1
|
Huang Z, Yi R, Cen X, Zhang H, Xie M, Ma K, Ruan S, Zhuang Y, Zhang X, Liu W, Feng H, Chen D, Ahmed MMM, Liu H, Huang C, Kang X, Chen Z. PCM1 orchestrates centrosomal and flagellar protein transport to promote sperm maturation. Commun Biol 2025; 8:885. [PMID: 40481240 PMCID: PMC12144202 DOI: 10.1038/s42003-025-08319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 05/30/2025] [Indexed: 06/11/2025] Open
Abstract
Centriolar satellites facilitate the delivery of proteins required for centrosome assembly and function, and rely on the nucleation of the scaffold protein pericentriolar material 1 (PCM1). During sperm maturation, centrosomes undergo remodeling to facilitate neckpiece formation and flagellogenesis. However, the role and mechanism of PCM1 in centrosome remodeling and sperm maturation remain to be elucidated. Herein we show that PCM1 is downregulated in patients with non-obstructive azoospermia. Pcm1 knockout mice exhibit disrupted spermiogenesis, characterized by a disorganized manchette and head-tail coupling apparatus, defective flagellogenesis, and male infertility. Mechanistically, PCM1 binds centrosomal proteins and governs their precise translocation via intra-manchette transport, ensuring proper centrosome remodeling and axoneme biogenesis. Inactivation of PCM1 in sperm leads to severe retardation of embryo development, which cannot be overcome by intra-cytoplasmic sperm injection. Collectively, these findings establish PCM1 as a key regulator of spermatogenesis and spermiogenesis, highlighting the contribution of sperm centrosome-related proteins to embryo development and fertility.
Collapse
Affiliation(s)
- Zicong Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Runduan Yi
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xixian Cen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Hanbin Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Minyu Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Ke Ma
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Shipeng Ruan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yuge Zhuang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xiaoyuan Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Wenyuan Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Hongrui Feng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Deyu Chen
- Medical School, Fuyang Normal University, Fuyang, Anhui, China
| | - Mohamed Morsi M Ahmed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hong Liu
- Reproductive Center, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University (Shenzhen Maternity & Child Healthcare Hospital), Shenzhen, Guangdong, PR China.
| | - Chuyu Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| | - Zhenguo Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China.
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Wu B, Zhang W, Yu H, Ruan L, Wang K, Gu M, Geng H, Fang J, Xu C, Sheng Y, Tan Q, Shen Q, Duan Z, Wu H, Hua R, Guo R, Wei Z, Zhou P, Xu Y, Cao Y, He X, Li K, Lv M, Tang D. Broadening the ARMC2 mutational phenotype: linking multiple morphological abnormalities of the Flagella to Pulmonary Manifestations in Primary Ciliary Dyskinesia. Reprod Biol Endocrinol 2025; 23:48. [PMID: 40158138 PMCID: PMC11954227 DOI: 10.1186/s12958-025-01385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Severe asthenoteratozoospermia, a prevalent cause of male infertility, has increasingly been associated with ARMC2 variants that cause Multiple Morphological Abnormalities of the Sperm Flagella (MMAF). Although ARMC2 is also expressed in other ciliary structures, no studies have yet reported a link between ARMC2 gene variants and other symptoms of Primary Ciliary Dyskinesia (PCD). METHODS Here, we performed whole-exome sequencing (WES) on Chinese subjects with MMAF to identify potential genetic variants. Sanger sequencing was used to validate the candidate variants. Sperm morphology was assessed using modified hematoxylin and eosin (H&E) staining, and transmission electron microscopy (TEM) was performed to observe the ultrastructural defects of the sperm flagella. Western blot analysis and immunofluorescence (IF) of spermatozoa were performed to evaluate variations in structural protein. Additionally, intracytoplasmic sperm injection (ICSI) was applied for assisted fertilization. RESULTS We identified two compound heterozygous ARMC2 variants and one homozygous variant (P1: c.1030_1042del, p.T344fs/c.1331G > A, p.R444H; P2:c.1264C > T, p.R422X) in two unrelated individuals. Notably, in addition to MMAF, individual P2 exhibited classic symptoms of PCD in the lungs, including recurrent airway infections, bronchitis, and rhinosinusitis. Morphological and ultrastructural analyses of the spermatozoa obtained from the two individuals revealed dramatic disorganization in axonemal and peri-axonemal structures, as well as the absence of the axonemal central pair complex (CPC). Immunoblotting and immunofluorescence assays revealed the reduced expression of ARMC2 and the abnormality of various axonal structural proteins. Further assisted reproduction outcomes showed that one of the individuals conceived successfully after Intracytoplasmic Sperm Injection (ICSI). CONCLUSIONS Overall, this study significantly expanded the mutational phenotype of ARMC2, marking the first discovery of PCD-related pulmonary phenotypes outside of the reproductive system. This work establishes the association between ARMC2 and typical PCD and lays the groundwork for further investigation into the molecular mechanisms of ARMC2 in both flagellogenesis and ciliogenesis.
Collapse
Affiliation(s)
- Baoyan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wenhao Zhang
- Department of Clinical Medical, First Clinical Medical College, Anhui Medical University, Hefei, 230032, China
| | - Hui Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lewen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kai Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Meng Gu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Jiajun Fang
- The First Clinical Medical College of Anhui Medical University, Hefei, 230032, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yuying Sheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qing Tan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Provincial Human Sperm Bank First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Provincial Human Sperm Bank First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongliu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Rong Hua
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Rui Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| |
Collapse
|
3
|
Sawaied A, Levy BE, Arazi E, Lunenfeld E, Shi Q, Huleihel M. Follicle-Stimulating Hormone and Testosterone Play a Role in the Regulation of Sertoli Cell Functions Following Germ Cell Depletion In Vitro. Int J Mol Sci 2025; 26:2702. [PMID: 40141344 PMCID: PMC11942298 DOI: 10.3390/ijms26062702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Spermatogenesis is a process of self-renewal of spermatogonial stem cells and their proliferation and differentiation to generate mature sperm. This process involves interactions between testicular somatic (mainly Sertoli cells) and spermatogonial cells at their different stages of development. The functionality of Sertoli cells is regulated by hormones and testicular autocrine/paracrine factors. In this study, we investigated the effects of follicle-stimulating hormone (FSH) and testosterone addition on Sertoli cell cultures that undergo hypotonic shock, with a primary focus on Sertoli cell activity. Cells were enzymatically isolated from testicular seminiferous tubules of 7-day-old mice. These cells were cultured in vitro for 3 days. Thereafter, some cultures were treated with hypotonic shock to remove germ cells. After overnight, fresh media without (control; CT) or with FSH, testosterone (Tes), or FSH+T were added to the hypotonic shock-treated or untreated (CT) cultures for 24 h. The morphology of the cultures and the presence of Sertoli cells and germ cells were examined. The expression of growth factors (CSF-1, LIF, SCF, GDNF) or other specific Sertoli cell factors [transferrin, inhibin b, androgen receptor (AR), androgen binding protein (ABP), FSH receptor (FSHR)] was examined by qPCR. Our immunofluorescence staining showed depletion/major reduction in VASA-positive germ cells in Sertoli cell cultures following hypotonic shock (HYP) treatment compared to untreated cultures (WO). Furthermore, the expression of the examined growth factors and other factors was significantly increased in HYP cultures compared to WO (in the CT). However, the addition of hormones significantly decreased the expression levels of the growth factors in HYP cultures compared to WO cultures under the same treatment. In addition, the expression of all other examined Sertoli cell factors significantly changed following HYP treatment compared to WO and following treatment with FSH and or T. However, the expression levels of some factors remained normal following the treatment of Sertoli cell cultures with one or both hormones (transferrin, Fsh-r, Abp, Ar). Thus, our results demonstrate the crucial role of germ cells in the functionality of Sertoli cells and the possible role of FSH and T in maintaining, at least partially, the normal activity of Sertoli cells following germ cell depletion in vitro by hypotonic shock treatment.
Collapse
Affiliation(s)
- Alaa Sawaied
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (A.S.); (B.-E.L.); (E.A.)
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Bat-El Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (A.S.); (B.-E.L.); (E.A.)
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Eden Arazi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (A.S.); (B.-E.L.); (E.A.)
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Eitan Lunenfeld
- Adelson School of Medicine, Ariel University, Ariel 4070000, Israel;
| | - Qinghua Shi
- Centre for Reproduction and Genetics, First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center University of Science and Technology of China, Hefei 230000, China;
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (A.S.); (B.-E.L.); (E.A.)
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
4
|
Yang N, Wei XG, Li K, Wang F, Song F, Sun W, Wang Y, Zhao Z, Mu J, Ma H. Transcriptomic analysis of the HPT axis in a model of oligoasthenozoospermia induced by Adenine in rats. Exp Mol Pathol 2025; 141:104948. [PMID: 39700678 DOI: 10.1016/j.yexmp.2024.104948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Male infertility is most commonly caused by oligozoospermia, and its pathogenesis is still poorly understood at the molecular level. This study used RNA sequencing (RNA-Seq) technology to identify candidate genes and regulatory pathways that regulate semen quality in the hypothalamic, pituitary, and testicular tissues of healthy rats and Adenine-induced oligozoospermia model rats. Semen quality testing and histological analysis of testicular tissues were performed on both groups of rats. We identified 627, 692, and 437 differentially expressed genes in the hypothalamus, pituitary gland, and testes, respectively. Functional analysis indicates that "neuronal projections," "positive regulation of hormone biosynthetic process," and "neuroactive ligand-receptor interaction pathways" are closely related to the hypothalamic-pituitary-testicular (HPT) axis hormone regulation and sperm production. Seven genes (Pomc, Rxfp1, Tac1, Npy, Insl3, Hsd3b3, Lhcgr) have been identified as key candidate genes responsible for regulating sperm quality within the HPT axis, potentially affecting rat reproductive function by influencing testicular development and testosterone secretion. These data provide a theoretical basis for further understanding the molecular mechanisms of reproductive performance in a rat model of oligoasthenozoospermia.
Collapse
Affiliation(s)
- Nan Yang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China; Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan 750000, China
| | - Xiao-Ge Wei
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China; Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan 750000, China
| | - Kaiying Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China; Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan 750000, China
| | - Fei Wang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China; Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan 750000, China
| | - Fei Song
- Lianyungang No. 1 People's Hospital, Lianyungang 222000, Jiangsu Province, China
| | - Wenjing Sun
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China; Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan 750000, China
| | - Yan Wang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China
| | - Zhenning Zhao
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China
| | - Jing Mu
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China.
| | - Huisheng Ma
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China; Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan 750000, China.
| |
Collapse
|
5
|
Xiao Y, Zhang J, Guan Y, Wang M, Liu D, Xiong S, Li J, Yu X. Research progress on Sertoli cell secretion during spermatogenesis. Front Endocrinol (Lausanne) 2025; 15:1456410. [PMID: 39882265 PMCID: PMC11775901 DOI: 10.3389/fendo.2024.1456410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/19/2024] [Indexed: 01/31/2025] Open
Abstract
Sertoli cells (SCs), as the somatic cells in the testis of male mammals, play a crucial role in the close association with germ cells. The blood-testicular barrier (BTB), established by their tight junctions, provides immune protection to germ cells, leading to their characterization as "sentinel" cells. Moreover, the physiological process of testicular development and spermatogenesis in male animals is intricately tied to the secretory activities of SCs. These cells secrete a diverse array of proteins and cytokines that interact with various targets, working in concert with mechanisms in the spermatogenesis pathway and contributing to each stage, from spermatogonial cell division to the maturation of spermatozoa. Hence, the secretory products of SCs are pivotal in fostering germ cell development and directing the appropriate maturation of sperm. This study is dedicated to investigating the varied secretions of SCs, outlining their critical functions throughout distinct phases of spermatogenesis, thus elucidating the substantial influence of SC secretion on male fertility. Furthermore, it offers valuable perspectives on reproductive disorders stemming from irregular spermatogenesis in clinical contexts.
Collapse
|
6
|
Montibus B, Cain JA, Martinez-Nunez RT, Oakey RJ. Global identification of mammalian host and nested gene pairs reveal tissue-specific transcriptional interplay. Genome Res 2024; 34:2163-2175. [PMID: 39578100 PMCID: PMC11694760 DOI: 10.1101/gr.279430.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Abstract
Nucleotide sequences along a gene provide instructions to transcriptional and cotranscriptional machinery allowing genome expansion into the transcriptome. Nucleotide sequence can often be shared between two genes and in some occurrences, a gene is located completely within a different gene; these are known as host/nested gene pairs. In these instances, if both genes are transcribed, overlap can result in a transcriptional crosstalk where genes regulate each other. Despite this, a comprehensive annotation of where such genes are located and their expression patterns is lacking. To address this, we provide an up-to-date catalog of host/nested gene pairs in mouse and human, showing that over a tenth of all genes contain a nested gene. We discovered that transcriptional co-occurrence is often tissue specific. This coexpression was especially prevalent within the transcriptionally permissive tissue, testis. We use this developmental system and scRNA-seq analysis to demonstrate that the coexpression of pairs can occur in single cells and transcription in the same place at the same time can enhance the transcript diversity of the host gene. In agreement, host genes are more transcript-diverse than the rest of the transcriptome. Host/nested gene configurations are common in both human and mouse, suggesting that interplay between gene pairs is a feature of the mammalian genome. This highlights the relevance of transcriptional crosstalk between genes which share nucleic acid sequence. The results and analysis are available on an Rshiny application (https://hngeneviewer.sites.er.kcl.ac.uk/hn_viewer/).
Collapse
Affiliation(s)
- Bertille Montibus
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom;
| | - James A Cain
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom
| | - Rocio T Martinez-Nunez
- Department of Infectious Diseases, King's College London, London SE1 9RT, United Kingdom
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom;
| |
Collapse
|
7
|
Abu-Halima M, Fischer U, Al Smadi MA, Ludwig N, Acheli A, Engel A, Abdul-Khaliq H, Meese E. Single Sperm RNA signatures reveal MicroRNA biomarkers for male subfertility. J Assist Reprod Genet 2024; 41:3119-3132. [PMID: 39312032 PMCID: PMC11621271 DOI: 10.1007/s10815-024-03264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 12/06/2024] Open
Abstract
PURPOSE To investigate small RNA profiles in sperm, identify stable miRNA patterns unique to sperm, and assess the behavior of consistently expressed miRNAs in sperm from subfertile men compared to fertile controls. METHODS The small RNA profiles of single sperm from four proven fertile men were analyzed using Small RNA next-generation sequencing (NGS). Subsequently, a specific set of miRNAs was validated using RT-qPCR on additional sperm samples from 65 subfertile men from an infertility clinic and 30 proven fertile men. RESULTS Small RNA sequencing revealed a diverse range of sperm small RNA biotypes, including miRNAs. The mapped read percentage ranged from 22.19% for single sperm to 83.29% for enriched sperm samples used at different RNA concentrations. In single sperm, a smaller proportion of sequences were attributed to piRNAs (2.79%), miRNA (0.94%), tRNA (0.82%), and rRNA (0.47%) compared to enriched sperm samples, where piRNA (41.68%), tRNA (20.31%), miRNA (11.11%), and rRNA (6.54%) were observed. Distinct detection rates and a higher number of detected miRNAs were noted with enriched sperm samples compared to single sperm obtained using either a micromanipulator or microdissection systems. Among the identified miRNAs, 110 were consistently present in all samples. RT-qPCR revealed 15 miRNAs with increased expression and 5 miRNAs with decreased expression in sperm samples from subfertile men compared to proven fertile men. These differentially validated miRNAs were significantly correlated, either positively or negatively, with sperm count, motility, and morphology. CONCLUSION The study extensively examines small RNAs in single sperm, identifying sperm-specific miRNAs that could serve as molecular markers to distinguish between subfertile and fertile men in clinical settings.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany.
- Department of Paediatric Cardiology, Saarland University Hospital, Homburg, Germany.
| | - Ulrike Fischer
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Mohammad A Al Smadi
- Reproductive Endocrinology and IVF Unit, King Hussein Medical Centre, Amman, Jordan
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Anissa Acheli
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Annika Engel
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Hashim Abdul-Khaliq
- Department of Paediatric Cardiology, Saarland University Hospital, Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
8
|
Damyanova KB, Nixon B, Johnston SD, Gambini A, Benitez PP, Lord T. Spermatogonial stem cell technologies: applications from human medicine to wildlife conservation†. Biol Reprod 2024; 111:757-779. [PMID: 38993049 PMCID: PMC11473898 DOI: 10.1093/biolre/ioae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.
Collapse
Affiliation(s)
- Katerina B Damyanova
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Stephen D Johnston
- School of Environment, The University of Queensland, Gatton, QLD 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Andrés Gambini
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Patricio P Benitez
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Tessa Lord
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
9
|
Brattig-Correia R, Almeida JM, Wyrwoll MJ, Julca I, Sobral D, Misra CS, Di Persio S, Guilgur LG, Schuppe HC, Silva N, Prudêncio P, Nóvoa A, Leocádio AS, Bom J, Laurentino S, Mallo M, Kliesch S, Mutwil M, Rocha LM, Tüttelmann F, Becker JD, Navarro-Costa P. The conserved genetic program of male germ cells uncovers ancient regulators of human spermatogenesis. eLife 2024; 13:RP95774. [PMID: 39388236 PMCID: PMC11466473 DOI: 10.7554/elife.95774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Male germ cells share a common origin across animal species, therefore they likely retain a conserved genetic program that defines their cellular identity. However, the unique evolutionary dynamics of male germ cells coupled with their widespread leaky transcription pose significant obstacles to the identification of the core spermatogenic program. Through network analysis of the spermatocyte transcriptome of vertebrate and invertebrate species, we describe the conserved evolutionary origin of metazoan male germ cells at the molecular level. We estimate the average functional requirement of a metazoan male germ cell to correspond to the expression of approximately 10,000 protein-coding genes, a third of which defines a genetic scaffold of deeply conserved genes that has been retained throughout evolution. Such scaffold contains a set of 79 functional associations between 104 gene expression regulators that represent a core component of the conserved genetic program of metazoan spermatogenesis. By genetically interfering with the acquisition and maintenance of male germ cell identity, we uncover 161 previously unknown spermatogenesis genes and three new potential genetic causes of human infertility. These findings emphasize the importance of evolutionary history on human reproductive disease and establish a cross-species analytical pipeline that can be repurposed to other cell types and pathologies.
Collapse
Affiliation(s)
- Rion Brattig-Correia
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Department of Systems Science and Industrial Engineering, Binghamton UniversityNew YorkUnited States
| | - Joana M Almeida
- Instituto Gulbenkian de CiênciaOeirasPortugal
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Margot Julia Wyrwoll
- Centre of Medical Genetics, Institute of Reproductive Genetics, University and University Hospital of MünsterMünsterGermany
| | - Irene Julca
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Daniel Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University LisbonLisbonPortugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University LisbonCaparicaPortugal
| | - Chandra Shekhar Misra
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeirasPortugal
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | | | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-UniversityGiessenGermany
| | - Neide Silva
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Pedro Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Ana Nóvoa
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | - Joana Bom
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | | | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital MünsterMünsterGermany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Luis M Rocha
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Department of Systems Science and Industrial Engineering, Binghamton UniversityNew YorkUnited States
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University and University Hospital of MünsterMünsterGermany
| | - Jörg D Becker
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeirasPortugal
| | - Paulo Navarro-Costa
- Instituto Gulbenkian de CiênciaOeirasPortugal
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of LisbonLisbonPortugal
| |
Collapse
|
10
|
AbuMadighem A, Cohen O, Huleihel M. Elucidating the Transcriptional States of Spermatogenesis-Joint Analysis of Germline and Supporting Cell, Mice and Human, Normal and Perturbed, Bulk and Single-Cell RNA-Seq. Biomolecules 2024; 14:840. [PMID: 39062554 PMCID: PMC11274546 DOI: 10.3390/biom14070840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In studying the molecular underpinning of spermatogenesis, we expect to understand the fundamental biological processes better and potentially identify genes that may lead to novel diagnostic and therapeutic strategies toward precision medicine in male infertility. In this review, we emphasized our perspective that the path forward necessitates integrative studies that rely on complementary approaches and types of data. To comprehensively analyze spermatogenesis, this review proposes four axes of integration. First, spanning the analysis of spermatogenesis in the healthy state alongside pathologies. Second, the experimental analysis of model systems (in which we can deploy treatments and perturbations) alongside human data. Third, the phenotype is measured alongside its underlying molecular profiles using known markers augmented with unbiased profiles. Finally, the testicular cells are studied as ecosystems, analyzing the germ cells alongside the states observed in the supporting somatic cells. Recently, the study of spermatogenesis has been advancing using single-cell RNA sequencing, where scientists have uncovered the unique stages of germ cell development in mice, revealing new regulators of spermatogenesis and previously unknown cell subtypes in the testis. An in-depth analysis of meiotic and postmeiotic stages led to the discovery of marker genes for spermatogonia, Sertoli and Leydig cells and further elucidated all the other germline and somatic cells in the testis microenvironment in normal and pathogenic conditions. The outcome of an integrative analysis of spermatogenesis using advanced molecular profiling technologies such as scRNA-seq has already propelled our biological understanding, with additional studies expected to have clinical implications for the study of male fertility. By uncovering new genes and pathways involved in abnormal spermatogenesis, we may gain insights into subfertility or sterility.
Collapse
Affiliation(s)
- Ali AbuMadighem
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ofir Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
11
|
Tirumalasetty MB, Bhattacharya I, Mohiuddin MS, Baki VB, Choubey M. Understanding testicular single cell transcriptional atlas: from developmental complications to male infertility. Front Endocrinol (Lausanne) 2024; 15:1394812. [PMID: 39055054 PMCID: PMC11269108 DOI: 10.3389/fendo.2024.1394812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Spermatogenesis is a multi-step biological process where mitotically active diploid (2n) spermatogonia differentiate into haploid (n) spermatozoa via regulated meiotic programming. The alarming rise in male infertility has become a global concern during the past decade thereby demanding an extensive profiling of testicular gene expression. Advancements in Next-Generation Sequencing (NGS) technologies have revolutionized our empathy towards complex biological events including spermatogenesis. However, despite multiple attempts made in the past to reveal the testicular transcriptional signature(s) either with bulk tissues or at the single-cell, level, comprehensive reviews on testicular transcriptomics and associated disorders are limited. Notably, technologies explicating the genome-wide gene expression patterns during various stages of spermatogenic progression provide the dynamic molecular landscape of testicular transcription. Our review discusses the advantages of single-cell RNA-sequencing (Sc-RNA-seq) over bulk RNA-seq concerning testicular tissues. Additionally, we highlight the cellular heterogeneity, spatial transcriptomics, dynamic gene expression and cell-to-cell interactions with distinct cell populations within the testes including germ cells (Gc), Sertoli cells (Sc), Peritubular cells (PTc), Leydig cells (Lc), etc. Furthermore, we provide a summary of key finding of single-cell transcriptomic studies that have shed light on developmental mechanisms implicated in testicular disorders and male infertility. These insights emphasize the pivotal roles of Sc-RNA-seq in advancing our knowledge regarding testicular transcriptional landscape and may serve as a potential resource to formulate future clinical interventions for male reproductive health.
Collapse
Affiliation(s)
| | - Indrashis Bhattacharya
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, India
| | - Mohammad Sarif Mohiuddin
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, United States
| | - Vijaya Bhaskar Baki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Mayank Choubey
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, United States
| |
Collapse
|
12
|
Kwaspen L, Kanbar M, Wyns C. Mapping the Development of Human Spermatogenesis Using Transcriptomics-Based Data: A Scoping Review. Int J Mol Sci 2024; 25:6925. [PMID: 39000031 PMCID: PMC11241379 DOI: 10.3390/ijms25136925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
In vitro maturation (IVM) is a promising fertility restoration strategy for patients with nonobstructive azoospermia or for prepubertal boys to obtain fertilizing-competent spermatozoa. However, in vitro spermatogenesis is still not achieved with human immature testicular tissue. Knowledge of various human testicular transcriptional profiles from different developmental periods helps us to better understand the testis development. This scoping review aims to describe the testis development and maturation from the fetal period towards adulthood and to find information to optimize IVM. Research papers related to native and in vitro cultured human testicular cells and single-cell RNA-sequencing (scRNA-seq) were identified and critically reviewed. Special focus was given to gene ontology terms to facilitate the interpretation of the biological function of related genes. The different consecutive maturation states of both the germ and somatic cell lineages were described. ScRNA-seq regularly showed major modifications around 11 years of age to eventually reach the adult state. Different spermatogonial stem cell (SSC) substates were described and scRNA-seq analyses are in favor of a paradigm shift, as the Adark and Apale spermatogonia populations could not distinctly be identified among the different SSC states. Data on the somatic cell lineage are limited, especially for Sertoli cells due technical issues related to cell size. During cell culture, scRNA-seq data showed that undifferentiated SSCs were favored in the presence of an AKT-signaling pathway inhibitor. The involvement of the oxidative phosphorylation pathway depended on the maturational state of the cells. Commonly identified cell signaling pathways during the testis development and maturation highlight factors that can be essential during specific maturation stages in IVM.
Collapse
Affiliation(s)
- Lena Kwaspen
- Laboratoire d’Andrologie, Pôle de Recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (L.K.); (M.K.)
| | - Marc Kanbar
- Laboratoire d’Andrologie, Pôle de Recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (L.K.); (M.K.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Christine Wyns
- Laboratoire d’Andrologie, Pôle de Recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (L.K.); (M.K.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
13
|
Ferrero G, Festa R, Follia L, Lettieri G, Tarallo S, Notari T, Giarra A, Marinaro C, Pardini B, Marano A, Piaggeschi G, Di Battista C, Trifuoggi M, Piscopo M, Montano L, Naccarati A. Small noncoding RNAs and sperm nuclear basic proteins reflect the environmental impact on germ cells. Mol Med 2024; 30:12. [PMID: 38243211 PMCID: PMC10799426 DOI: 10.1186/s10020-023-00776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Molecular techniques can complement conventional spermiogram analyses to provide new information on the fertilizing potential of spermatozoa and to identify early alterations due to environmental pollution. METHODS Here, we present a multilevel molecular profiling by small RNA sequencing and sperm nuclear basic protein analysis of male germ cells from 33 healthy young subjects residing in low and high-polluted areas. RESULTS Although sperm motility and sperm concentration were comparable between samples from the two sites, those from the high-pollution area had a higher concentration of immature/immune cells, a lower protamine/histone ratio, a reduced ability of sperm nuclear basic proteins to protect DNA from oxidative damage, and an altered copper/zinc ratio in sperm. Sperm levels of 32 microRNAs involved in intraflagellar transport, oxidative stress response, and spermatogenesis were different between the two areas. In parallel, a decrease of Piwi-interacting RNA levels was observed in samples from the high-polluted area. CONCLUSIONS This comprehensive analysis provides new insights into pollution-driven epigenetic alterations in sperm not detectable by spermiogram.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
- Department of Computer Science, University of Turin, Corso Svizzera, 185, 10149, Turin, Italy
| | - Rosaria Festa
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Laura Follia
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Tiziana Notari
- Check-Up PolyDiagnostic and Research Laboratory, Andrology Unit, Viale Andrea De Luca 5, 84131, Salerno, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Giulia Piaggeschi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Carla Di Battista
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, 84020, Oliveto Citra, Salerno, Italy.
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| |
Collapse
|
14
|
Zhang L, Sun H, Chen X. Long noncoding RNAs in human reproductive processes and diseases. Mol Reprod Dev 2024; 91:e23728. [PMID: 38282314 DOI: 10.1002/mrd.23728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
Infertility has become a global disease burden. Although assisted reproductive technologies are widely used, the assisted reproduction birth rate is no more than 30% worldwide. Therefore, understanding the mechanisms of reproduction can provide new strategies to improve live birth rates and clinical outcomes of enhanced implantation. Long noncoding RNAs (lncRNAs) have been reported to exert regulatory roles in various biological processes and diseases in many species. In this review, we especially focus on the role of lncRNAs in human reproduction. We summarize the function and mechanisms of lncRNAs in processes vital to reproduction, such as spermatogenesis and maturation, sperm motility and morphology, follicle development and maturation, embryo development and implantation. Then, we highlight the importance and diverse potential of lncRNAs as good diagnostic molecular biomarkers and therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hailong Sun
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiujuan Chen
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
15
|
Leng X, Xie S, Tao D, Wang Z, Shi J, Yi M, Tan X, Zhang X, Liu Y, Yang Y. Mouse Tspyl5 promotes spermatogonia proliferation through enhancing Pcna-mediated DNA replication. Reprod Fertil Dev 2024; 36:RD23042. [PMID: 38185096 DOI: 10.1071/rd23042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
CONTEXT The human TSPY1 (testis-specific protein, Y-linked 1) gene is critical for spermatogenesis and male fertility. However, there have been difficulties with studying the mechanism underlying its function, partly due to the presence of the Tspy1 pseudogene in mice. AIMS TSPYL5 (TSPY-like 5), an autosomal homologous gene of TSPY1 showing a similar expression pattern in both human and mouse testes, is also speculated to play a role in male spermatogenesis. It is beneficial to understand the role of TSPY1 in spermatogenesis by investigating Tspyl5 functions. METHODS Tspyl5 -knockout mice were generated to investigate the effect of TSPYL5 knockout on spermatogenesis. KEY RESULTS Tspyl5 deficiency caused a decline in fertility and decreased the numbers of spermatogonia and spermatozoa in aged male mice. Trancriptomic detection of spermatogonia derived from aged Tspyl5 -knockout mice revealed that the Pcna -mediated DNA replication pathway was downregulated. Furthermore, Tspyl5 was proven to facilitate spermatogonia proliferation and upregulate Pcna expression by promoting the ubiquitination-degradation of the TRP53 protein. CONCLUSIONS Our findings suggest that Tspyl5 is a positive regulator for the maintenance of the spermatogonia pool by enhancing Pcna -mediated DNA replication. IMPLICATIONS This observation provides an important clue for further investigation of the spermatogenesis-related function of TSPY1 .
Collapse
Affiliation(s)
- Xiangyou Leng
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Shengyu Xie
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhaokun Wang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jiaying Shi
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ming Yi
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xiaolan Tan
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xinyue Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Säflund M, Özata DM. The MYBL1/TCFL5 transcription network: two collaborative factors with central role in male meiosis. Biochem Soc Trans 2023; 51:2163-2172. [PMID: 38015556 PMCID: PMC10754281 DOI: 10.1042/bst20231007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Male gametogenesis, spermatogenesis, is a stepwise developmental process to generate mature sperm. The most intricate process of spermatogenesis is meiosis during which two successive cell divisions ensue with dramatic cellular and molecular changes to produce haploid cells. After entry into meiosis, several forms of regulatory events control the orderly progression of meiosis and the timely entry into post-meiotic sperm differentiation. Among other mechanisms, changes to gene expression are controlled by key transcription factors. In this review, we will discuss the gene regulatory mechanisms underlying meiotic entry, meiotic progression, and post-meiotic differentiation with a particular emphasis on the MYBL1/TCFL5 regulatory architecture and how this architecture involves in various forms of transcription network motifs to regulate gene expression.
Collapse
Affiliation(s)
- Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Deniz M. Özata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
17
|
Elzer D, Bremser M, Zischler H. Human sperm heads harbor modified YsRNA as transgenerationally inherited non-coding RNAs. Front Genet 2023; 14:1294389. [PMID: 38162679 PMCID: PMC10756665 DOI: 10.3389/fgene.2023.1294389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Most epigenetic information is reprogrammed during gametogenesis and early development. However, some epigenetic information persists and can be inherited, a phenomenon that is common in plants. On the other hand, there are increasing examples of epigenetic inheritance in metazoans, especially for small non-coding RNAs. The presence of regulatory important RNAs in oocytes is undisputed, whereas the corresponding RNA payload in spermatozoa and its regulatory influence in the zygote and early embryogenesis is largely enigmatic. For humans, we herein describe small YRNA fragments (YsRNA) as a paternal contribution to the zygote. First, we trace the biogenesis of these YsRNAs from the source YRNAs with respect to the 5' and 3' modifications. Both the length and modifications make these YsRNAs reminiscent of canonical piRNAs that are not derived from piRNA clusters. Second, from the early stages of spermatogenesis to maturation in the epididymis, we observe distinct YsRNA profile dynamics in the male germline. We detected YsRNAs exclusively in mature sperm heads, the precursor of the male pronucleus in the zygote, suggesting an important role of the epididymis as a site for transmitting and modification of epigenetic information in the form of YsRNA between soma and germline in humans. Since this YsRNA-based epigenetic mechanism is effective across generations, we wondered whether this phenomenon of epigenetic inheritance has an adaptive value. Full-length YRNAs bind to Ro60, an RNA chaperone that additionally binds to non-coding RNAs. We described the profiles of non-coding RNAs bound to Ro60 in the human sperm head and detected specific binding profiles of RNA to Ro60 but no YRNA bound to Ro60. We hypothesize that the sperm head Ro60 system is functional. An adaptive phenotype mediated by the presence of a large amount of YsRNA in the sperm head, and thus as a paternal contribution in the zygote, might be related to an association of YsRNA with YRNA that prevents the adoption of a YRNA secondary structure capable of binding to Ro60. We hypothesize that preventing YRNAs from acting as Ro60-associated gatekeepers for misfolded RNAs in the zygote and early development may enhance RNA chaperoning and, thus, represent the adaptive molecular phenotype.
Collapse
Affiliation(s)
- Darja Elzer
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Hans Zischler
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
18
|
Qureshi S, Hardy JJ, Pombar C, Berman AJ, Malcher A, Gingrich T, Hvasta R, Kuong J, Munyoki S, Hwang K, Orwig KE, Ahmed J, Olszewska M, Kurpisz M, Conrad DF, Jaseem Khan M, Yatsenko AN. Genomic study of TEX15 variants: prevalence and allelic heterogeneity in men with spermatogenic failure. Front Genet 2023; 14:1134849. [PMID: 37234866 PMCID: PMC10206016 DOI: 10.3389/fgene.2023.1134849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction: Human spermatogenesis is a highly intricate process that requires the input of thousands of testis-specific genes. Defects in any of them at any stage of the process can have detrimental effects on sperm production and/or viability. In particular, the function of many meiotic proteins encoded by germ cell specific genes is critical for maturation of haploid spermatids and viable spermatozoa, necessary for fertilization, and is also extremely sensitive to even the slightest change in coding DNA. Methods: Here, using whole exome and genome approaches, we identified and reported novel, clinically significant variants in testis-expressed gene 15 (TEX15), in unrelated men with spermatogenic failure (SPGF). Results: TEX15 mediates double strand break repair during meiosis. Recessive loss-of-function (LOF) TEX15 mutations are associated with SPGF in humans and knockout male mice are infertile. We expand earlier reports documenting heterogeneous allelic pathogenic TEX15 variants that cause a range of SPGF phenotypes from oligozoospermia (low sperm) to nonobstructive azoospermia (no sperm) with meiotic arrest and report the prevalence of 0.6% of TEX15 variants in our patient cohort. Among identified possible LOF variants, one homozygous missense substitution c.6835G>A (p.Ala2279Thr) co-segregated with cryptozoospermia in a family with SPGF. Additionally, we observed numerous cases of inferred in trans compound heterozygous variants in TEX15 among unrelated individuals with varying degrees of SPGF. Variants included splice site, insertions/deletions (indels), and missense substitutions, many of which resulted in LOF effects (i.e., frameshift, premature stop, alternative splicing, or potentially altered posttranslational modification sites). Conclusion: In conclusion, we performed an extensive genomic study of familial and sporadic SPGF and identified potentially damaging TEX15 variants in 7 of 1097 individuals of our combined cohorts. We hypothesize that SPGF phenotype severity is dictated by individual TEX15 variant's impact on structure and function. Resultant LOFs likely have deleterious effects on crossover/recombination in meiosis. Our findings support the notion of increased gene variant frequency in SPGF and its genetic and allelic heterogeneity as it relates to complex disease such as male infertility.
Collapse
Affiliation(s)
- Sidra Qureshi
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jimmaline J. Hardy
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher Pombar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Andrea J. Berman
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Agnieszka Malcher
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tara Gingrich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rachel Hvasta
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jannah Kuong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sarah Munyoki
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kathleen Hwang
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kyle E. Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jawad Ahmed
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Donald F. Conrad
- Department of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Muhammad Jaseem Khan
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Alexander N. Yatsenko
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Johnson TA, Niedenberger BA, Kirsanov O, Harrington EV, Malachowski T, Geyer CB. Differential responsiveness of spermatogonia to retinoic acid dictates precocious differentiation but not meiotic entry during steady-state spermatogenesis†. Biol Reprod 2023; 108:822-836. [PMID: 36708226 PMCID: PMC10183363 DOI: 10.1093/biolre/ioad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 01/29/2023] Open
Abstract
The foundation of mammalian spermatogenesis is provided by undifferentiated spermatogonia, which comprise of spermatogonial stem cells (SSCs) and transit-amplifying progenitors that differentiate in response to retinoic acid (RA) and are committed to enter meiosis. Our laboratory recently reported that the foundational populations of SSCs, undifferentiated progenitors, and differentiating spermatogonia are formed in the neonatal testis in part based on their differential responsiveness to RA. Here, we expand on those findings to define the extent to which RA responsiveness during steady-state spermatogenesis in the adult testis regulates the spermatogonial fate. Our results reveal that both progenitor and differentiating spermatogonia throughout the testis are capable of responding to exogenous RA, but their resulting fates were quite distinct-undifferentiated progenitors precociously differentiated and proceeded into meiosis on a normal timeline, while differentiating spermatogonia were unable to hasten their entry into meiosis. This reveals that the spermatogonia responding to RA must still complete the 8.6 day differentiation program prior to their entry into meiosis. Addition of exogenous RA enriched testes with preleptotene and pachytene spermatocytes one and two seminiferous cycles later, respectively, supporting recent clinical studies reporting increased sperm production and enhanced fertility in subfertile men on long-term RA analog treatment. Collectively, our results reveal that a well-buffered system exists within mammalian testes to regulate spermatogonial RA exposure, that exposed undifferentiated progenitors can precociously differentiate, but must complete a normal-length differentiation program prior to entering meiosis, and that daily RA treatments increased the numbers of advanced germ cells by directing undifferentiated progenitors to continuously differentiate.
Collapse
Affiliation(s)
- Taylor A Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NCUSA
| | - Bryan A Niedenberger
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NCUSA
| | - Oleksandr Kirsanov
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NCUSA
| | - Ellen V Harrington
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NCUSA
| | - Taylor Malachowski
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NCUSA
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NCUSA
- East Carolina Diabetes and Obesity Institute at East Carolina University, Greenville, NCUSA
| |
Collapse
|
20
|
Siebert-Kuss LM, Krenz H, Tekath T, Wöste M, Di Persio S, Terwort N, Wyrwoll MJ, Cremers JF, Wistuba J, Dugas M, Kliesch S, Schlatt S, Tüttelmann F, Gromoll J, Neuhaus N, Laurentino S. Transcriptome analyses in infertile men reveal germ cell-specific expression and splicing patterns. Life Sci Alliance 2023; 6:6/2/e202201633. [PMID: 36446526 PMCID: PMC9713473 DOI: 10.26508/lsa.202201633] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
The process of spermatogenesis-when germ cells differentiate into sperm-is tightly regulated, and misregulation in gene expression is likely to be involved in the physiopathology of male infertility. The testis is one of the most transcriptionally rich tissues; nevertheless, the specific gene expression changes occurring during spermatogenesis are not fully understood. To better understand gene expression during spermatogenesis, we generated germ cell-specific whole transcriptome profiles by systematically comparing testicular transcriptomes from tissues in which spermatogenesis is arrested at successive steps of germ cell differentiation. In these comparisons, we found thousands of differentially expressed genes between successive germ cell types of infertility patients. We demonstrate our analyses' potential to identify novel highly germ cell-specific markers (TSPY4 and LUZP4 for spermatogonia; HMGB4 for round spermatids) and identified putatively misregulated genes in male infertility (RWDD2A, CCDC183, CNNM1, SERF1B). Apart from these, we found thousands of genes showing germ cell-specific isoforms (including SOX15, SPATA4, SYCP3, MKI67). Our approach and dataset can help elucidate genetic and transcriptional causes for male infertility.
Collapse
Affiliation(s)
- Lara M Siebert-Kuss
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Henrike Krenz
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Tobias Tekath
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Marius Wöste
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Nicole Terwort
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Margot J Wyrwoll
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Jann-Frederik Cremers
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany.,Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| |
Collapse
|
21
|
Bruggeman JW, Koster J, van Pelt AMM, Speijer D, Hamer G. How germline genes promote malignancy in cancer cells. Bioessays 2023; 45:e2200112. [PMID: 36300921 DOI: 10.1002/bies.202200112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 02/01/2023]
Abstract
Cancers often express hundreds of genes otherwise specific to germ cells, the germline/cancer (GC) genes. Here, we present and discuss the hypothesis that activation of a "germline program" promotes cancer cell malignancy. We do so by proposing four hallmark processes of the germline: meiosis, epigenetic plasticity, migration, and metabolic plasticity. Together, these hallmarks enable replicative immortality of germ cells as well as cancer cells. Especially meiotic genes are frequently expressed in cancer, implying that genes unique to meiosis may play a role in oncogenesis. Because GC genes are not expressed in healthy somatic tissues, they form an appealing source of specific treatment targets with limited side effects besides infertility. Although it is still unclear why germ cell specific genes are so abundantly expressed in cancer, from our hypothesis it follows that the germline's reproductive program is intrinsic to cancer development.
Collapse
Affiliation(s)
- Jan Willem Bruggeman
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Reproduction and Development research institute, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Silva C, Viana P, Barros A, Sá R, Sousa M, Pereira R. Further Insights on RNA Expression and Sperm Motility. Genes (Basel) 2022; 13:genes13071291. [PMID: 35886074 PMCID: PMC9319021 DOI: 10.3390/genes13071291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Asthenozoospermia is one of the main causes of male infertility and it is characterized by reduced sperm motility. Several mutations in genes that code for structural or functional constituents of the sperm have already been identified as known causes of asthenozoospermia. In contrast, the role of sperm RNA in regulating sperm motility is still not fully understood. Consequently, here we aim to contribute to the knowledge regarding the expression of sperm RNA, and ultimately, to provide further insights into its relationship with sperm motility. We investigated the expression of a group of mRNAs by using real-time PCR (CATSPER3, CFAP44, CRHR1, HIP1, IQCG KRT34, LRRC6, QRICH2, RSPH6A, SPATA33 and TEKT2) and the highest score corresponding to the target miRNA for each mRNA in asthenozoospermic and normozoospermic individuals. We observed a reduced expression of all mRNAs and miRNAs in asthenozoospermic patients compared to controls, with a more accentuated reduction in patients with progressive sperm motility lower than 15%. Our work provides further insights regarding the role of RNA in regulating sperm motility. Further studies are required to determine how these genes and their corresponding miRNA act regarding sperm motility, particularly KRT34 and CRHR1, which have not previously been seen to play a significant role in regulating sperm motility.
Collapse
Affiliation(s)
- Carolina Silva
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Faculty of Medicine, University of Coimbra (FMUC), 3000-370 Coimbra, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
| | - Alberto Barros
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
- Department of Genetics, Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Institute of Health Research and Innovation (IPATIMUP/i3S), University of Porto, 4200-135 Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Correspondence:
| |
Collapse
|
23
|
Keppner A, Correia M, Santambrogio S, Koay TW, Maric D, Osterhof C, Winter DV, Clerc A, Stumpe M, Chalmel F, Dewilde S, Odermatt A, Kressler D, Hankeln T, Wenger RH, Hoogewijs D. Androglobin, a chimeric mammalian globin, is required for male fertility. eLife 2022; 11:72374. [PMID: 35700329 PMCID: PMC9249397 DOI: 10.7554/elife.72374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis is a highly specialized differentiation process driven by a dynamic gene expression program and ending with the production of mature spermatozoa. Whereas hundreds of genes are known to be essential for male germline proliferation and differentiation, the contribution of several genes remains uncharacterized. The predominant expression of the latest globin family member, androglobin (Adgb), in mammalian testis tissue prompted us to assess its physiological function in spermatogenesis. Adgb knockout mice display male infertility, reduced testis weight, impaired maturation of elongating spermatids, abnormal sperm shape, and ultrastructural defects in microtubule and mitochondrial organization. Epididymal sperm from Adgb knockout animals display multiple flagellar malformations including coiled, bifid or shortened flagella, and erratic acrosomal development. Following immunoprecipitation and mass spectrometry, we could identify septin 10 (Sept10) as interactor of Adgb. The Sept10-Adgb interaction was confirmed both in vivo using testis lysates and in vitro by reciprocal co-immunoprecipitation experiments. Furthermore, the absence of Adgb leads to mislocalization of Sept10 in sperm, indicating defective manchette and sperm annulus formation. Finally, in vitro data suggest that Adgb contributes to Sept10 proteolysis in a calmodulin-dependent manner. Collectively, our results provide evidence that Adgb is essential for murine spermatogenesis and further suggest that Adgb is required for sperm head shaping via the manchette and proper flagellum formation.
Collapse
Affiliation(s)
- Anna Keppner
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Miguel Correia
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | | | - Teng Wei Koay
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Darko Maric
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Carina Osterhof
- Institute for Organismic and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
| | - Denise V Winter
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Angèle Clerc
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Thomas Hankeln
- Institute for Organismic and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - David Hoogewijs
- Department of Endocrinology, Metabolism and Cardiovascular system, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
24
|
Martinez G, Coutton C, Loeuillet C, Cazin C, Muroňová J, Boguenet M, Lambert E, Dhellemmes M, Chevalier G, Hograindleur JP, Vilpreux C, Neirijnck Y, Kherraf ZE, Escoffier J, Nef S, Ray PF, Arnoult C. Oligogenic heterozygous inheritance of sperm abnormalities in mouse. eLife 2022; 11:75373. [PMID: 35451961 PMCID: PMC9071268 DOI: 10.7554/elife.75373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Male infertility is an important health concern that is expected to have a major genetic etiology. Although high-throughput sequencing has linked gene defects to more than 50% of rare and severe sperm anomalies, less than 20% of common and moderate forms are explained. We hypothesized that this low success rate could at least be partly due to oligogenic defects – the accumulation of several rare heterozygous variants in distinct, but functionally connected, genes. Here, we compared fertility and sperm parameters in male mice harboring one to four heterozygous truncating mutations of genes linked to multiple morphological anomalies of the flagellum (MMAF) syndrome. Results indicated progressively deteriorating sperm morphology and motility with increasing numbers of heterozygous mutations. This first evidence of oligogenic inheritance in failed spermatogenesis strongly suggests that oligogenic heterozygosity could explain a significant proportion of asthenoteratozoospermia cases. The findings presented pave the way to further studies in mice and man.
Collapse
Affiliation(s)
| | | | - Corinne Loeuillet
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | | | - Jana Muroňová
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Magalie Boguenet
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Emeline Lambert
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Magali Dhellemmes
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Geneviève Chevalier
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | | | - Charline Vilpreux
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva Medical School, Genève, Switzerland
| | - Zine Eddine Kherraf
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Jessica Escoffier
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pierre F Ray
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Christophe Arnoult
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| |
Collapse
|
25
|
Chen M, Gao F. The Regulation of Gonadal Somatic Cell Differentiation in Humans. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:219-222. [PMID: 35504504 PMCID: PMC9684145 DOI: 10.1016/j.gpb.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Min Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Wang R, Liu X, Li L, Yang M, Yong J, Zhai F, Wen L, Yan L, Qiao J, Tang F. Dissecting Human Gonadal Cell Lineage Specification and Sex Determination Using A Single-cell RNA-seq Approach. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:223-245. [PMID: 35513251 PMCID: PMC9684167 DOI: 10.1016/j.gpb.2022.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/24/2022] [Indexed: 01/05/2023]
Abstract
Gonadal somatic cells are the main players in gonad development and are important for sex determination and germ cell development. Here, using a time-series single-cell RNA sequencing (scRNA-seq) strategy, we analyzed fetal germ cells (FGCs) and gonadal somatic cells in human embryos and fetuses. Clustering analysis of testes and ovaries revealed several novel cell subsets, including POU5F1+SPARC+ FGCs and KRT19+ somatic cells. Furthermore, our data indicated that the bone morphogenetic protein (BMP) signaling pathway plays cell type-specific and developmental stage-specific roles in testis development and promotes the gonocyte-to-spermatogonium transition (GST) in late-stage testicular mitotic arrest FGCs. Intriguingly, testosterone synthesis function transitioned from fetal Sertoli cells to adult Leydig cells in a stepwise manner. In our study, potential interactions between gonadal somatic cells were systematically explored and we identified cell type-specific developmental defects in both FGCs and gonadal somatic cells in a Turner syndrome embryo (45, XO). Our work provides a blueprint of the complex yet highly ordered development of and the interactions among human FGCs and gonadal somatic cells.
Collapse
Affiliation(s)
- Rui Wang
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Beijing Advanced Innovation Center for Genomics and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100191, China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xixi Liu
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Beijing Advanced Innovation Center for Genomics and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100191, China
| | - Li Li
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Beijing Advanced Innovation Center for Genomics and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100191, China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ming Yang
- Key Laboratory of Assisted Reproduction and Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing 100191, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jun Yong
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China
| | - Fan Zhai
- Key Laboratory of Assisted Reproduction and Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing 100191, China,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Beijing Advanced Innovation Center for Genomics and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100191, China
| | - Liying Yan
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction and Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing 100191, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jie Qiao
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Beijing Advanced Innovation Center for Genomics and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100191, China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction and Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing 100191, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China,Corresponding authors.
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China,Beijing Advanced Innovation Center for Genomics and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100191, China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China,Corresponding authors.
| |
Collapse
|
27
|
Tang L, Bo H. The significance of studying functional lncRNA in mouse spermatogenesis. Epigenomics 2022; 14:365-368. [PMID: 35195038 DOI: 10.2217/epi-2021-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Le Tang
- Reproductive Medicine Center, Maternal & Child Health Care Hospital of Hunan Province, Changsha, 410008, China
| | - Hao Bo
- Clinical Research Center for Reproduction & Genetics in Hunan Province, Reproductive & Genetic Hospital of China International Trust & Investment Corporation (CITIC) Xiangya, Changsha, 410008, China.,National Health Commission Key Laboratory of Human Stem Cell & Reproductive Engineering, Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, 410008, China
| |
Collapse
|
28
|
Reggiori F, Molinari M. ER-phagy: mechanisms, regulation and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev 2022; 102:1393-1448. [PMID: 35188422 PMCID: PMC9126229 DOI: 10.1152/physrev.00038.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ER-phagy (reticulo-phagy) defines the degradation of portions of the endoplasmic reticulum (ER) within lysosomes or vacuoles. It is part of the self-digestion (i.e., auto-phagic) programs recycling cytoplasmic material and organelles, which rapidly mobilize metabolites in cells confronted with nutrient shortage. Moreover, selective clearance of ER subdomains participates to the control of ER size and activity during ER stress, the re-establishment of ER homeostasis after ER stress resolution and the removal of ER parts, in which aberrant and potentially cytotoxic material has been segregated. ER-phagy relies on the individual and/or concerted activation of the ER-phagy receptors, ER peripheral or integral membrane proteins that share the presence of LC3/Atg8-binding motifs in their cytosolic domains. ER-phagy involves the physical separation of portions of the ER from the bulk ER network, and their delivery to the endolysosomal/vacuolar catabolic district. This last step is accomplished by a variety of mechanisms including macro-ER-phagy (in which ER fragments are sequestered by double-membrane autophagosomes that eventually fuse with lysosomes/vacuoles), micro-ER-phagy (in which ER fragments are directly engulfed by endosomes/lysosomes/vacuoles), or direct fusion of ER-derived vesicles with lysosomes/vacuoles. ER-phagy is dysfunctional in specific human diseases and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, grid.4830.fUniversity of Groningen, Netherlands
| | - Maurizio Molinari
- Protein Folding and Quality Control, grid.7722.0Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
29
|
Omics and Male Infertility: Highlighting the Application of Transcriptomic Data. Life (Basel) 2022; 12:life12020280. [PMID: 35207567 PMCID: PMC8875138 DOI: 10.3390/life12020280] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Male infertility is a multifaceted disorder affecting approximately 50% of male partners in infertile couples. Over the years, male infertility has been diagnosed mainly through semen analysis, hormone evaluations, medical records and physical examinations, which of course are fundamental, but yet inefficient, because 30% of male infertility cases remain idiopathic. This dilemmatic status of the unknown needs to be addressed with more sophisticated and result-driven technologies and/or techniques. Genetic alterations have been linked with male infertility, thereby unveiling the practicality of investigating this disorder from the “omics” perspective. Omics aims at analyzing the structure and functions of a whole constituent of a given biological function at different levels, including the molecular gene level (genomics), transcript level (transcriptomics), protein level (proteomics) and metabolites level (metabolomics). In the current study, an overview of the four branches of omics and their roles in male infertility are briefly discussed; the potential usefulness of assessing transcriptomic data to understand this pathology is also elucidated. After assessing the publicly obtainable transcriptomic data for datasets on male infertility, a total of 1385 datasets were retrieved, of which 10 datasets met the inclusion criteria and were used for further analysis. These datasets were classified into groups according to the disease or cause of male infertility. The groups include non-obstructive azoospermia (NOA), obstructive azoospermia (OA), non-obstructive and obstructive azoospermia (NOA and OA), spermatogenic dysfunction, sperm dysfunction, and Y chromosome microdeletion. Findings revealed that 8 genes (LDHC, PDHA2, TNP1, TNP2, ODF1, ODF2, SPINK2, PCDHB3) were commonly differentially expressed between all disease groups. Likewise, 56 genes were common between NOA versus NOA and OA (ADAD1, BANF2, BCL2L14, C12orf50, C20orf173, C22orf23, C6orf99, C9orf131, C9orf24, CABS1, CAPZA3, CCDC187, CCDC54, CDKN3, CEP170, CFAP206, CRISP2, CT83, CXorf65, FAM209A, FAM71F1, FAM81B, GALNTL5, GTSF1, H1FNT, HEMGN, HMGB4, KIF2B, LDHC, LOC441601, LYZL2, ODF1, ODF2, PCDHB3, PDHA2, PGK2, PIH1D2, PLCZ1, PROCA1, RIMBP3, ROPN1L, SHCBP1L, SMCP, SPATA16, SPATA19, SPINK2, TEX33, TKTL2, TMCO2, TMCO5A, TNP1, TNP2, TSPAN16, TSSK1B, TTLL2, UBQLN3). These genes, particularly the above-mentioned 8 genes, are involved in diverse biological processes such as germ cell development, spermatid development, spermatid differentiation, regulation of proteolysis, spermatogenesis and metabolic processes. Owing to the stage-specific expression of these genes, any mal-expression can ultimately lead to male infertility. Therefore, currently available data on all branches of omics relating to male fertility can be used to identify biomarkers for diagnosing male infertility, which can potentially help in unravelling some idiopathic cases.
Collapse
|
30
|
Long Noncoding RNA Mediated Regulation in Human Embryogenesis, Pluripotency, and Reproduction. Stem Cells Int 2022; 2022:8051717. [PMID: 35103065 PMCID: PMC8800634 DOI: 10.1155/2022/8051717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), a class of noncoding RNAs with more than 200 bp in length, are produced by pervasive transcription in mammalian genomes and regulate gene expression through various action mechanisms. Accumulating data indicate that lncRNAs mediate essential biological functions in human development, including early embryogenesis, induction of pluripotency, and germ cell development. Comprehensive analysis of sequencing data highlights that lncRNAs are expressed in a stage-specific and human/primate-specific pattern during early human development. They contribute to cell fate determination through interacting with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. Furthermore, the expression of a few of lncRNAs is highly associated with the pathogenesis and progression of many reproductive diseases, suggesting that they could serve as candidate biomarkers for diagnosis or novel targets for treatment. Here, we review research on lncRNAs and their roles in embryogenesis, pluripotency, and reproduction. We aim to identify the underlying molecular mechanisms essential for human development and provide novel insight into the causes and treatments of human reproductive diseases.
Collapse
|
31
|
Cazin C, Neirijnck Y, Loeuillet C, Wehrli L, Kühne F, Lordey I, Mustapha SFB, Bouker A, Zouari R, Thierry-Mieg N, Nef S, Arnoult C, Ray PF, Kherraf ZE. Combined Use of Whole Exome Sequencing and CRISPR/Cas9 to Study the Etiology of Non-Obstructive Azoospermia: Demonstration of the Dispensable Role of the Testis-Specific Genes C1orf185 and CCT6B. Cells 2021; 11:cells11010118. [PMID: 35011680 PMCID: PMC8750304 DOI: 10.3390/cells11010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
The genetic landscape of male infertility is highly complex. It is estimated that at least 4000 genes are involved in human spermatogenesis, but only few have so far been extensively studied. In this study, we investigated by whole exome sequencing two cases of idiopathic non-obstructive azoospermia (NOA) due to severe hypospermatogenesis. After variant filtering and prioritizing, we retained for each patient a homozygous loss-of-function (LoF) variant in a testis-specific gene, C1orf185 (c.250C>T; p.Gln84Ter) and CCT6B (c.615-2A>G), respectively. Both variants are rare according to the gnomAD database and absent from our local control cohort (n = 445). To verify the implication of these candidate genes in NOA, we used the CRISPR/Cas9 system to invalidate the mouse orthologs 4930522H14Rik and Cct6b and produced two knockout (KO) mouse lines. Sperm and testis parameters of homozygous KO adult male mice were analyzed and compared with those of wild-type animals. We showed that homozygous KO males were fertile and displayed normal sperm parameters and a functional spermatogenesis. Overall, these results demonstrate that not all genes highly and specifically expressed in the testes are essential for spermatogenesis, and in particular, we conclude that bi-allelic variants of C1orf185 and CCT6B are most likely not to be involved in NOA and male fertility.
Collapse
Affiliation(s)
- Caroline Cazin
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France; (C.C.); (C.L.); (C.A.); (P.F.R.)
- UM GI-DPI, CHU Grenoble Alpes, 38000 Grenoble, France;
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Genève 4, Switzerland; (Y.N.); (L.W.); (F.K.); (S.N.)
| | - Corinne Loeuillet
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France; (C.C.); (C.L.); (C.A.); (P.F.R.)
| | - Lydia Wehrli
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Genève 4, Switzerland; (Y.N.); (L.W.); (F.K.); (S.N.)
| | - Françoise Kühne
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Genève 4, Switzerland; (Y.N.); (L.W.); (F.K.); (S.N.)
| | | | - Selima Fourati Ben Mustapha
- Centre d’Aide Médicale à la Procréation, Polyclinique les Jasmins, Centre Urbain Nord, Tunis 1003, Tunisia; (S.F.B.M.); (A.B.); (R.Z.)
| | - Amin Bouker
- Centre d’Aide Médicale à la Procréation, Polyclinique les Jasmins, Centre Urbain Nord, Tunis 1003, Tunisia; (S.F.B.M.); (A.B.); (R.Z.)
| | - Raoudha Zouari
- Centre d’Aide Médicale à la Procréation, Polyclinique les Jasmins, Centre Urbain Nord, Tunis 1003, Tunisia; (S.F.B.M.); (A.B.); (R.Z.)
| | | | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Genève 4, Switzerland; (Y.N.); (L.W.); (F.K.); (S.N.)
| | - Christophe Arnoult
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France; (C.C.); (C.L.); (C.A.); (P.F.R.)
| | - Pierre F. Ray
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France; (C.C.); (C.L.); (C.A.); (P.F.R.)
- UM GI-DPI, CHU Grenoble Alpes, 38000 Grenoble, France;
| | - Zine-Eddine Kherraf
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000 Grenoble, France; (C.C.); (C.L.); (C.A.); (P.F.R.)
- UM GI-DPI, CHU Grenoble Alpes, 38000 Grenoble, France;
- Correspondence: ; Tel.: +33-(0)4-7676-8303
| |
Collapse
|
32
|
Liu SH, Ma XY, Yue TT, Wang ZC, Qi KL, Li JC, Lin F, Rushdi HE, Gao YY, Fu T, Li M, Gao TY, Yang LG, Han XL, Deng TX. Transcriptome-Wide m6A Analysis Provides Novel Insights Into Testicular Development and Spermatogenesis in Xia-Nan Cattle. Front Cell Dev Biol 2021; 9:791221. [PMID: 35004687 PMCID: PMC8728086 DOI: 10.3389/fcell.2021.791221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Testis is the primary organ of the male reproductive tract in mammals that plays a substantial role in spermatogenesis. Improvement of our knowledge regarding the molecular mechanisms in testicular development and spermatogenesis will be reflected in producing spermatozoa of superior fertility. Evidence showed that N6-Methyladenosine (m6A) plays a dynamic role in post-transcription gene expression regulation and is strongly associated with production traits. However, the role of m6A in bovine testis has not been investigated yet. In this study, we conducted MeRIP-Seq analysis to explore the expression profiles of the m6A and its potential mechanism underlying spermatogenesis in nine bovine testes at three developmental stages (prepuberty, puberty and postpuberty). The experimental animals with triplicate in each stage were chosen based on their semen volume and sperm motility except for the prepuberty bulls and used for testes collection. By applying MeRIP-Seq analysis, a total of 8,774 m6A peaks and 6,206 m6A genes among the studied groups were identified. All the detected peaks were found to be mainly enriched in the coding region and 3'- untranslated regions. The cross-analysis of m6A and mRNA expression exhibited 502 genes with concomitant changes in the mRNA expression and m6A modification. Notably, 30 candidate genes were located in the largest network of protein-protein interactions. Interestingly, four key node genes (PLK4, PTEN, EGR1, and PSME4) were associated with the regulation of mammal testis development and spermatogenesis. This study is the first to present a map of RNA m6A modification in bovine testes at distinct ages, and provides new insights into m6A topology and related molecular mechanisms underlying bovine spermatogenesis, and establishes a basis for further studies on spermatogenesis in mammals.
Collapse
Affiliation(s)
- Shen-He Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Ya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Ting-Ting Yue
- Henan Dairy Herd Improvement Co., Ltd, Zhengzhou, China
| | - Zi-Chen Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Kun-Long Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ji-Chao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Feng Lin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Yu-Yang Gao
- Henan Dingyuan Cattle Breeding Co., Ltd., Wuhan, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Teng-Yun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Li-Guo Yang
- China Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xue-Lei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ting-Xian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
33
|
Long Noncoding RNAs: Recent Insights into Their Role in Male Infertility and Their Potential as Biomarkers and Therapeutic Targets. Int J Mol Sci 2021; 22:ijms222413579. [PMID: 34948376 PMCID: PMC8708977 DOI: 10.3390/ijms222413579] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are composed of nucleotides located in the nucleus and cytoplasm; these are transcribed by RNA polymerase II and are greater than 200 nt in length. LncRNAs fulfill important functions in a variety of biological processes, including genome imprinting, cell differentiation, apoptosis, stem cell pluripotency, X chromosome inactivation and nuclear transport. As high throughput sequencing technology develops, a substantial number of lncRNAs have been found to be related to a variety of biological processes, such as development of the testes, maintaining the self-renewal and differentiation of spermatogonial stem cells, and regulating spermatocyte meiosis. These indicate that lncRNAs can be used as biomarkers and potential therapeutic targets for male infertility. However, only a few comprehensive reviews have described the role of lncRNAs in male reproduction. In this paper, we summarize recent findings relating to the role of lncRNAs in spermatogenesis, their potential as biomarkers for male infertility and the relationship between reproductive arrest and transgenerational effects. Finally, we suggest specific targets for the treatment of male infertility from the perspective of lncRNAs.
Collapse
|
34
|
Sahoo B, Choudhary RK, Sharma P, Choudhary S, Gupta MK. Significance and Relevance of Spermatozoal RNAs to Male Fertility in Livestock. Front Genet 2021; 12:768196. [PMID: 34956322 PMCID: PMC8696160 DOI: 10.3389/fgene.2021.768196] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Livestock production contributes to a significant part of the economy in developing countries. Although artificial insemination techniques brought substantial improvements in reproductive efficiency, male infertility remains a leading challenge in livestock. Current strategies for the diagnosis of male infertility largely depend on the evaluation of semen parameters and fail to diagnose idiopathic infertility in most cases. Recent evidences show that spermatozoa contains a suit of RNA population whose profile differs between fertile and infertile males. Studies have also demonstrated the crucial roles of spermatozoal RNA (spRNA) in spermatogenesis, fertilization, and early embryonic development. Thus, the spRNA profile may serve as unique molecular signatures of fertile sperm and may play pivotal roles in the diagnosis and treatment of male fertility. This manuscript provides an update on various spRNA populations, including protein-coding and non-coding RNAs, in livestock species and their potential role in semen quality, particularly sperm motility, freezability, and fertility. The contribution of seminal plasma to the spRNA population is also discussed. Furthermore, we discussed the significance of rare non-coding RNAs (ncRNAs) such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs) in spermatogenic events.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Ratan K. Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Paramajeet Sharma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Shanti Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
35
|
Chen H, Murray E, Sinha A, Laumas A, Li J, Lesman D, Nie X, Hotaling J, Guo J, Cairns BR, Macosko EZ, Cheng CY, Chen F. Dissecting mammalian spermatogenesis using spatial transcriptomics. Cell Rep 2021; 37:109915. [PMID: 34731600 PMCID: PMC8606188 DOI: 10.1016/j.celrep.2021.109915] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Single-cell RNA sequencing has revealed extensive molecular diversity in gene programs governing mammalian spermatogenesis but fails to delineate their dynamics in the native context of seminiferous tubules, the spatially confined functional units of spermatogenesis. Here, we use Slide-seq, a spatial transcriptomics technology, to generate an atlas that captures the spatial gene expression patterns at near-single-cell resolution in the mouse and human testis. Using Slide-seq data, we devise a computational framework that accurately localizes testicular cell types in individual seminiferous tubules. Unbiased analysis systematically identifies spatially patterned genes and gene programs. Combining Slide-seq with targeted in situ RNA sequencing, we demonstrate significant differences in the cellular compositions of spermatogonial microenvironment between mouse and human testes. Finally, a comparison of the spatial atlas generated from the wild-type and diabetic mouse testis reveals a disruption in the spatial cellular organization of seminiferous tubules as a potential mechanism of diabetes-induced male infertility. Chen et al. generate a spatial transcriptome atlas of the mammalian testis at near-single-cell resolution that recapitulates spermatogenesis by accurately localizing testicular cell types and reconstructing tissue structures. The atlas is used to reveal the spatial organization of testicular microenvironment and profile its changes under diabetic conditions.
Collapse
Affiliation(s)
- Haiqi Chen
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Evan Murray
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anubhav Sinha
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02142, USA
| | | | - Jilong Li
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel Lesman
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xichen Nie
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jim Hotaling
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jingtao Guo
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bradley R Cairns
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Evan Z Macosko
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, 10065, USA
| | - Fei Chen
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
36
|
Liu YL, Huang FJ, Du PJ, Wang J, Guo F, Shao MW, Song Y, Liu YX, Qin GJ. Long noncoding RNA MIR22HG promotes Leydig cell apoptosis by acting as a competing endogenous RNA for microRNA-125a-5p that targets N-Myc downstream-regulated gene 2 in late-onset hypogonadism. J Transl Med 2021; 101:1484-1493. [PMID: 34446806 DOI: 10.1038/s41374-021-00645-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/09/2022] Open
Abstract
Leydig cells (LCs) apoptosis is responsible for the deficiency of serum testosterone in Late-onset hypogonadism (LOH), while its specific mechanism is still unknown. This study focuses on the role of long noncoding RNA (lncRNA) MIR22HG in LC apoptosis and aims to elaborate its regulatory mechanism. MIR22HG was up-regulated in the testicular tissues of mice with LOH and H2O2-treated TM3 cells (mouse Leydig cell line). Interference of MIR22HG ameliorated cell apoptosis and upregulated miR-125a-5p expression in H2O2-treated TM3 cells. Then, the interaction between MIR22HG and miR-125a-5p was confirmed with RIP and RNA pull-down assay. Further study showed that miR-125a-5p downregulated N-Myc downstream-regulated gene 2 (NDRG2) expression by targeting its 3'-UTR of mRNA. What's more, MIR22HG overexpression aggravated cell apoptosis and reduced testosterone production in TM3 cells via miR-125a-5p/NDRG2 pathway. MIR22HG knockdown elevated testosterone levels in LOH mice. In conclusion, MIR22HG up-regulated NDRG2 expression through targeting miR-125a-5p, thus promoting LC apoptosis in LOH.
Collapse
Affiliation(s)
- Yan-Ling Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Feng-Jiao Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Pei-Jie Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Feng Guo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Ming-Wei Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Yi Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Yan-Xia Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Gui-Jun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
37
|
Meiosis initiation: a story of two sexes in all creatures great and small. Biochem J 2021; 478:3791-3805. [PMID: 34709374 PMCID: PMC8589329 DOI: 10.1042/bcj20210412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
Meiosis facilitates diversity across individuals and serves as a major driver of evolution. However, understanding how meiosis begins is complicated by fundamental differences that exist between sexes and species. Fundamental meiotic research is further hampered by a current lack of human meiotic cells lines. Consequently, much of what we know relies on data from model organisms. However, contextualising findings from yeast, worms, flies and mice can be challenging, due to marked differences in both nomenclature and the relative timing of meiosis. In this review, we set out to combine current knowledge of signalling and transcriptional pathways that control meiosis initiation across the sexes in a variety of organisms. Furthermore, we highlight the emerging links between meiosis initiation and oncogenesis, which might explain the frequent re-expression of normally silent meiotic genes in a variety of human cancers.
Collapse
|
38
|
Integration and gene co-expression network analysis of scRNA-seq transcriptomes reveal heterogeneity and key functional genes in human spermatogenesis. Sci Rep 2021; 11:19089. [PMID: 34580317 PMCID: PMC8476490 DOI: 10.1038/s41598-021-98267-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Spermatogenesis is a complex process of cellular division and differentiation that begins with spermatogonia stem cells and leads to functional spermatozoa production. However, many of the molecular mechanisms underlying this process remain unclear. Single-cell RNA sequencing (scRNA-seq) is used to sequence the entire transcriptome at the single-cell level to assess cell-to-cell variability. In this study, more than 33,000 testicular cells from different scRNA-seq datasets with normal spermatogenesis were integrated to identify single-cell heterogeneity on a more comprehensive scale. Clustering, cell type assignments, differential expressed genes and pseudotime analysis characterized 5 spermatogonia, 4 spermatocyte, and 4 spermatid cell types during the spermatogenesis process. The UTF1 and ID4 genes were introduced as the most specific markers that can differentiate two undifferentiated spermatogonia stem cell sub-cellules. The C7orf61 and TNP can differentiate two round spermatid sub-cellules. The topological analysis of the weighted gene co-expression network along with the integrated scRNA-seq data revealed some bridge genes between spermatogenesis's main stages such as DNAJC5B, C1orf194, HSP90AB1, BST2, EEF1A1, CRISP2, PTMS, NFKBIA, CDKN3, and HLA-DRA. The importance of these key genes is confirmed by their role in male infertility in previous studies. It can be stated that, this integrated scRNA-seq of spermatogenic cells offers novel insights into cell-to-cell heterogeneity and suggests a list of key players with a pivotal role in male infertility from the fertile spermatogenesis datasets. These key functional genes can be introduced as candidates for filtering and prioritizing genotype-to-phenotype association in male infertility.
Collapse
|
39
|
Di Persio S, Tekath T, Siebert-Kuss LM, Cremers JF, Wistuba J, Li X, Meyer Zu Hörste G, Drexler HCA, Wyrwoll MJ, Tüttelmann F, Dugas M, Kliesch S, Schlatt S, Laurentino S, Neuhaus N. Single-cell RNA-seq unravels alterations of the human spermatogonial stem cell compartment in patients with impaired spermatogenesis. CELL REPORTS MEDICINE 2021; 2:100395. [PMID: 34622232 PMCID: PMC8484693 DOI: 10.1016/j.xcrm.2021.100395] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/01/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
Despite the high incidence of male infertility, only 30% of infertile men receive a causative diagnosis. To explore the regulatory mechanisms governing human germ cell function in normal and impaired spermatogenesis (crypto), we performed single-cell RNA sequencing (>30,000 cells). We find major alterations in the crypto spermatogonial compartment with increased numbers of the most undifferentiated spermatogonia (PIWIL4+). We also observe a transcriptional switch within the spermatogonial compartment driven by increased and prolonged expression of the transcription factor EGR4. Intriguingly, the EGR4-regulated chromatin-associated transcriptional repressor UTF1 is downregulated at transcriptional and protein levels. This is associated with changes in spermatogonial chromatin structure and fewer Adark spermatogonia, characterized by tightly compacted chromatin and serving as reserve stem cells. These findings suggest that crypto patients are disadvantaged, as fewer cells safeguard their germline’s genetic integrity. These identified spermatogonial regulators will be highly interesting targets to uncover genetic causes of male infertility. Crypto(zoospermic) men show increased number of PIWIL4+/EGR4+ spermatogonia Crypto undifferentiated spermatogonia over-activate the EGR4 regulatory network The predicted EGR4 target UTF1 is downregulated in crypto spermatogonia Crypto testes show reduced numbers of UTF1+ Adark reserve spermatogonia
Collapse
Affiliation(s)
- Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Tobias Tekath
- Institute of Medical Informatics, University Hospital of Münster, 48149 Münster, Germany
| | - Lara Marie Siebert-Kuss
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Jann-Frederik Cremers
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Xiaolin Li
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, 48149 Münster, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, 48149 Münster, Germany
| | - Hannes C A Drexler
- Bioanalytical Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Margot Julia Wyrwoll
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital of Münster, 48149 Münster, Germany.,Institute of Reproductive Genetics, University of Münster, 48149 Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, 48149 Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University Hospital of Münster, 48149 Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, 48149 Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, University Hospital of Münster, 48149 Münster, Germany
| |
Collapse
|
40
|
Fan X, Moustakas I, Torrens-Juaneda V, Lei Q, Hamer G, Louwe LA, Pilgram GSK, Szuhai K, Matorras R, Eguizabal C, van der Westerlaken L, Mei H, Chuva de Sousa Lopes SM. Transcriptional progression during meiotic prophase I reveals sex-specific features and X chromosome dynamics in human fetal female germline. PLoS Genet 2021; 17:e1009773. [PMID: 34499650 PMCID: PMC8428764 DOI: 10.1371/journal.pgen.1009773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
During gametogenesis in mammals, meiosis ensures the production of haploid gametes. The timing and length of meiosis to produce female and male gametes differ considerably. In contrast to males, meiotic prophase I in females initiates during development. Hence, the knowledge regarding progression through meiotic prophase I is mainly focused on human male spermatogenesis and female oocyte maturation during adulthood. Therefore, it remains unclear how the different stages of meiotic prophase I between human oogenesis and spermatogenesis compare. Analysis of single-cell transcriptomics data from human fetal germ cells (FGC) allowed us to identify the molecular signatures of female meiotic prophase I stages leptotene, zygotene, pachytene and diplotene. We have compared those between male and female germ cells in similar stages of meiotic prophase I and revealed conserved and specific features between sexes. We identified not only key players involved in the process of meiosis, but also highlighted the molecular components that could be responsible for changes in cellular morphology that occur during this developmental period, when the female FGC acquire their typical (sex-specific) oocyte shape as well as sex-differences in the regulation of DNA methylation. Analysis of X-linked expression between sexes during meiotic prophase I suggested a transient X-linked enrichment during female pachytene, that contrasts with the meiotic sex chromosome inactivation in males. Our study of the events that take place during meiotic prophase I provide a better understanding not only of female meiosis during development, but also highlights biomarkers that can be used to study infertility and offers insights in germline sex dimorphism in humans.
Collapse
Affiliation(s)
- Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa Torrens-Juaneda
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Qijing Lei
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Leoni A. Louwe
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonneke S. K. Pilgram
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roberto Matorras
- IVIRMA, IVI Bilbao, Bilbao, Spain; Human Reproduction Unit, Cruces University Hospital, Bilbao, Spain; Department of Obstetrics and Gynecology, Basque Country University, Spain; Biocruces Bizkaia Health Research Institute, Bilbao, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, Cell Therapy, Stem Cells and Tissues Group, Barakaldo, Spain
| | | | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
41
|
He T, Liu M, Tao D, Leng X, Wang Z, Xie S, Zhang Y, Zhang X, Tan X, Liu Y, Yang Y. Is BRD7 associated with spermatogenesis impairment and male infertility in humans? A case-control study in a Han Chinese population. Basic Clin Androl 2021; 31:19. [PMID: 34470615 PMCID: PMC8411525 DOI: 10.1186/s12610-021-00139-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/03/2021] [Indexed: 02/08/2023] Open
Abstract
Background Bromodomain-containing protein 7 (BRD7), a member of the bromodomain-containing protein family, plays important roles in chromatin modification and transcriptional regulation. A recent model of Brd7-knockout mice presented azoospermia and male infertility, implying the potential role of BRD7 in spermatogenic failure in humans. This case-control study aimed to explore the association of the BRD7 gene with spermatogenic efficiency and the risk of spermatogenic defects in humans. Results A total of six heterozygous variants were detected in the coding and splicing regions of the BRD7 gene in patients with azoospermia. For each of four rare variants predicted to potentially damage BRD7 function, we further identified these four variants in oligozoospermia and normozoospermia as well. However, no difference in the allele and genotype frequencies of rare variants were observed between cases with spermatogenic failure and controls with normozoospermia; the sperm products of variant carriers were similar to those of noncarriers. Moreover, similar distribution of the alleles, genotypes and haplotypes of seven tag single nucleotide polymorphisms (tagSNPs) was observed between the cases with azoospermia and oligozoospermia and controls with normozoospermia; associations of tagSNP-distinguished BRD7 alleles with sperm products were not identified. Conclusions The lack of an association of BRD7-linked rare and common variants with spermatogenic failure implied a limited contribution of the BRD7 gene to spermatogenic efficiency and susceptibility to male infertility in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12610-021-00139-3.
Collapse
Affiliation(s)
- Tianrong He
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mohan Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiangyou Leng
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhaokun Wang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shengyu Xie
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yangwei Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinyue Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaolan Tan
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
42
|
Jackson EK, Bellott DW, Cho TJ, Skaletsky H, Hughes JF, Pyntikova T, Page DC. Large palindromes on the primate X Chromosome are preserved by natural selection. Genome Res 2021; 31:1337-1352. [PMID: 34290043 PMCID: PMC8327919 DOI: 10.1101/gr.275188.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/17/2021] [Indexed: 12/27/2022]
Abstract
Mammalian sex chromosomes carry large palindromes that harbor protein-coding gene families with testis-biased expression. However, there are few known examples of sex-chromosome palindromes conserved between species. We identified 26 palindromes on the human X Chromosome, constituting more than 2% of its sequence, and characterized orthologous palindromes in the chimpanzee and the rhesus macaque using a clone-based sequencing approach that incorporates full-length nanopore reads. Many of these palindromes are missing or misassembled in the current reference assemblies of these species' genomes. We find that 12 human X palindromes have been conserved for at least 25 million years, with orthologs in both chimpanzee and rhesus macaque. Insertions and deletions between species are significantly depleted within the X palindromes' protein-coding genes compared to their noncoding sequence, demonstrating that natural selection has preserved these gene families. The spacers that separate the left and right arms of palindromes are a site of localized structural instability, with seven of 12 conserved palindromes showing no spacer orthology between human and rhesus macaque. Analysis of the 1000 Genomes Project data set revealed that human X-palindrome spacers are enriched for deletions relative to arms and flanking sequence, including a common spacer deletion that affects 13% of human X Chromosomes. This work reveals an abundance of conserved palindromes on primate X Chromosomes and suggests that protein-coding gene families in palindromes (most of which remain poorly characterized) promote X-palindrome survival in the face of ongoing structural instability.
Collapse
Affiliation(s)
- Emily K Jackson
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Ting-Jan Cho
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
| | - Helen Skaletsky
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
| | | | | | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
43
|
Verma P, Parte P. Revisiting the Characteristics of Testicular Germ Cell Lines GC-1(spg) and GC-2(spd)ts. Mol Biotechnol 2021; 63:941-952. [PMID: 34125394 DOI: 10.1007/s12033-021-00352-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/04/2021] [Indexed: 01/22/2023]
Abstract
Spermatogenesis is a multifaceted and meticulously orchestrated process involving meiosis, chromatin build up, transcriptional and translational hushing, and spermiogenesis. Male germ cell lines GC-1spg (GC-1) and GC-2(spd)ts (GC-2) provide a useful resource to comprehend the molecular events occurring during such a tightly regulated process. Using cDNA microarray, expression profiling of GC-1 and GC-2 cell lines was done to precisely understand their characteristics and uniqueness. Our observations indicate that whilst both the cell lines are indeed of testicular origin, GC-2 is not haploid as was originally thought. Data analysis of the 23,351 transcripts detected in GC-1 and 20,992 in GC-2 cell lines demonstrates an 80% transcript overlap between GC-1 and GC-2 cells and ~ 40% similarity of both with the primary spermatocyte transcriptome. 3152 and 793 transcripts exclusive to GC-1 and GC-2, respectively, were identified. The presence of transcripts for 36 genes was validated in these cell lines including those showing testis-specific expression, as well as genes not reported previously. Overall, this study provides the transcriptome database of GC-1 and GC-2 cells. Analysis of the data demonstrates the transcriptomic transitions between GC-1 and GC-2 thus providing a glimpse to the process of germ cell differentiation from type B spermatogonium into preleptotene spermatocyte.
Collapse
Affiliation(s)
- Pratibha Verma
- Department of Gamete Immunobiology, ICMR - National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - Priyanka Parte
- Department of Gamete Immunobiology, ICMR - National Institute for Research in Reproductive Health, Mumbai, 400012, India.
| |
Collapse
|
44
|
COVID-19 disrupts spermatogenesis through the oxidative stress pathway following induction of apoptosis. Apoptosis 2021; 26:415-430. [PMID: 34076792 PMCID: PMC8170653 DOI: 10.1007/s10495-021-01680-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
To evaluate the incidence of apoptosis within the testes of patients who died from severe acute respiratory syndrome coronavirus 2 (COVID-19) complications, testis tissue was collected from autopsies of COVID-19 positive (n = 6) and negative men (n = 6). They were then taken for histopathological experiments, and RNA extraction, to examine the expression of angiotensin-converting enzyme 2 (ACE2), transmembrane protease, serine 2 (TMPRSS2), BAX, BCL2 and Caspase3 genes. Reactive oxygen species (ROS) production and glutathione disulfide (GSH) activity were also thoroughly examined. Autopsied testicular specimens of COVID-19 showed that COVID-19 infection significantly decreased the seminiferous tubule length, interstitial tissue and seminiferous tubule volume, as well as the number of testicular cells. An analysis of the results showed that the Johnsen expressed a reduction in the COVID-19 group when compared to the control group. Our data showed that the expression of ACE2, BAX and Caspase3 were remarkably increased as well as a decrease in the expression of BCL2 in COVID-19 cases. Although, no significant difference was found for TMPRSS2. Furthermore, the results signified an increase in the formation of ROS and suppression of the GSH activity as oxidative stress biomarkers. The results of immunohistochemistry and TUNEL assay showed that the expression of ACE2 and the number of apoptotic cells significantly increased in the COVID-19 group. Overall, this study suggests that COVID-19 infection causes spermatogenesis disruption, probably through the oxidative stress pathway and subsequently induces apoptosis.
Collapse
|
45
|
Raghav PK, Kalyanaraman K, Kumar D. Human cell receptors: potential drug targets to combat COVID-19. Amino Acids 2021; 53:813-842. [PMID: 33950300 PMCID: PMC8097256 DOI: 10.1007/s00726-021-02991-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19). The World Health Organization (WHO) has announced that COVID-19 is a pandemic having a higher spread rate rather than the mortality. Identification of a potential approach or therapy against COVID-19 is still under consideration. Therefore, it is essential to have an insight into SARS-CoV-2, its interacting partner, and domains for an effective treatment. The present study is divided into three main categories, including SARS-CoV-2 prominent receptor and its expression levels, other interacting partners, and their binding domains. The first section focuses primarily on coronaviruses' general aspects (SARS-CoV-2, SARS-CoV, and the Middle East Respiratory Syndrome Coronaviruses (MERS-CoV)) their structures, similarities, and mode of infections. The second section discusses the host receptors which includes the human targets of coronaviruses like dipeptidyl peptidase 4 (DPP4), CD147, CD209L, Angiotensin-Converting Enzyme 2 (ACE2), and other miscellaneous targets (type-II transmembrane serine proteases (TTSPs), furin, trypsin, cathepsins, thermolysin, elastase, phosphatidylinositol 3-phosphate 5-kinase, two-pore segment channel, and epithelium sodium channel C-α subunit). The human cell receptor, ACE2 plays an essential role in the Renin-Angiotensin system (RAS) pathway and COVID-19. Thus, this section also discusses the ACE2 expression and risk of COVID-19 infectivity in various organs and tissues such as the liver, lungs, intestine, heart, and reproductive system in the human body. Absence of ACE2 protein expression in immune cells could be used for limiting the SARS-CoV-2 infection. The third section covers the current available approaches for COVID-19 treatment. Overall, this review focuses on the critical role of human cell receptors involved in coronavirus pathogenesis, which would likely be used in designing target-specific drugs to combat COVID-19.
Collapse
Affiliation(s)
| | - Keerthana Kalyanaraman
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Dinesh Kumar
- ICMR-National Institute of Cancer Prevention & Research, Noida, 201301, India.
| |
Collapse
|
46
|
Cheng Y, Vechtova P, Fussy Z, Sterba J, Linhartová Z, Rodina M, Tučková V, Gela D, Samarin AM, Lebeda I, Xin M, Zhang S, Rahi D, Linhart O. Changes in Phenotypes and DNA Methylation of In Vitro Aging Sperm in Common Carp Cyprinus carpio. Int J Mol Sci 2021; 22:5925. [PMID: 34073009 PMCID: PMC8198300 DOI: 10.3390/ijms22115925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of the current study was to analyze phenotypic and functional characteristics of common carp (Cyprinus carpio) spermatozoa during in vitro aging and to investigate whether global DNA methylation is affected by sperm aging. Milt was collected from five individual males, stored in vitro on ice in a refrigerator for up to 96 h post stripping (HPS) and used to fertilize eggs with intervals of 1, 24 and 96 h. Computer-assisted sperm analysis and a S3e Cell Sorter was employed to determine the spermatozoa phenotypic characteristics (motility, velocity, concentration and viability). In addition, pH and osmolality of the seminal fluid and the capacity of the spermatozoa to fertilize, hatching rate and health of the resulting embryos were examined at different aging times. Whole-genome bisulfite sequencing was used to compare the global and gene-specific DNA methylation in fresh and aged spermatozoa. The results demonstrated that spermatozoa aging in common carp significantly affects their performance and thus the success of artificial fertilization. The methylation level at the cytosine-phosphate-guanine (CpG) sites increased significantly with 24 HPS spermatozoa compared to the fresh group at 1 HPS and then decreased significantly at 96 HPS. A more detailed investigation of gene specific differences in the DNA methylation was hindered by incomplete annotation of the C. carpio genome in the public databases.
Collapse
Affiliation(s)
- Yu Cheng
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Pavlina Vechtova
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic; (P.V.); (Z.F.); (J.S.)
- Biology Centre of Academy of Sciences of the Czech Republic, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Zoltan Fussy
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic; (P.V.); (Z.F.); (J.S.)
| | - Jan Sterba
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic; (P.V.); (Z.F.); (J.S.)
| | - Zuzana Linhartová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Marek Rodina
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Vladimíra Tučková
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - David Gela
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Azin Mohagheghi Samarin
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Ievgen Lebeda
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Miaomiao Xin
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
- College of Life Science, Northwest University, Xi’an 710069, China
| | - Songpei Zhang
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Deepali Rahi
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (Y.C.); (Z.L.); (M.R.); (V.T.); (D.G.); (A.M.S.); (I.L.); (M.X.); (S.Z.); (D.R.)
| |
Collapse
|
47
|
Liu Q, Guo Q, Guo W, Song S, Wang N, Chen X, Sun A, Yan L, Qiao J. Loss of CEP70 function affects acrosome biogenesis and flagella formation during spermiogenesis. Cell Death Dis 2021; 12:478. [PMID: 33980814 PMCID: PMC8116340 DOI: 10.1038/s41419-021-03755-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023]
Abstract
The spermatogenesis process is complex and delicate, and any error in a step may cause spermatogenesis arrest and even male infertility. According to our previous transcriptomic data, CEP70 is highly expressed throughout various stages of human spermatogenesis, especially during the meiosis and deformation stages. CEP70 is present in sperm tails and that it exists in centrosomes as revealed by human centrosome proteomics. However, the specific mechanism of this protein in spermatogenesis is still unknown. In this study, we found a heterozygous site of the same mutation on CEP70 through mutation screening of patients with clinical azoospermia. To further verify, we deleted CEP70 in mice and found that it caused abnormal spermatogenesis, leading to male sterility. We found that the knockout of CEP70 did not affect the prophase of meiosis I, but led to male germ-cell apoptosis and abnormal spermiogenesis. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis, we found that the deletion of CEP70 resulted in the abnormal formation of flagella and acrosomes during spermiogenesis. Tandem mass tag (TMT)-labeled quantitative proteomic analysis revealed that the absence of CEP70 led to a significant decrease in the proteins associated with the formation of the flagella, head, and acrosome of sperm, and the microtubule cytoskeleton. Taken together, our results show that CEP70 is essential for acrosome biogenesis and flagella formation during spermiogenesis.
Collapse
Affiliation(s)
- Qiang Liu
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qianying Guo
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Wei Guo
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Shi Song
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Nan Wang
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xi Chen
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Andi Sun
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Liying Yan
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- grid.411642.40000 0004 0605 3760Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China ,grid.411642.40000 0004 0605 3760Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China ,grid.506261.60000 0001 0706 7839Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
48
|
Bellil H, Ghieh F, Hermel E, Mandon-Pepin B, Vialard F. Human testis-expressed (TEX) genes: a review focused on spermatogenesis and male fertility. Basic Clin Androl 2021; 31:9. [PMID: 33882832 PMCID: PMC8061069 DOI: 10.1186/s12610-021-00127-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/14/2021] [Indexed: 01/28/2023] Open
Abstract
Spermatogenesis is a complex process regulated by a multitude of genes. The identification and characterization of male-germ-cell-specific genes is crucial to understanding the mechanisms through which the cells develop. The term “TEX gene” was coined by Wang et al. (Nat Genet. 2001; 27: 422–6) after they used cDNA suppression subtractive hybridization (SSH) to identify new transcripts that were present only in purified mouse spermatogonia. TEX (Testis expressed) orthologues have been found in other vertebrates (mammals, birds, and reptiles), invertebrates, and yeasts. To date, 69 TEX genes have been described in different species and different tissues. To evaluate the expression of each TEX/tex gene, we compiled data from 7 different RNA-Seq mRNA databases in humans, and 4 in the mouse according to the expression atlas database. Various studies have highlighted a role for many of these genes in spermatogenesis. Here, we review current knowledge on the TEX genes and their roles in spermatogenesis and fertilization in humans and, comparatively, in other species (notably the mouse). As expected, TEX genes appear to have a major role in reproduction in general and in spermatogenesis in humans but also in all mammals such as the mouse. Most of them are expressed specifically or predominantly in the testis. As most of the TEX genes are highly conserved in mammals, defects in the male (gene mutations in humans and gene-null mice) lead to infertility. In the future, cumulative data on the human TEX genes’ physiological functions and pathophysiological dysfunctions should become available and is likely to confirm the essential role of this family in the reproductive process. Thirteen TEX genes are now referenced in the OMIM database, and 3 have been linked to a specific phenotype. TEX11 (on Xq13.1) is currently the gene most frequently reported as being associated with azoospermia.
Collapse
Affiliation(s)
- Hela Bellil
- Département de Génétique, CHI de Poissy St Germain en Laye, Poissy, France
| | - Farah Ghieh
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
| | - Emeline Hermel
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
| | - Béatrice Mandon-Pepin
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
| | - François Vialard
- Département de Génétique, CHI de Poissy St Germain en Laye, Poissy, France. .,Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France. .,Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France.
| |
Collapse
|
49
|
Cheng L, Mann SA, Lopez-Beltran A, Chovanec M, Santoni M, Wang M, Albany C, Adra N, Davidson DD, Cimadamore A, Montironi R, Zhang S. Molecular Characterization of Testicular Germ Cell Tumors Using Tissue Microdissection. Methods Mol Biol 2021; 2195:31-47. [PMID: 32852755 DOI: 10.1007/978-1-0716-0860-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Testicular germ cell tumors are among the most common malignancies seen in children and young adults. Genomic studies have identified characteristic molecular profiles in testicular cancer, which are associated with histologic subtypes and may predict clinical behavior including treatment responses. Emerging molecular technologies analyzing tumor genomics, transcriptomics, and proteomics may now guide precision management of testicular tumors. Laser-assisted microdissection methods such as laser capture microdissection efficiently isolate selected tumor cells from routine pathology specimens, avoiding contamination from nontarget cell populations. Laser capture microdissection in combination with next generation sequencing makes precise high throughput genetic evaluation effective and efficient. The use of laser capture microdissection (LCM) for molecular testing may translate into great benefits for the clinical management of patients with testicular cancers. This review discusses application protocols for laser-assisted microdissection to investigate testicular germ cell tumors.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Steven A Mann
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, University of Cordoba, Cordoba, Spain.,Pathology Service, Champalimaud Clinical Center, Lisbon, Portugal
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia.,Division of Hematology and Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | | | - Mingsheng Wang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Costantine Albany
- Department of Medicine, Division of Hematology and Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | - Nabil Adra
- Department of Medicine, Division of Hematology and Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | - Darrell D Davidson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Shaobo Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
50
|
Geisinger A, Rodríguez-Casuriaga R, Benavente R. Transcriptomics of Meiosis in the Male Mouse. Front Cell Dev Biol 2021; 9:626020. [PMID: 33748111 PMCID: PMC7973102 DOI: 10.3389/fcell.2021.626020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Molecular studies of meiosis in mammals have been long relegated due to some intrinsic obstacles, namely the impossibility to reproduce the process in vitro, and the difficulty to obtain highly pure isolated cells of the different meiotic stages. In the recent years, some technical advances, from the improvement of flow cytometry sorting protocols to single-cell RNAseq, are enabling to profile the transcriptome and its fluctuations along the meiotic process. In this mini-review we will outline the diverse methodological approaches that have been employed, and some of the main findings that have started to arise from these studies. As for practical reasons most studies have been carried out in males, and mostly using mouse as a model, our focus will be on murine male meiosis, although also including specific comments about humans. Particularly, we will center on the controversy about gene expression during early meiotic prophase; the widespread existing gap between transcription and translation in meiotic cells; the expression patterns and potential roles of meiotic long non-coding RNAs; and the visualization of meiotic sex chromosome inactivation from the RNAseq perspective.
Collapse
Affiliation(s)
- Adriana Geisinger
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|