissues. We then discuss the contribution of hPSC-derived ECs to recent advances in organoid development and organ-on-chip approaches.
Collapse
Affiliation(s)
- Jane Nguyen
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ying-Yu Lin
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Abstract
Vascular endothelial cells are highly plastic and show great phenotypic heterogeneity. In recent years, emerging technologies have identified a range of novel endothelial phenotypes and functions. In this Special Issue of Angiogenesis, we present a series of papers from leading experts in the field, highlighting the heterogeneity and plasticity of endothelial cells in health and disease.
Collapse
Affiliation(s)
- Coert Margadant
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Marín-Sedeño E, de Morentin XM, Pérez-Pomares JM, Gómez-Cabrero D, Ruiz-Villalba A. Understanding the Adult Mammalian Heart at Single-Cell RNA-Seq Resolution. Front Cell Dev Biol 2021; 9:645276. [PMID: 34055776 PMCID: PMC8149764 DOI: 10.3389/fcell.2021.645276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
During the last decade, extensive efforts have been made to comprehend cardiac cell genetic and functional diversity. Such knowledge allows for the definition of the cardiac cellular interactome as a reasonable strategy to increase our understanding of the normal and pathologic heart. Previous experimental approaches including cell lineage tracing, flow cytometry, and bulk RNA-Seq have often tackled the analysis of cardiac cell diversity as based on the assumption that cell types can be identified by the expression of a single gene. More recently, however, the emergence of single-cell RNA-Seq technology has led us to explore the diversity of individual cells, enabling the cardiovascular research community to redefine cardiac cell subpopulations and identify relevant ones, and even novel cell types, through their cell-specific transcriptomic signatures in an unbiased manner. These findings are changing our understanding of cell composition and in consequence the identification of potential therapeutic targets for different cardiac diseases. In this review, we provide an overview of the continuously changing cardiac cellular landscape, traveling from the pre-single-cell RNA-Seq times to the single cell-RNA-Seq revolution, and discuss the utilities and limitations of this technology.
Collapse
Affiliation(s)
- Ernesto Marín-Sedeño
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - Xabier Martínez de Morentin
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
| | - Jose M. Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| | - David Gómez-Cabrero
- Traslational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra, Pamplona, Spain
- Centre of Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, Instituto Malagueño de Biomedicina, University of Málaga, Málaga, Spain
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
24
|
Pasut A, Becker LM, Cuypers A, Carmeliet P. Endothelial cell plasticity at the single-cell level. Angiogenesis 2021; 24:311-326. [PMID: 34061284 PMCID: PMC8169404 DOI: 10.1007/s10456-021-09797-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023]
Abstract
The vascular endothelium is characterized by a remarkable level of plasticity, which is the driving force not only of physiological repair/remodeling of adult tissues but also of pathological angiogenesis. The resulting heterogeneity of endothelial cells (ECs) makes targeting the endothelium challenging, no less because many EC phenotypes are yet to be identified and functionally inventorized. Efforts to map the vasculature at the single-cell level have been instrumental to capture the diversity of EC types and states at a remarkable depth in both normal and pathological states. Here, we discuss new EC subtypes and functions emerging from recent single-cell studies in health and disease. Interestingly, such studies revealed distinct metabolic gene signatures in different EC phenotypes, which deserve further consideration for therapy. We highlight how this metabolic targeting strategy could potentially be used to promote (for tissue repair) or block (in tumor) angiogenesis in a tissue or even vascular bed-specific manner.
Collapse
Affiliation(s)
- Alessandra Pasut
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lisa M Becker
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Anne Cuypers
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
25
|
Ma F, Hernadez G, Romay M, Iruela-Arispe ML. Single-cell RNA sequencing to study vascular diversity and function. Curr Opin Hematol 2021; 28:221-229. [PMID: 33714967 PMCID: PMC8262106 DOI: 10.1097/moh.0000000000000651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Single-cell RNA sequencing (scRNA-seq) can capture the transcriptional profile of thousands of individual cells concurrently from complex tissues and with remarkable resolution. Either with the goal of seeking information about distinct cell subtypes or responses to a stimulus, the approach has provided robust information and promoted impressive advances in cardiovascular research. The goal of this review is to highlight strategies and approaches to leverage this technology and bypass potential caveats related to evaluation of the vascular cells. RECENT FINDINGS As the most recent technological development, details associated with experimental strategies, analysis, and interpretation of scRNA-seq data are still being discussed and scrutinized by investigators across the vascular field. Compilation of this information is valuable for those using the technology but particularly important to those about to start utilizing scRNA-seq to seek transcriptome information of vascular cells. SUMMARY As our field progresses to catalog transcriptomes from distinct vascular beds, it is undeniable that scRNA-seq technology is here to stay. Sharing approaches to improve the quality of cell dissociation procedures, analysis, and a consensus of best practices is critical as information from this powerful experimental platform continues to emerge.
Collapse
Affiliation(s)
- Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles 90024
| | - Gloria Hernadez
- Molecular Biology Institute, University of California, Los Angeles 90024
| | - Milagros Romay
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| |
Collapse
|
26
|
Zhang JX, Chey Y, Paik DT. Unraveling intricacies of cardiovascular disease at the single-cell resolution. Trends Cardiovasc Med 2021; 32:136-137. [PMID: 33812976 DOI: 10.1016/j.tcm.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Jeffrey X Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 1291 Welch Road, Rm 3200, Biomedical Innovations Building, Stanford, CA 94305, USA
| | - YoonChung Chey
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 1291 Welch Road, Rm 3200, Biomedical Innovations Building, Stanford, CA 94305, USA
| | - David T Paik
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 1291 Welch Road, Rm 3200, Biomedical Innovations Building, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Donadon M, Santoro MM. The origin and mechanisms of smooth muscle cell development in vertebrates. Development 2021; 148:148/7/dev197384. [PMID: 33789914 DOI: 10.1242/dev.197384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smooth muscle cells (SMCs) represent a major structural and functional component of many organs during embryonic development and adulthood. These cells are a crucial component of vertebrate structure and physiology, and an updated overview of the developmental and functional process of smooth muscle during organogenesis is desirable. Here, we describe the developmental origin of SMCs within different tissues by comparing their specification and differentiation with other organs, including the cardiovascular, respiratory and intestinal systems. We then discuss the instructive roles of smooth muscle in the development of such organs through signaling and mechanical feedback mechanisms. By understanding SMC development, we hope to advance therapeutic approaches related to tissue regeneration and other smooth muscle-related diseases.
Collapse
Affiliation(s)
- Michael Donadon
- Department of Biology, University of Padua, Via U. Bassi 58B, 35121 Padua, Italy
| | - Massimo M Santoro
- Department of Biology, University of Padua, Via U. Bassi 58B, 35121 Padua, Italy
| |
Collapse
|
28
|
Angiodiversity and organotypic functions of sinusoidal endothelial cells. Angiogenesis 2021; 24:289-310. [PMID: 33745018 PMCID: PMC7982081 DOI: 10.1007/s10456-021-09780-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
‘Angiodiversity’ refers to the structural and functional heterogeneity of endothelial cells (EC) along the segments of the vascular tree and especially within the microvascular beds of different organs. Organotypically differentiated EC ranging from continuous, barrier-forming endothelium to discontinuous, fenestrated endothelium perform organ-specific functions such as the maintenance of the tightly sealed blood–brain barrier or the clearance of macromolecular waste products from the peripheral blood by liver EC-expressed scavenger receptors. The microvascular bed of the liver, composed of discontinuous, fenestrated liver sinusoidal endothelial cells (LSEC), is a prime example of organ-specific angiodiversity. Anatomy and development of LSEC have been extensively studied by electron microscopy as well as linage-tracing experiments. Recent advances in cell isolation and bulk transcriptomics or single-cell RNA sequencing techniques allowed the identification of distinct LSEC molecular programs and have led to the identification of LSEC subpopulations. LSEC execute homeostatic functions such as fine tuning the vascular tone, clearing noxious substances from the circulation, and modulating immunoregulatory mechanisms. In recent years, the identification and functional analysis of LSEC-derived angiocrine signals, which control liver homeostasis and disease pathogenesis in an instructive manner, marks a major change of paradigm in the understanding of liver function in health and disease. This review summarizes recent advances in the understanding of liver vascular angiodiversity and the functional consequences resulting thereof.
Collapse
|
29
|
Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial Cells in Emerging Viral Infections. Front Cardiovasc Med 2021; 8:619690. [PMID: 33718448 PMCID: PMC7943456 DOI: 10.3389/fcvm.2021.619690] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
There are several reasons to consider the role of endothelial cells in COVID-19 and other emerging viral infections. First, severe cases of COVID-19 show a common breakdown of central vascular functions. Second, SARS-CoV-2 replicates in endothelial cells. Third, prior deterioration of vascular function exacerbates disease, as the most common comorbidities of COVID-19 (obesity, hypertension, and diabetes) are all associated with endothelial dysfunction. Importantly, SARS-CoV-2's ability to infect endothelium is shared by many emerging viruses, including henipaviruses, hantavirus, and highly pathogenic avian influenza virus, all specifically targeting endothelial cells. The ability to infect endothelium appears to support generalised dissemination of infection and facilitate the access to certain tissues. The disturbed vascular function observed in severe COVID-19 is also a prominent feature of many other life-threatening viral diseases, underscoring the need to understand how viruses modulate endothelial function. We here review the role of vascular endothelial cells in emerging viral infections, starting with a summary of endothelial cells as key mediators and regulators of vascular and immune responses in health and infection. Next, we discuss endotheliotropism as a possible virulence factor and detail features that regulate viruses' ability to attach to and enter endothelial cells. We move on to review how endothelial cells detect invading viruses and respond to infection, with particular focus on pathways that may influence vascular function and the host immune system. Finally, we discuss how endothelial cell function can be dysregulated in viral disease, either by viral components or as bystander victims of overshooting or detrimental inflammatory and immune responses. Many aspects of how viruses interact with the endothelium remain poorly understood. Considering the diversity of such mechanisms among different emerging viruses allows us to highlight common features that may be of general validity and point out important challenges.
Collapse
Affiliation(s)
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Oslo, Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway.,AquaMed Consulting AS, Oslo, Norway
| | - Reidunn Edelmann
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| |
Collapse
|
30
|
Affiliation(s)
- James Palis
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester, NY (J.P.)
| | - Mervin C Yoder
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis (M.C.Y.)
| |
Collapse
|