1
|
Rufo J, Qiu C, Han D, Baxter N, Daley G, Wilson MZ. An explainable map of human gastruloid morphospace reveals gastrulation failure modes and predicts teratogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614192. [PMID: 39386623 PMCID: PMC11463602 DOI: 10.1101/2024.09.20.614192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Human gastrulation is a critical stage of development where many pregnancies fail due to poorly understood mechanisms. Using the 2D gastruloid, a stem cell model of human gastrulation, we combined high-throughput drug perturbations and mathematical modelling to create an explainable map of gastruloid morphospace. This map outlines patterning outcomes in response to diverse perturbations and identifies variations in canonical patterning and failure modes. We modeled morphogen dynamics to embed simulated gastruloids into experimentally-determined morphospace to explain how developmental parameters drive patterning. Our model predicted and validated the two greatest sources of patterning variance: cell density-based modulations in Wnt signaling and SOX2 stability. Assigning these parameters as axes of morphospace imparted interpretability. To demonstrate its utility, we predicted novel teratogens that we validated in zebrafish. Overall, we show how stem cell models of development can be used to build a comprehensive and interpretable understanding of the set of developmental outcomes.
Collapse
Affiliation(s)
- Joseph Rufo
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Center for BioEngineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Chongxu Qiu
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Dasol Han
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Naomi Baxter
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Gabrielle Daley
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Maxwell Z. Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Center for BioEngineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
2
|
McNamara HM, Jia BZ, Guyer A, Parot VJ, Dobbs C, Schier AF, Cohen AE, Lord ND. Optogenetic control of Nodal signaling patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.588875. [PMID: 38645239 PMCID: PMC11030342 DOI: 10.1101/2024.04.11.588875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
A crucial step in early embryogenesis is the establishment of spatial patterns of signaling activity. Tools to perturb morphogen signals with high resolution in space and time can help reveal how embryonic cells decode these signals to make appropriate fate decisions. Here, we present new optogenetic reagents and an experimental pipeline for creaHng designer Nodal signaling patterns in live zebrafish embryos. Nodal receptors were fused to the light-sensitive heterodimerizing pair Cry2/CIB1N, and the Type II receptor was sequestered to the cytosol. The improved optoNodal2 reagents eliminate dark activity and improve response kinetics, without sacrificing dynamic range. We adapted an ultra-widefield microscopy platform for parallel light patterning in up to 36 embryos and demonstrated precise spatial control over Nodal signaling activity and downstream gene expression. Patterned Nodal activation drove precisely controlled internalization of endodermal precursors. Further, we used patterned illumination to generate synthetic signaling patterns in Nodal signaling mutants, rescuing several characteristic developmental defects. This study establishes an experimental toolkit for systematic exploration of Nodal signaling patterns in live embryos.
Collapse
Affiliation(s)
| | - Bill Z. Jia
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alison Guyer
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vicente J. Parot
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Caleb Dobbs
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Nathan D. Lord
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
3
|
Ortiz-Salazar MA, Camacho-Aguilar E, Warmflash A. Endogenous Nodal switches Wnt interpretation from posteriorization to germ layer differentiation in geometrically constrained human pluripotent cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584912. [PMID: 38559061 PMCID: PMC10979992 DOI: 10.1101/2024.03.13.584912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The Wnt pathway is essential for inducing the primitive streak, the precursor of the mesendoderm, as well as setting anterior-posterior coordinates. How Wnt coordinates these diverse activities remains incompletely understood. Here, we show that in Wnt-treated human pluripotent cells, endogenous Nodal signaling is a crucial switch between posteriorizing and primitive streak-including activities. While treatment with Wnt posteriorizes cells in standard culture, in micropatterned colonies, higher levels of endogenously induced Nodal signaling combine with exogenous Wnt to drive endoderm differentiation. Inhibition of Nodal signaling restores dose-dependent posteriorization by Wnt. In the absence of Nodal inhibition, micropatterned colonies undergo spontaneous, elaborate morphogenesis concomitant with endoderm differentiation even in the absence of added extracellular matrix proteins like Matrigel. Our study shows how Wnt and Nodal combinatorially coordinate germ layer differentiation with AP patterning and establishes a system to study a natural self-organizing morphogenetic event in in vitro culture.
Collapse
Affiliation(s)
| | - Elena Camacho-Aguilar
- Department of Biosciences, Rice University, Houston, TX, USA 77005
- Present address: Department of Gene Regulation and Morphogenesis, Andalusian Center for Developmental Biology (CSIC-UPO-JA), Seville, Spain, 41013
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA 77005
- Department of Bioengineering, Rice University, Houston, TX, USA 77005
| |
Collapse
|
4
|
Malaguti M, Lebek T, Blin G, Lowell S. Enabling neighbour labelling: using synthetic biology to explore how cells influence their neighbours. Development 2024; 151:dev201955. [PMID: 38165174 PMCID: PMC10820747 DOI: 10.1242/dev.201955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Cell-cell interactions are central to development, but exploring how a change in any given cell relates to changes in the neighbour of that cell can be technically challenging. Here, we review recent developments in synthetic biology and image analysis that are helping overcome this problem. We highlight the opportunities presented by these advances and discuss opportunities and limitations in applying them to developmental model systems.
Collapse
Affiliation(s)
- Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tamina Lebek
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
5
|
Overeem AW, Chang YW, Moustakas I, Roelse CM, Hillenius S, Helm TVD, Schrier VFVD, Gonçalves MA, Mei H, Freund C, Chuva de Sousa Lopes SM. Efficient and scalable generation of primordial germ cells in 2D culture using basement membrane extract overlay. CELL REPORTS METHODS 2023; 3:100488. [PMID: 37426764 PMCID: PMC10326346 DOI: 10.1016/j.crmeth.2023.100488] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/02/2023] [Accepted: 05/02/2023] [Indexed: 07/11/2023]
Abstract
Current methods to generate human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs) can be inefficient, and it is challenging to generate sufficient hPGCLCs to optimize in vitro gametogenesis. We present a differentiation method that uses diluted basement membrane extract (BMEx) and low BMP4 concentration to efficiently induce hPGCLC differentiation in scalable 2D cell culture. We show that BMEx overlay potentiated BMP/SMAD signaling, induced lumenogenesis, and increased expression of key hPGCLC-progenitor markers such as TFAP2A and EOMES. hPGCLCs that were generated using the BMEx overlay method were able to upregulate more mature germ cell markers, such as DAZL and DDX4, in human fetal ovary reconstitution culture. These findings highlight the importance of BMEx during hPGCLC differentiation and demonstrate the potential of the BMEx overlay method to interrogate the formation of PGCs and amnion in humans, as well as to investigate the next steps to achieve in vitro gametogenesis.
Collapse
Affiliation(s)
- Arend W. Overeem
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Yolanda W. Chang
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Celine M. Roelse
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Sanne Hillenius
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Talia Van Der Helm
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | | | - Manuel A.F.V. Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Christian Freund
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- Leiden University Medical Center hiPSC Hotel, Leiden University Medical Centre, 2333 ZC Leiden, the Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Teague S, Primavera G, Chen B, Freeburne E, Khan H, Jo K, Johnson C, Heemskerk I. The time integral of BMP signaling determines fate in a stem cell model for early human development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536068. [PMID: 37090515 PMCID: PMC10120633 DOI: 10.1101/2023.04.10.536068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
How paracrine signals are interpreted to yield multiple cell fate decisions in a dynamic context during human development in vivo and in vitro remains poorly understood. Here we report an automated tracking method to follow signaling histories linked to cell fate in large numbers of human pluripotent stem cells (hPSCs). Using an unbiased statistical approach, we discovered that measured BMP signaling history correlates strongly with fate in individual cells. We found that BMP response in hPSCs varies more strongly in the duration of signaling than the level. However, we discovered that both the level and duration of signaling activity control cell fate choices only by changing the time integral of signaling and that duration and level are therefore interchangeable in this context. In a stem cell model for patterning of the human embryo, we showed that signaling histories predict the fate pattern and that the integral model correctly predicts changes in cell fate domains when signaling is perturbed. Using an RNA-seq screen we then found that mechanistically, BMP signaling is integrated by SOX2.
Collapse
Affiliation(s)
- Seth Teague
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Gillian Primavera
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Bohan Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Emily Freeburne
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Hina Khan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kyoung Jo
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Idse Heemskerk
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Center for Cell Plasticity and Organ Design, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Physics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Miroshnikova YA, Shahbazi MN, Negrete J, Chalut KJ, Smith A. Cell state transitions: catch them if you can. Development 2023; 150:dev201139. [PMID: 36930528 PMCID: PMC10655867 DOI: 10.1242/dev.201139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The Company of Biologists' 2022 workshop on 'Cell State Transitions: Approaches, Experimental Systems and Models' brought together an international and interdisciplinary team of investigators spanning the fields of cell and developmental biology, stem cell biology, physics, mathematics and engineering to tackle the question of how cells precisely navigate between distinct identities and do so in a dynamic manner. This second edition of the workshop was organized after a successful virtual workshop on the same topic that took place in 2021.
Collapse
Affiliation(s)
- Yekaterina A. Miroshnikova
- Stem Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marta N. Shahbazi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jose Negrete
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Kevin J. Chalut
- Altos Labs, Cambridge Institute of Science, Cambridge CB2 0AW, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
8
|
Hoang P, Sun S, Tarris BA, Ma Z. Controlling Morphology and Functions of Cardiac Organoids by Two-Dimensional Geometrical Templates. Cells Tissues Organs 2023; 212:64-73. [PMID: 35008091 PMCID: PMC9271134 DOI: 10.1159/000521787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
Traditionally, tissue-specific organoids are generated as 3D aggregates of stem cells embedded in Matrigel or hydrogels, and the aggregates eventually end up a spherical shape and suspended in the matrix. Lack of geometrical control of organoid formation makes these spherical organoids limited for modeling the tissues with complex shapes. To address this challenge, we developed a new method to generate 3D spatial-organized cardiac organoids from 2D micropatterned human induced pluripotent stem cell (hiPSC) colonies, instead of directly from 3D stem cell aggregates. This new approach opens the possibility to create cardiac organoids that are templated by 2D non-spherical geometries, which potentially provides us a deeper understanding of biophysical controls on developmental organogenesis. Here, we designed 2D geometrical templates with quadrilateral shapes and pentagram shapes that had same total area but different geometrical shapes. Using this templated substrate, we grew cardiac organoids from hiPSCs and collected a series of parameters to characterize morphological and functional properties of the cardiac organoids. In quadrilateral templates, we found that increasing the aspect ratio impaired cardiac tissue 3D self-assembly, but the elongated geometry improved the cardiac contractile functions. However, in pentagram templates, cardiac organoid structure and function were optimized with a specific geometry of an ideal star shape. This study will shed a light on "organogenesis-by-design" by increasing the intricacy of starting templates from external geometrical cues to improve the organoid morphogenesis and functionality.
Collapse
Affiliation(s)
- Plansky Hoang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA.,BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | - Shiyang Sun
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA.,BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | - Bearett A Tarris
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA.,BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | - Zhen Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA.,BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
9
|
Roberts RM, Ezashi T, Temple J, Owen JR, Soncin F, Parast MM. The role of BMP4 signaling in trophoblast emergence from pluripotency. Cell Mol Life Sci 2022; 79:447. [PMID: 35877048 PMCID: PMC10243463 DOI: 10.1007/s00018-022-04478-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway has established roles in early embryonic morphogenesis, particularly in the epiblast. More recently, however, it has also been implicated in development of extraembryonic lineages, including trophectoderm (TE), in both mouse and human. In this review, we will provide an overview of this signaling pathway, with a focus on BMP4, and its role in emergence and development of TE in both early mouse and human embryogenesis. Subsequently, we will build on these in vivo data and discuss the utility of BMP4-based protocols for in vitro conversion of primed vs. naïve pluripotent stem cells (PSC) into trophoblast, and specifically into trophoblast stem cells (TSC). PSC-derived TSC could provide an abundant, reproducible, and ethically acceptable source of cells for modeling placental development.
Collapse
Affiliation(s)
- R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree, CO, 80124, USA
| | - Jasmine Temple
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Joseph R Owen
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
10
|
Jo K, Teague S, Chen B, Khan HA, Freeburne E, Li H, Li B, Ran R, Spence JR, Heemskerk I. Efficient differentiation of human primordial germ cells through geometric control reveals a key role for Nodal signaling. eLife 2022; 11:e72811. [PMID: 35394424 PMCID: PMC9106331 DOI: 10.7554/elife.72811] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Human primordial germ cells (hPGCs) form around the time of implantation and are the precursors of eggs and sperm. Many aspects of hPGC specification remain poorly understood because of the inaccessibility of the early postimplantation human embryo for study. Here, we show that micropatterned human pluripotent stem cells (hPSCs) treated with BMP4 give rise to hPGC-like cells (hPGCLC) and use these as a quantitatively reproducible and simple in vitro model to interrogate this important developmental event. We characterize micropatterned hPSCs up to 96 hr and show that hPGCLC populations are stable and continue to mature. By perturbing signaling during hPGCLC differentiation, we identify a previously unappreciated role for Nodal signaling and find that the relative timing and duration of BMP and Nodal signaling are critical parameters controlling the number of hPGCLCs. We formulate a mathematical model for a network of cross-repressive fates driven by Nodal and BMP signaling, which predicts the measured fate patterns after signaling perturbations. Finally, we show that hPSC colony size dictates the efficiency of hPGCLC specification, which led us to dramatically improve the efficiency of hPGCLC differentiation.
Collapse
Affiliation(s)
- Kyoung Jo
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Seth Teague
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Bohan Chen
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Hina Aftab Khan
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Emily Freeburne
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Hunter Li
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Bolin Li
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Ran Ran
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Center for Organogenesis, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Center for Organogenesis, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Physics, University of MichiganAnn ArborUnited States
| |
Collapse
|
11
|
Liu L, Nemashkalo A, Rezende L, Jung JY, Chhabra S, Guerra MC, Heemskerk I, Warmflash A. Nodal is a short-range morphogen with activity that spreads through a relay mechanism in human gastruloids. Nat Commun 2022; 13:497. [PMID: 35079017 PMCID: PMC8789905 DOI: 10.1038/s41467-022-28149-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Morphogens are signaling molecules that convey positional information and dictate cell fates during development. Although ectopic expression in model organisms suggests that morphogen gradients form through diffusion, little is known about how morphogen gradients are created and interpreted during mammalian embryogenesis due to the combined difficulties of measuring endogenous morphogen levels and observing development in utero. Here we take advantage of a human gastruloid model to visualize endogenous Nodal protein in living cells, during specification of germ layers. We show that Nodal is extremely short range so that Nodal protein is limited to the immediate neighborhood of source cells. Nodal activity spreads through a relay mechanism in which Nodal production induces neighboring cells to transcribe Nodal. We further show that the Nodal inhibitor Lefty, while biochemically capable of long-range diffusion, also acts locally to control the timing of Nodal spread and therefore of mesoderm differentiation during patterning. Our study establishes a paradigm for tissue patterning by an activator-inhibitor pair.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Luisa Rezende
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Ji Yoon Jung
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Sapna Chhabra
- Department of Biosciences, Rice University, Houston, TX, USA
- Developmental Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | | | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
12
|
Cui K, Zhu Y, Shi Y, Chen T, Wang H, Guo Y, Deng P, Liu H, Shao X, Qin J. Establishment of Trophoblast-Like Tissue Model from Human Pluripotent Stem Cells in Three-Dimensional Culture System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2100031. [PMID: 34813178 PMCID: PMC8787386 DOI: 10.1002/advs.202100031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The placenta has a lifelong impact on the health of both the mother and fetus. Despite its significance, human early placental development is poorly understood due to the limited models. The models that can reflect the key features of early human placental development, especially at early gestation, are still lacking. Here, the authors report the generation of trophoblast-like tissue model from human pluripotent stem cells (hPSCs) in three-dimensional (3D) cultures. hPSCs efficiently self-organize into blastocoel-like cavities under defined conditions, which produce different trophoblast subtypes, including cytotrophoblasts (CTBs), syncytiotrophoblasts (STBs), and invasive extravillous trophoblasts (EVTs). The 3D cultures can exhibit microvilli structure and secrete human placenta-specific hormone. Single-cell RNA sequencing analysis further identifies the presence of major cell types of trophoblast-like tissue as existing in vivo. The results reveal the feasibility to establish 3D trophoblast-like tissue model from hPSCs in vitro, which is not obtained by monolayer culture. This new model system can not only facilitate to dissect the underlying mechanisms of early human placental development, but also imply its potential for study in developmental biology and gestational disorders.
Collapse
Affiliation(s)
- Kangli Cui
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yujuan Zhu
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yang Shi
- Dalian Municipal Women and Children's Medical CenterDalian116037China
| | - Tingwei Chen
- Yunnan Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunming650031China
| | - Hui Wang
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yaqiong Guo
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Pengwei Deng
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Haitao Liu
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiaoguang Shao
- Dalian Municipal Women and Children's Medical CenterDalian116037China
| | - Jianhua Qin
- Division of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| |
Collapse
|
13
|
Abstract
Micropatterning encompasses a set of methods aimed at precisely controlling the spatial distribution of molecules onto the surface of materials. Biologists have borrowed the idea and adapted these methods, originally developed for electronics, to impose physical constraints on biological systems with the aim of addressing fundamental questions across biological scales from molecules to multicellular systems. Here, I approach this topic from a developmental biologist's perspective focusing specifically on how and why micropatterning has gained in popularity within the developmental biology community in recent years. Overall, this Primer provides a concise overview of how micropatterns are used to study developmental processes and emphasises how micropatterns are a useful addition to the developmental biologist's toolbox.
Collapse
Affiliation(s)
- Guillaume Blin
- Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
14
|
Zhu Y, Sazer D, Miller JS, Warmflash A. Rapid fabrication of hydrogel micropatterns by projection stereolithography for studying self-organized developmental patterning. PLoS One 2021; 16:e0245634. [PMID: 34077425 PMCID: PMC8172057 DOI: 10.1371/journal.pone.0245634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
Self-organized patterning of mammalian embryonic stem cells on micropatterned surfaces has previously been established as an in vitro platform for early mammalian developmental studies, complimentary to in vivo studies. Traditional micropatterning methods, such as micro-contact printing (μCP), involve relatively complicated fabrication procedures, which restricts widespread adoption by biologists. Here, we demonstrate a rapid method of micropatterning by printing hydrogel micro-features onto a glass-bottomed culture vessel. The micro-features are printed using a projection stereolithography bioprinter yielding hydrogel structures that geometrically restrict the attachment of cells or proteins. Compared to traditional and physical photomasks, a digitally tunable virtual photomask is used in the projector to generate blue light patterns that enable rapid iteration with minimal cost and effort. We show that a protocol that makes use of this method together with LN521 coating, an extracellular matrix coating, creates a surface suitable for human embryonic stem cell (hESC) attachment and growth with minimal non-specific adhesion. We further demonstrate that self-patterning of hESCs following previously published gastrulation and ectodermal induction protocols achieves results comparable with those obtained with commercially available plates.
Collapse
Affiliation(s)
- Ye Zhu
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Daniel Sazer
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Jordan S. Miller
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail: (JSM); (AW)
| | - Aryeh Warmflash
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- * E-mail: (JSM); (AW)
| |
Collapse
|
15
|
Yang D, Yang X, Dai F, Wang Y, Yang Y, Hu M, Cheng Y. The Role of Bone Morphogenetic Protein 4 in Ovarian Function and Diseases. Reprod Sci 2021; 28:3316-3330. [PMID: 33966186 DOI: 10.1007/s43032-021-00600-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the largest subfamily of the transforming growth factor-β (TGF-β) superfamily. BMP4 is a secreted protein that was originally identified due to its role in bone and cartilage development. Over the past decades, extensive literature has indicated that BMP4 and its receptors are widely expressed in the ovary. Dysregulation of BMP4 expression may play a vital role in follicular development, polycystic ovary syndrome (PCOS), and ovarian cancer. In this review, we summarized the expression pattern of BMP4 in the ovary, focused on the role of BMP4 in follicular development and steroidogenesis, and discussed the role of BMP4 in ovarian diseases such as polycystic ovary syndrome and ovarian cancer. Some studies have shown that the expression of BMP4 in the ovary is spatiotemporal and species specific, but the effects of BMP4 seem to be similar in follicular development of different species. In addition, BMP4 is involved in the development of hyperandrogenemia in PCOS and drug resistance in ovarian cancer, but further research is still needed to clarify the specific mechanisms.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China.
| | - Min Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
16
|
Liu L, Warmflash A. Self-organized signaling in stem cell models of embryos. Stem Cell Reports 2021; 16:1065-1077. [PMID: 33979594 PMCID: PMC8185436 DOI: 10.1016/j.stemcr.2021.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Mammalian embryonic development is a complex process driven by self-organization. Understanding how a fertilized egg develops into an embryo composed of more than 200 cell types in precise spatial patterns remains one of the fundamental challenges in biology. Pluripotent stem cells have been used as in vitro models for investigating mammalian development, and represent promising building blocks for regenerative therapies. Recently, sophisticated stem cell-based models that recapitulate early embryonic fate patterning and morphogenesis have been developed. In this article, we review recent advances in stem cell models of embryos in particular focusing on signaling activities underpinning cell fate decisions in space and time.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
17
|
Wadkin LE, Orozco-Fuentes S, Neganova I, Lako M, Barrio RA, Baggaley AW, Parker NG, Shukurov A. OCT4 expression in human embryonic stem cells: spatio-temporal dynamics and fate transitions. Phys Biol 2021; 18:026003. [PMID: 33296887 DOI: 10.1088/1478-3975/abd22b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The improved in vitro regulation of human embryonic stem cell (hESC) pluripotency and differentiation trajectories is required for their promising clinical applications. The temporal and spatial quantification of the molecular interactions controlling pluripotency is also necessary for the development of successful mathematical and computational models. Here we use time-lapse experimental data of OCT4-mCherry fluorescence intensity to quantify the temporal and spatial dynamics of the pluripotency transcription factor OCT4 in a growing hESC colony in the presence and absence of BMP4. We characterise the internal self-regulation of OCT4 using the Hurst exponent and autocorrelation analysis, quantify the intra-cellular fluctuations and consider the diffusive nature of OCT4 evolution for individual cells and pairs of their descendants. We find that OCT4 abundance in the daughter cells fluctuates sub-diffusively, showing anti-persistent self-regulation. We obtain the stationary probability distributions governing hESC transitions amongst the different cell states and establish the times at which pro-fate cells (which later give rise to pluripotent or differentiated cells) cluster in the colony. By quantifying the similarities between the OCT4 expression amongst neighbouring cells, we show that hESCs express similar OCT4 to cells within their local neighbourhood within the first two days of the experiment and before BMP4 treatment. Our framework allows us to quantify the relevant properties of proliferating hESC colonies and the procedure is widely applicable to other transcription factors and cell populations.
Collapse
Affiliation(s)
- L E Wadkin
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Human Embryo Models and Drug Discovery. Int J Mol Sci 2021; 22:ijms22020637. [PMID: 33440617 PMCID: PMC7828037 DOI: 10.3390/ijms22020637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
For obvious reasons, such as, e.g., ethical concerns or sample accessibility, model systems are of highest importance to study the underlying molecular mechanisms of human maladies with the aim to develop innovative and effective therapeutic strategies. Since many years, animal models and highly proliferative transformed cell lines are successfully used for disease modelling, drug discovery, target validation, and preclinical testing. Still, species-specific differences regarding genetics and physiology and the limited suitability of immortalized cell lines to draw conclusions on normal human cells or specific cell types, are undeniable shortcomings. The progress in human pluripotent stem cell research now allows the growth of a virtually limitless supply of normal and DNA-edited human cells, which can be differentiated into various specific cell types. However, cells in the human body never fulfill their functions in mono-lineage isolation and diseases always develop in complex multicellular ecosystems. The recent advances in stem cell-based 3D organoid technologies allow a more accurate in vitro recapitulation of human pathologies. Embryoids are a specific type of such multicellular structures that do not only mimic a single organ or tissue, but the entire human conceptus or at least relevant components of it. Here we briefly describe the currently existing in vitro human embryo models and discuss their putative future relevance for disease modelling and drug discovery.
Collapse
|
19
|
Visualization and quantification of dynamic intercellular coupling in human embryonic stem cells using single cell sonoporation. Sci Rep 2020; 10:18253. [PMID: 33106521 PMCID: PMC7589565 DOI: 10.1038/s41598-020-75347-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022] Open
Abstract
Gap junctions (GJs), which are proteinaceous channels, couple adjacent cells by permitting direct exchange of intracellular molecules with low molecular weights. GJ intercellular communication (GJIC) plays a critical role in regulating behaviors of human embryonic stem cells (hESCs), affecting their proliferation and differentiation. Here we report a novel use of sonoporation that enables single cell intracellular dye loading and dynamic visualization/quantification of GJIC in hESC colonies. By applying a short ultrasound pulse to excite single microbubbles tethered to cell membranes, a transient pore on the cell membrane (sonoporation) is generated which allows intracellular loading of dye molecules and influx of Ca2+ into single hESCs. We employ live imaging for continuous visualization of intercellular dye transfer and Ca2+ diffusion in hESC colonies. We quantify cell–cell permeability based on dye diffusion using mass transport models. Our results reveal heterogeneous intercellular connectivity and a variety of spatiotemporal characteristics of intercellular Ca2+ waves in hESC colonies induced by sonoporation of single cells.
Collapse
|
20
|
Abstract
Gene regulatory networks and tissue morphogenetic events drive the emergence of shape and function: the pillars of embryo development. Although model systems offer a window into the molecular biology of cell fate and tissue shape, mechanistic studies of our own development have so far been technically and ethically challenging. However, recent technical developments provide the tools to describe, manipulate and mimic human embryos in a dish, thus opening a new avenue to exploring human development. Here, I discuss the evidence that supports a role for the crosstalk between cell fate and tissue shape during early human embryogenesis. This is a critical developmental period, when the body plan is laid out and many pregnancies fail. Dissecting the basic mechanisms that coordinate cell fate and tissue shape will generate an integrated understanding of early embryogenesis and new strategies for therapeutic intervention in early pregnancy loss.
Collapse
Affiliation(s)
- Marta N Shahbazi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
21
|
Baillie-Benson P, Moris N, Martinez Arias A. Pluripotent stem cell models of early mammalian development. Curr Opin Cell Biol 2020; 66:89-96. [PMID: 32645551 DOI: 10.1016/j.ceb.2020.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/29/2022]
Abstract
Pluripotent stem cells derived from the early mammalian embryo offer a convenient model system for studying cell fate decisions in embryogenesis. The last 10 years have seen a boom in the popularity of two-dimensional micropatterns and three-dimensional stem cell culture systems as a way to recreate the architecture and interactions of particular cell populations during development. These methods enable the controlled exploration of cellular organization and patterning during development, using cell lines instead of embryos. They have established a new class of in vitro model system for pre-implantation and peri-implantation embryogenesis, ranging from models of the blastocyst stage, through gastrulation and toward early organogenesis. This review aims to set these systems in context and to highlight the strengths and suitability of each approach in modelling early mammalian development.
Collapse
Affiliation(s)
- Peter Baillie-Benson
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Naomi Moris
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Alfonso Martinez Arias
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
22
|
Schauer A, Pinheiro D, Hauschild R, Heisenberg CP. Zebrafish embryonic explants undergo genetically encoded self-assembly. eLife 2020; 9:55190. [PMID: 32250246 PMCID: PMC7190352 DOI: 10.7554/elife.55190] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022] Open
Abstract
Embryonic stem cell cultures are thought to self-organize into embryoid bodies, able to undergo symmetry-breaking, germ layer specification and even morphogenesis. Yet, it is unclear how to reconcile this remarkable self-organization capacity with classical experiments demonstrating key roles for extrinsic biases by maternal factors and/or extraembryonic tissues in embryogenesis. Here, we show that zebrafish embryonic tissue explants, prepared prior to germ layer induction and lacking extraembryonic tissues, can specify all germ layers and form a seemingly complete mesendoderm anlage. Importantly, explant organization requires polarized inheritance of maternal factors from dorsal-marginal regions of the blastoderm. Moreover, induction of endoderm and head-mesoderm, which require peak Nodal-signaling levels, is highly variable in explants, reminiscent of embryos with reduced Nodal signals from the extraembryonic tissues. Together, these data suggest that zebrafish explants do not undergo bona fide self-organization, but rather display features of genetically encoded self-assembly, where intrinsic genetic programs control the emergence of order.
Collapse
|
23
|
Heemskerk I. Full of potential: Pluripotent stem cells for the systems biology of embryonic patterning. Dev Biol 2020; 460:86-98. [DOI: 10.1016/j.ydbio.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
|
24
|
Synthetic human embryology: towards a quantitative future. Curr Opin Genet Dev 2020; 63:30-35. [PMID: 32172182 DOI: 10.1016/j.gde.2020.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Study of early human embryo development is essential for advancing reproductive and regenerative medicine. Traditional human embryological studies rely on embryonic tissue specimens, which are difficult to acquire due to technical challenges and ethical restrictions. The availability of human stem cells with developmental potentials comparable to pre-implantation and peri-implantation human embryonic and extraembryonic cells, together with properly engineered in vitro culture environments, allow for the first time researchers to generate self-organized multicellular structures in vitro that mimic the structural and molecular features of their in vivo counterparts. The development of these stem cell-based, synthetic human embryo models offers a paradigm-shifting experimental system for quantitative measurements and perturbations of multicellular development, critical for advancing human embryology and reproductive and regenerative medicine without using intact human embryos.
Collapse
|
25
|
Camacho-Aguilar E, Warmflash A. Insights into mammalian morphogen dynamics from embryonic stem cell systems. Curr Top Dev Biol 2020; 137:279-305. [PMID: 32143746 PMCID: PMC7713707 DOI: 10.1016/bs.ctdb.2019.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Morphogens play an essential role in cell fate specification and patterning including in laying out the mammalian body plan during gastrulation. In vivo studies have shed light on the signaling pathways involved in this process and the phenotypes associated with their disruption, however, several important open questions remain regarding how morphogens function in space and time. Self-organized patterning systems based on embryonic stem cells have emerged as a powerful platform for beginning to address these questions that is complementary to in vivo approaches. Here we review recent progress in understanding morphogen signaling dynamics and patterning in early mammalian development by taking advantage of cutting-edge embryonic stem cell technology.
Collapse
Affiliation(s)
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, United States; Department of Bioengineering, Rice University, Houston, TX, United States.
| |
Collapse
|
26
|
The recent advances in the mathematical modelling of human pluripotent stem cells. SN APPLIED SCIENCES 2020; 2:276. [PMID: 32803125 PMCID: PMC7391994 DOI: 10.1007/s42452-020-2070-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Human pluripotent stem cells hold great promise for developments in regenerative medicine and drug design. The mathematical modelling of stem cells and their properties is necessary to understand and quantify key behaviours and develop non-invasive prognostic modelling tools to assist in the optimisation of laboratory experiments. Here, the recent advances in the mathematical modelling of hPSCs are discussed, including cell kinematics, cell proliferation and colony formation, and pluripotency and differentiation.
Collapse
|
27
|
Morgani SM, Hadjantonakis AK. Signaling regulation during gastrulation: Insights from mouse embryos and in vitro systems. Curr Top Dev Biol 2019; 137:391-431. [PMID: 32143751 DOI: 10.1016/bs.ctdb.2019.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gastrulation is the process whereby cells exit pluripotency and concomitantly acquire and pattern distinct cell fates. This is driven by the convergence of WNT, BMP, Nodal and FGF signals, which are tightly spatially and temporally controlled, resulting in regional and stage-specific signaling environments. The combination, level and duration of signals that a cell is exposed to, according its position within the embryo and the developmental time window, dictates the fate it will adopt. The key pathways driving gastrulation exhibit complex interactions, which are difficult to disentangle in vivo due to the complexity of manipulating multiple signals in parallel with high spatiotemporal resolution. Thus, our current understanding of the signaling dynamics regulating gastrulation is limited. In vitro stem cell models have been established, which undergo organized cellular differentiation and patterning. These provide amenable, simplified, deconstructed and scalable models of gastrulation. While the foundation of our understanding of gastrulation stems from experiments in embryos, in vitro systems are now beginning to reveal the intricate details of signaling regulation. Here we discuss the current state of knowledge of the role, regulation and dynamic interaction of signaling pathways that drive mouse gastrulation.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, United Kingdom.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
28
|
Quantification of the morphological characteristics of hESC colonies. Sci Rep 2019; 9:17569. [PMID: 31772193 PMCID: PMC6879623 DOI: 10.1038/s41598-019-53719-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/04/2019] [Indexed: 11/25/2022] Open
Abstract
The maintenance of the undifferentiated state in human embryonic stem cells (hESCs) is critical for further application in regenerative medicine, drug testing and studies of fundamental biology. Currently, the selection of the best quality cells and colonies for propagation is typically performed by eye, in terms of the displayed morphological features, such as prominent/abundant nucleoli and a colony with a tightly packed appearance and a well-defined edge. Using image analysis and computational tools, we precisely quantify these properties using phase-contrast images of hESC colonies of different sizes (0.1–1.1 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\bf{\text{mm}}}}^{{\bf{2}}}$$\end{document}mm2) during days 2, 3 and 4 after plating. Our analyses reveal noticeable differences in their structure influenced directly by the colony area \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\boldsymbol{A}}$$\end{document}A. Large colonies (A > 0.6 mm2) have cells with smaller nuclei and a short intercellular distance when compared with small colonies (A < 0.2 mm2). The gaps between the cells, which are present in small and medium sized colonies with A ≤ 0.6 mm2, disappear in large colonies (A > 0.6 mm2) due to the proliferation of the cells in the bulk. This increases the colony density and the number of nearest neighbours. We also detect the self-organisation of cells in the colonies where newly divided (smallest) cells cluster together in patches, separated from larger cells at the final stages of the cell cycle. This might influence directly cell-to-cell interactions and the community effects within the colonies since the segregation induced by size differences allows the interchange of neighbours as the cells proliferate and the colony grows. Our findings are relevant to efforts to determine the quality of hESC colonies and establish colony characteristics database.
Collapse
|
29
|
Hackland J. Top-Down Inhibition (TDi) and Baseline Activation (BLa): Controlling Signal Transduction When Endogenous Cytokines are Ruining Your Differentiation. ACTA ACUST UNITED AC 2019; 51:e98. [PMID: 31756052 DOI: 10.1002/cpsc.98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the 20 years since the first human pluripotent stem cell (hPSC) lines were established, there have been a plethora of protocols developed that allow us to generate a wide range of human cell types in vitro. Efforts to achieve a greater degree of specificity and efficiency in generating desired cell types have resulted in increasingly complex approaches. The magnitude and timing of signals has become key, and the concept of a "fully defined" system is a forever sought-after goal with shifting goalposts. This overview discusses two related approaches that can be used to deliver a tightly regulated, intermediate-strength signal, and which can also manage the impact of endogenous signaling variation and enable a switch away from bovine serum albumin-containing medium to a better-defined system without suffering a subsequent loss of robustness or efficiency. The approaches, referred to as top-down inhibition and baseline activation, were developed to deliver intermediate levels of BMP and WNT signaling during neural crest induction from hPSC, but could be applied to a variety of other signals and differentiation systems. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- James Hackland
- Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
30
|
Britton G, Heemskerk I, Hodge R, Qutub AA, Warmflash A. A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm. Development 2019; 146:dev.179093. [PMID: 31519692 DOI: 10.1242/dev.179093] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
During development, the ectoderm is patterned by a combination of BMP and WNT signaling. Research in model organisms has provided substantial insight into this process; however, there are currently no systems in which to study ectodermal patterning in humans. Further, the complexity of neural plate border specification has made it difficult to transition from discovering the genes involved to deeper mechanistic understanding. Here, we develop an in vitro model of human ectodermal patterning, in which human embryonic stem cells self-organize to form robust and quantitatively reproducible patterns corresponding to the complete medial-lateral axis of the embryonic ectoderm. Using this platform, we show that the duration of endogenous WNT signaling is a crucial control parameter, and that cells sense relative levels of BMP and WNT signaling in making fate decisions. These insights allowed us to develop an improved protocol for placodal differentiation. Thus, our platform is a powerful tool for studying human ectoderm patterning and for improving directed differentiation protocols.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- George Britton
- Systems Synthetic and Physical Biology Program, Rice University Houston, Houston, TX 77005, USA
| | - Idse Heemskerk
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA
| | - Rachel Hodge
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA
| | - Amina A Qutub
- Department of Bioengineering, Rice University Houston, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University Houston, Houston, TX 77005, USA .,Department of Bioengineering, Rice University Houston, Houston, TX 77005, USA
| |
Collapse
|
31
|
Chhabra S, Liu L, Goh R, Kong X, Warmflash A. Dissecting the dynamics of signaling events in the BMP, WNT, and NODAL cascade during self-organized fate patterning in human gastruloids. PLoS Biol 2019; 17:e3000498. [PMID: 31613879 PMCID: PMC6814242 DOI: 10.1371/journal.pbio.3000498] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 10/25/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
During gastrulation, the pluripotent epiblast self-organizes into the 3 germ layers-endoderm, mesoderm and ectoderm, which eventually form the entire embryo. Decades of research in the mouse embryo have revealed that a signaling cascade involving the Bone Morphogenic Protein (BMP), WNT, and NODAL pathways is necessary for gastrulation. In vivo, WNT and NODAL ligands are expressed near the site of gastrulation in the posterior of the embryo, and knockout of these ligands leads to a failure to gastrulate. These data have led to the prevailing view that a signaling gradient in WNT and NODAL underlies patterning during gastrulation; however, the activities of these pathways in space and time have never been directly observed. In this study, we quantify BMP, WNT, and NODAL signaling dynamics in an in vitro model of human gastrulation. Our data suggest that BMP signaling initiates waves of WNT and NODAL signaling activity that move toward the colony center at a constant rate. Using a simple mathematical model, we show that this wave-like behavior is inconsistent with a reaction-diffusion-based Turing system, indicating that there is no stable signaling gradient of WNT/NODAL. Instead, the final signaling state is homogeneous, and spatial differences arise only from boundary effects. We further show that the durations of WNT and NODAL signaling control mesoderm differentiation, while the duration of BMP signaling controls differentiation of CDX2-positive extra-embryonic cells. The identity of these extra-embryonic cells has been controversial, and we use RNA sequencing (RNA-seq) to obtain their transcriptomes and show that they closely resemble human trophoblast cells in vivo. The domain of BMP signaling is identical to the domain of differentiation of these trophoblast-like cells; however, neither WNT nor NODAL forms a spatial pattern that maps directly to the mesodermal region, suggesting that mesoderm differentiation is controlled dynamically by the combinatorial effect of multiple signals. We synthesize our data into a mathematical model that accurately recapitulates signaling dynamics and predicts cell fate patterning upon chemical and physical perturbations. Taken together, our study shows that the dynamics of signaling events in the BMP, WNT, and NODAL cascade in the absence of a stable signaling gradient control fate patterning of human gastruloids.
Collapse
Affiliation(s)
- Sapna Chhabra
- Systems, Synthetic and Physical Biology, Rice University, Houston, Texas, United States of America
| | - Lizhong Liu
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Ryan Goh
- Department of Mathematics, Boston University, Boston, Massachusetts, United States of America
| | - Xiangyu Kong
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Tewary M, Shakiba N, Zandstra PW. Stem cell bioengineering: building from stem cell biology. Nat Rev Genet 2019; 19:595-614. [PMID: 30089805 DOI: 10.1038/s41576-018-0040-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
New fundamental discoveries in stem cell biology have yielded potentially transformative regenerative therapeutics. However, widespread implementation of stem-cell-derived therapeutics remains sporadic. Barriers that impede the development of these therapeutics can be linked to our incomplete understanding of how the regulatory networks that encode stem cell fate govern the development of the complex tissues and organs that are ultimately required for restorative function. Bioengineering tools, strategies and design principles represent core components of the stem cell bioengineering toolbox. Applied to the different layers of complexity present in stem-cell-derived systems - from gene regulatory networks in single stem cells to the systemic interactions of stem-cell-derived organs and tissues - stem cell bioengineering can address existing challenges and advance regenerative medicine and cellular therapies.
Collapse
Affiliation(s)
- Mukul Tewary
- Institute of Biomaterials and Biomedical Engineering (IBBME) and The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada.,Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nika Shakiba
- Institute of Biomaterials and Biomedical Engineering (IBBME) and The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering (IBBME) and The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada. .,Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada. .,Michael Smith Laboratories and School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
33
|
Abstract
A handful of core intercellular signaling pathways play pivotal roles in a broad variety of developmental processes. It has remained puzzling how so few pathways can provide the precision and specificity of cell-cell communication required for multicellular development. Solving this requires us to quantitatively understand how developmentally relevant signaling information is actively sensed, transformed and spatially distributed by signaling pathways. Recently, single cell analysis and cell-based reconstitution, among other approaches, have begun to reveal the 'communication codes' through which information is represented in the identities, concentrations, combinations and dynamics of extracellular ligands. They have also revealed how signaling pathways decipher these features and control the spatial distribution of signaling in multicellular contexts. Here, we review recent work reporting the discovery and analysis of communication codes and discuss their implications for diverse developmental processes.
Collapse
Affiliation(s)
- Pulin Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| |
Collapse
|
34
|
Shahbazi MN, Siggia ED, Zernicka-Goetz M. Self-organization of stem cells into embryos: A window on early mammalian development. Science 2019; 364:948-951. [PMID: 31171690 PMCID: PMC8300856 DOI: 10.1126/science.aax0164] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Embryonic development is orchestrated by robust and complex regulatory mechanisms acting at different scales of organization. In vivo studies are particularly challenging for mammals after implantation, owing to the small size and inaccessibility of the embryo. The generation of stem cell models of the embryo represents a powerful system with which to dissect this complexity. Control of geometry, modulation of the physical environment, and priming with chemical signals reveal the intrinsic capacity of embryonic stem cells to make patterns. Adding the stem cells for the extraembryonic lineages generates three-dimensional models that are more autonomous from the environment and recapitulate many features of the pre- and postimplantation mouse embryo, including gastrulation. Here, we review the principles of self-organization and how they set cells in motion to create an embryo.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
35
|
Regier MC, Tokar JJ, Warrick JW, Pabon L, Berthier E, Beebe DJ, Stevens KR. User-defined morphogen patterning for directing human cell fate stratification. Sci Rep 2019; 9:6433. [PMID: 31015521 PMCID: PMC6478938 DOI: 10.1038/s41598-019-42874-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Concentration gradients of biochemical stimuli such as morphogens play a critical role in directing cell fate patterning across species and throughout development but are not commonly recapitulated in vitro. While in vitro biomolecule gradients have been generated using customized microfluidic platforms, broad implementation has been limited because these platforms introduce new variables to cell culture such as externally driven flow, culture in a specialized matrix, or extended time for in situ long range diffusion. Here we introduce a method that enables preforming and then transferring user-controlled gradients to cells in standard "open" cultures. Our gradient patterning devices are modular and decoupled from the culture substrate. We find that gradient generation and transfer are predictable by finite element modeling and that device and loading parameters can be used to tune the stimulus pattern. Furthermore, we demonstrate use of these devices to spatially define morphogen signal gradients and direct peri-gastrulation fate stratification of human pluripotent stem cells. This method for extrinsic application of biochemical signal gradients can thus be used to spatially influence cellular fate decisions in a user-controlled manner.
Collapse
Affiliation(s)
- Mary C Regier
- Department of Bioengineering, University of Washington, 98195, Seattle, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 98109, Seattle, USA
- Department of Biomedical Engineering, University of Wisconsin - Madison, 53706, Madison, USA
- Carbone Cancer Center, University of Wisconsin - Madison, 53792, Madison, USA
| | - Jacob J Tokar
- Department of Biomedical Engineering, University of Wisconsin - Madison, 53706, Madison, USA
- Carbone Cancer Center, University of Wisconsin - Madison, 53792, Madison, USA
| | - Jay W Warrick
- Department of Biomedical Engineering, University of Wisconsin - Madison, 53706, Madison, USA
- Carbone Cancer Center, University of Wisconsin - Madison, 53792, Madison, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin - Madison, 53705, Madison, USA
| | - Lil Pabon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 98109, Seattle, USA
- Department of Pathology, University of Washington, 98195, Seattle, USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, 98195, Seattle, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin - Madison, 53706, Madison, USA
- Carbone Cancer Center, University of Wisconsin - Madison, 53792, Madison, USA
| | - Kelly R Stevens
- Department of Bioengineering, University of Washington, 98195, Seattle, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 98109, Seattle, USA.
- Department of Pathology, University of Washington, 98195, Seattle, USA.
| |
Collapse
|
36
|
Heemskerk I, Burt K, Miller M, Chhabra S, Guerra MC, Liu L, Warmflash A. Rapid changes in morphogen concentration control self-organized patterning in human embryonic stem cells. eLife 2019; 8:e40526. [PMID: 30829572 PMCID: PMC6398983 DOI: 10.7554/elife.40526] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
During embryonic development, diffusible signaling molecules called morphogens are thought to determine cell fates in a concentration-dependent way. Yet, in mammalian embryos, concentrations change rapidly compared to the time for making cell fate decisions. Here, we use human embryonic stem cells (hESCs) to address how changing morphogen levels influence differentiation, focusing on how BMP4 and Nodal signaling govern the cell-fate decisions associated with gastrulation. We show that BMP4 response is concentration dependent, but that expression of many Nodal targets depends on rate of concentration change. Moreover, in a self-organized stem cell model for human gastrulation, expression of these genes follows rapid changes in endogenous Nodal signaling. Our study shows a striking contrast between the specific ways ligand dynamics are interpreted by two closely related signaling pathways, highlighting both the subtlety and importance of morphogen dynamics for understanding mammalian embryogenesis and designing optimized protocols for directed stem cell differentiation. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Idse Heemskerk
- Department of BiosciencesRice UniversityHoustonUnited States
| | - Kari Burt
- Department of BiosciencesRice UniversityHoustonUnited States
| | - Matthew Miller
- Department of BiosciencesRice UniversityHoustonUnited States
| | - Sapna Chhabra
- Systems, Synthetic and Physical Biology ProgramRice UniversityHoustonUnited States
| | | | - Lizhong Liu
- Department of BiosciencesRice UniversityHoustonUnited States
| | - Aryeh Warmflash
- Department of BiosciencesRice UniversityHoustonUnited States
- Department of BioengineeringRice UniversityHoustonUnited States
| |
Collapse
|
37
|
Synergy with TGFβ ligands switches WNT pathway dynamics from transient to sustained during human pluripotent cell differentiation. Proc Natl Acad Sci U S A 2019; 116:4989-4998. [PMID: 30819898 DOI: 10.1073/pnas.1815363116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
WNT/β-catenin signaling is crucial to all stages of life. It controls early morphogenetic events in embryos, maintains stem cell niches in adults, and is dysregulated in many types of cancer. Despite its ubiquity, little is known about the dynamics of signal transduction or whether it varies across contexts. Here we probe the dynamics of signaling by monitoring nuclear accumulation of β-catenin, the primary transducer of canonical WNT signals, using quantitative live cell imaging. We show that β-catenin signaling responds adaptively to constant WNT signaling in pluripotent stem cells, and that these dynamics become sustained on differentiation. Varying dynamics were also observed in the response to WNT in commonly used mammalian cell lines. Signal attenuation in pluripotent cells is observed even at saturating doses, where ligand stability does not affect the dynamics. TGFβ superfamily ligands Activin and BMP, which coordinate with WNT signaling to pattern the gastrula, increase the β-catenin response in a manner independent of their ability to induce new WNT ligand production. Our results reveal how variables external to the pathway, including differentiation status and cross-talk with other pathways, dramatically alter WNT/β-catenin dynamics.
Collapse
|
38
|
Taniguchi K, Heemskerk I, Gumucio DL. Opening the black box: Stem cell-based modeling of human post-implantation development. J Cell Biol 2019; 218:410-421. [PMID: 30552099 PMCID: PMC6363460 DOI: 10.1083/jcb.201810084] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/06/2023] Open
Abstract
Proper development of the human embryo following its implantation into the uterine wall is critical for the successful continuation of pregnancy. However, the complex cellular and molecular changes that occur during this post-implantation period of human development are not amenable to study in vivo. Recently, several new embryo-like human pluripotent stem cell (hPSC)-based platforms have emerged, which are beginning to illuminate the current black box state of early human post-implantation biology. In this review, we will discuss how these experimental models are carving a way for understanding novel molecular and cellular mechanisms during early human development.
Collapse
Affiliation(s)
- Kenichiro Taniguchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
39
|
Mitra K, Feist WN, Anfossi S, Fuentes-Mattei E, Almeida MI, Kim JJ, Calin GA, Warmflash A. S-MiRAGE: A Quantitative, Secreted RNA-Based Reporter of Gene Expression and Cell Persistence. ACS Synth Biol 2019; 8:25-33. [PMID: 30550267 DOI: 10.1021/acssynbio.8b00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nondestructive measurements of cell persistence and gene expression are crucial for longitudinal research studies and for prognostic assessment of cell therapies. Here we describe S-MiRAGE, a platform that utilizes small secreted RNA molecules as sensitive and quantitatively accurate reporters of cellular processes. S-MiRAGE allows cellular numbers or gene expression to be measured from culture media or from biofluids. We show that multiple S-MiRAGE reporters can be multiplexed, and demonstrate the utility of S-MiRAGE by monitoring the differentiation status of human embryonic stem cells in vitro and tumor growth in a mouse model in vivo.
Collapse
Affiliation(s)
- Kinshuk Mitra
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - William N. Feist
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Simone Anfossi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Maria Ines Almeida
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jean J. Kim
- Department of Molecular and Cellular Biology, Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, United States
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Aryeh Warmflash
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
40
|
Yoney A, Etoc F, Ruzo A, Carroll T, Metzger JJ, Martyn I, Li S, Kirst C, Siggia ED, Brivanlou AH. WNT signaling memory is required for ACTIVIN to function as a morphogen in human gastruloids. eLife 2018; 7:38279. [PMID: 30311909 PMCID: PMC6234031 DOI: 10.7554/elife.38279] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/11/2018] [Indexed: 01/10/2023] Open
Abstract
Self-organization of discrete fates in human gastruloids is mediated by a hierarchy of signaling pathways. How these pathways are integrated in time, and whether cells maintain a memory of their signaling history remains obscure. Here, we dissect the temporal integration of two key pathways, WNT and ACTIVIN, which along with BMP control gastrulation. CRISPR/Cas9-engineered live reporters of SMAD1, 2 and 4 demonstrate that in contrast to the stable signaling by SMAD1, signaling and transcriptional response by SMAD2 is transient, and while necessary for pluripotency, it is insufficient for differentiation. Pre-exposure to WNT, however, endows cells with the competence to respond to graded levels of ACTIVIN, which induces differentiation without changing SMAD2 dynamics. This cellular memory of WNT signaling is necessary for ACTIVIN morphogen activity. A re-evaluation of the evidence gathered over decades in model systems, re-enforces our conclusions and points to an evolutionarily conserved mechanism.
Collapse
Affiliation(s)
- Anna Yoney
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, United States
| | - Jakob J Metzger
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Iain Martyn
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Shu Li
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States
| | - Christoph Kirst
- Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States
| |
Collapse
|
41
|
Metzger JJ, Simunovic M, Brivanlou AH. Synthetic embryology: controlling geometry to model early mammalian development. Curr Opin Genet Dev 2018; 52:86-91. [PMID: 29957587 PMCID: PMC6911727 DOI: 10.1016/j.gde.2018.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
Differentiation of embryonic stem cells in vitro is an important tool in dissecting and understanding the mechanisms that govern early embryologic development. In recent years, there has been considerable progress in creating organoids that model gastrulation, neurulation or organogenesis. However, one of the key challenges is reproducibility. Geometrically confining stem cell colonies considerably improves reproducibility and provides quantitative control over differentiation and tissue shape. Here, we review recent advances in controlling the two-dimensional or three-dimensional organization of cells and the effect on differentiation phenotypes. Improved methods of geometrical control will allow for an even more detailed understanding of the mechanisms underlying embryologic development and will eventually pave the way for the highly reproducible generation of specific tissue types.
Collapse
Affiliation(s)
- Jakob J Metzger
- Center for Studies in Physics and Biology, The Rockefeller University, USA; Laboratory for Stem Cell Biology and Molecular Embryology, The Rockefeller University, USA
| | - Mijo Simunovic
- Center for Studies in Physics and Biology, The Rockefeller University, USA; Laboratory for Stem Cell Biology and Molecular Embryology, The Rockefeller University, USA
| | - Ali H Brivanlou
- Laboratory for Stem Cell Biology and Molecular Embryology, The Rockefeller University, USA.
| |
Collapse
|
42
|
Wolff SC, Kedziora KM, Dumitru R, Dungee CD, Zikry TM, Beltran AS, Haggerty RA, Cheng J, Redick MA, Purvis JE. Inheritance of OCT4 predetermines fate choice in human embryonic stem cells. Mol Syst Biol 2018; 14:e8140. [PMID: 30177503 PMCID: PMC6120590 DOI: 10.15252/msb.20178140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 01/21/2023] Open
Abstract
It is well known that clonal cells can make different fate decisions, but it is unclear whether these decisions are determined during, or before, a cell's own lifetime. Here, we engineered an endogenous fluorescent reporter for the pluripotency factor OCT4 to study the timing of differentiation decisions in human embryonic stem cells. By tracking single-cell OCT4 levels over multiple cell cycle generations, we found that the decision to differentiate is largely determined before the differentiation stimulus is presented and can be predicted by a cell's preexisting OCT4 signaling patterns. We further quantified how maternal OCT4 levels were transmitted to, and distributed between, daughter cells. As mother cells underwent division, newly established OCT4 levels in daughter cells rapidly became more predictive of final OCT4 expression status. These results imply that the choice between developmental cell fates can be largely predetermined at the time of cell birth through inheritance of a pluripotency factor.
Collapse
Affiliation(s)
- Samuel C Wolff
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Katarzyna M Kedziora
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Raluca Dumitru
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Cierra D Dungee
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Tarek M Zikry
- Department of Biostatistics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Adriana S Beltran
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Rachel A Haggerty
- Curriculum for Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - JrGang Cheng
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Margaret A Redick
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
- Curriculum for Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
43
|
Live Imaging Reveals that the First Division of Differentiating Human Embryonic Stem Cells Often Yields Asymmetric Fates. Cell Rep 2018; 21:301-307. [PMID: 29020617 DOI: 10.1016/j.celrep.2017.09.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 02/05/2023] Open
Abstract
How do stem cells respond to signals to initiate differentiation? Here, we show that, despite uniform exposure to differentiation-inducing extracellular signals, individual human embryonic stem cells (hESCs) respond heterogeneously. To track how hESCs incipiently exit pluripotency, we established a system to differentiate hESCs as single cells and conducted live imaging to track their very first cell division. We followed the fate of their earliest daughters as they remained undifferentiated or differentiated toward the primitive streak (the earliest descendants of pluripotent cells). About 30%-50% of the time, hESCs divided to yield one primitive streak and one undifferentiated daughter. The undifferentiated daughter cell was innately resistant to WNT signaling and could not respond to this primitive-streak-specifying differentiation signal. Hence, the first division of differentiating hESCs sometimes yields daughters with diverging fates, with implications for the efficiency of directed differentiation protocols and the underlying rules of lineage commitment.
Collapse
|
44
|
Li HB, Jin XQ, Jin X, Guo ZH, Ding XH, Wang Q, Liu RZ. BMP4 knockdown of NCSCs leads to aganglionosis in the middle embryonic stage. Mol Med Rep 2018; 17:5423-5427. [PMID: 29393463 DOI: 10.3892/mmr.2018.8519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/14/2017] [Indexed: 11/06/2022] Open
Abstract
Transplacental bone morphogenetic protein (BMP)4 RNA interference (RNAi) is a technique used to knockdown genes in embryos. BMP4 are essential for the development of nervous system in the differentiation of neural crest stem cells (NCSCs). The failure of differentiation and migration of NCSCs may lead to aganglionosis. In the present study, pregnant mice were divided into three groups: Ringer's group, pSES group and RNAi‑BMP4 group. In order to silence the BMP4 gene in the first generation (F1), 11.5 day pregnant mice were injected with the small interfering RNA BMP4 plasmid, pSES or Ringer's solution via the tail vein. Semi‑quantitative reverse transcriptase‑polymerase chain reaction (RT‑PCR)and western blotting were employed to ensure the downregulation of BMP4. Finally, X‑rays were performed following a barium enema. Aganglionosis was diagnosed by general anatomy and immunohistochemistry. Compared with the control group, transplacental RNAi was able to downregulate the BMP4‑Smad4 of 11.5 day embryos, as determined by semi‑quantitative RT‑PCR and western blotting. The megacolons of the mice were demonstrated by X‑ray and confirmed by general anatomy. Aganglionosis of colonic mucosa and submucosa were diagnosed by pathology, and immunohistochemistry. Knockdown of BMP4 in pregnant mice at the middle embryonic stage led to aganglionosis. It was therefore demonstrated that BMP‑Smad was essential to the NCSCs of middle stage embryos. BMP‑Smad served important roles in the generation of aganglionosis. This technique of knockdown BMP4 gene may be used to establish an aganglionosis mouse model.
Collapse
Affiliation(s)
- Hong-Bo Li
- Department of Pediatric Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Xian-Qing Jin
- Department of Pediatric Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Xin Jin
- Department of Pediatric Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Zheng-Hua Guo
- Department of Pediatric Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Xiong-Hui Ding
- Department of Pediatric Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Quan Wang
- Department of Pediatric Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Rui-Zhuo Liu
- Department of Pediatric Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| |
Collapse
|