1
|
Choudalakis M, Kungulovski G, Mauser R, Bashtrykov P, Jeltsch A. Refined read-out: The hUHRF1 Tandem-Tudor domain prefers binding to histone H3 tails containing K4me1 in the context of H3K9me2/3. Protein Sci 2023; 32:e4760. [PMID: 37593997 PMCID: PMC10464304 DOI: 10.1002/pro.4760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
UHRF1 is an essential chromatin protein required for DNA methylation maintenance, mammalian development, and gene regulation. We investigated the Tandem-Tudor domain (TTD) of human UHRF1 that is known to bind H3K9me2/3 histones and is a major driver of UHRF1 localization in cells. We verified binding to H3K9me2/3 but unexpectedly discovered stronger binding to H3 peptides and mononucleosomes containing K9me2/3 with additional K4me1. We investigated the combined binding of TTD to H3K4me1-K9me2/3 versus H3K9me2/3 alone, engineered mutants with specific and differential changes of binding, and discovered a novel read-out mechanism for H3K4me1 in an H3K9me2/3 context that is based on the interaction of R207 with the H3K4me1 methyl group and on counting the H-bond capacity of H3K4. Individual TTD mutants showed up to a 10,000-fold preference for the double-modified peptides, suggesting that after a conformational change, WT TTD could exhibit similar effects. The frequent appearance of H3K4me1-K9me2 regions in human chromatin demonstrated in our TTD chromatin pull-down and ChIP-western blot data suggests that it has specific biological roles. Chromatin pull-down of TTD from HepG2 cells and full-length murine UHRF1 ChIP-seq data correlate with H3K4me1 profiles indicating that the H3K4me1-K9me2/3 interaction of TTD influences chromatin binding of full-length UHRF1. We demonstrate the H3K4me1-K9me2/3 specific binding of UHRF1-TTD to enhancers and promoters of cell-type-specific genes at the flanks of cell-type-specific transcription factor binding sites, and provided evidence supporting an H3K4me1-K9me2/3 dependent and TTD mediated downregulation of these genes by UHRF1. All these findings illustrate the important physiological function of UHRF1-TTD binding to H3K4me1-K9me2/3 double marks in a cellular context.
Collapse
Affiliation(s)
- Michel Choudalakis
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Goran Kungulovski
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Rebekka Mauser
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Pavel Bashtrykov
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Albert Jeltsch
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| |
Collapse
|
2
|
Yoshioka H, Komura S, Kuramitsu N, Goto A, Hasegawa T, Amizuka N, Ishimoto T, Ozasa R, Nakano T, Imai Y, Akiyama H. Deletion of Tfam in Prx1-Cre expressing limb mesenchyme results in spontaneous bone fractures. J Bone Miner Metab 2022; 40:839-852. [PMID: 35947192 DOI: 10.1007/s00774-022-01354-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/21/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Osteoblasts require substantial amounts of energy to synthesize the bone matrix and coordinate skeleton mineralization. This study analyzed the effects of mitochondrial dysfunction on bone formation, nano-organization of collagen and apatite, and the resultant mechanical function in mouse limbs. MATERIALS AND METHODS Limb mesenchyme-specific Tfam knockout (Tfamf/f;Prx1-Cre: Tfam-cKO) mice were analyzed morphologically and histologically, and gene expressions in the limb bones were assessed by in situ hybridization, qPCR, and RNA sequencing (RNA-seq). Moreover, we analyzed the mitochondrial function of osteoblasts in Tfam-cKO mice using mitochondrial membrane potential assay and transmission electron microscopy (TEM). We investigated the pathogenesis of spontaneous bone fractures using immunohistochemical analysis, TEM, birefringence analyzer, microbeam X-ray diffractometer and nanoindentation. RESULTS Forelimbs in Tfam-cKO mice were significantly shortened from birth, and spontaneous fractures occurred after birth, resulting in severe limb deformities. Histological and RNA-seq analyses showed that bone hypoplasia with a decrease in matrix mineralization was apparent, and the expression of type I collagen and osteocalcin was decreased in osteoblasts of Tfam-cKO mice, although Runx2 expression was unchanged. Decreased type I collagen deposition and mineralization in the matrix of limb bones in Tfam-cKO mice were associated with marked mitochondrial dysfunction. Tfam-cKO mice bone showed a significantly lower Young's modulus and hardness due to poor apatite orientation which is resulted from decreased osteocalcin expression. CONCLUSION Mice with limb mesenchyme-specific Tfam deletions exhibited spontaneous limb bone fractures, resulting in severe limb deformities. Bone fragility was caused by poor apatite orientation owing to impaired osteoblast differentiation and maturation.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Norishige Kuramitsu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Atsushi Goto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
3
|
Tao C, Liu J, Li Z, Lai P, Zhang S, Qu J, Tang Y, Liu A, Zou Z, Bai X, Li J. DNMT1 is a negative regulator of osteogenesis. Biol Open 2022; 11:274589. [PMID: 35238333 PMCID: PMC8905718 DOI: 10.1242/bio.058534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
The role and underlying mechanisms of DNA methylation in osteogenesis/chondrogenesis remain poorly understood. We here reveal DNA methyltransferase 1 (DNMT1), which is responsible for copying DNA methylation onto the newly synthesized DNA strand after DNA replication, is overexpressed in sponge bone of people and mice with senile osteoporosis and required for suppression of osteoblast (OB) differentiation of mesenchymal stem cells (MSCs) and osteoprogenitors. Depletion of DNMT1 results in demethylation at the promoters of key osteogenic genes such as RORA and Fgfr2, and consequent upregulation of their transcription in vitro. Mechanistically, DNMT1 binds exactly to the promoters of these genes and are responsible for their 5-mc methylation. Conversely, simultaneous depletion of RORA or Fgfr2 blunts the effects of DNMT1 silencing on OB differentiation, suggesting RORA or Fgfr2 may be crucial for modulating osteogenic differentiation downstream of DNMT1. Collectively, these results reveal DNMT1 as a key repressor of OB differentiation and bone formation while providing us a new rationale for specific inhibition of DNMT1 as a potential therapeutic strategy to treat age-related bone loss. Summary: DNMT1 is overexpressed in sponge bone of people and mice with senile osteoporosis and required for suppression of osteoblast (OB) differentiation of mesenchymal stem cells (MSCs) and osteoprogenitors.
Collapse
Affiliation(s)
- Chen Tao
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia Liu
- Department of Orthopedics, Affliated hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Ziqi Li
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Sheng Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiankun Qu
- Department of Surgery, Tan Cheng County Maternal and Child Health Care Hospital, Linyi, Shandong 276100, China
| | - Yujin Tang
- Department of Orthopedics, Affliated hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Anling Liu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jianwei Li
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Pan D, Qian B, Zhao D, Yao B. Nfib promotes chondrocyte proliferation and inhibits differentiation by mildly regulating Sox9 and its downstream genes. Mol Biol Rep 2021; 48:7487-7497. [PMID: 34651294 DOI: 10.1007/s11033-021-06767-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Chondrocyte proliferation and differentiation play pivotal roles in regulating cartilage formation, endochondral bone formation, and repair. Cartilage damage and underdevelopment may cause severe joint diseases. Various transcription factors regulate cartilage development. Nuclear factor 1 B (Nfib) is a transcription factor that plays a regulatory role in various organs. However, the effect and mechanism of Nfib on the proliferation and differentiation of chondrocytes in cartilage are still largely unknown. METHODS AND RESULTS In the present study, we investigated the gene expression patterns in primary chondrocytes with Nfib overexpression or silencing by RNA sequencing (RNA-seq) technology. The results showed that Nfib overexpression significantly up-regulated genes that are related to chondrocyte proliferation and extracellular matrix (ECM) synthesis and significantly down-regulated genes related to chondrocyte differentiation and ECM degradation. However, with Nfib silencing, the genes involved in promoting chondrocyte differentiation were significantly up-regulated, whereas those involved in promoting chondrocyte proliferation were significantly down-regulated. Furthermore, quantitative real-time PCR (qRT-PCR), western blot, alcian blue staining and immunofluorescence staining assays further confirmed that Nfib potentially promotes chondrocyte proliferation and extracellular synthesis but inhibits differentiation. CONCLUSIONS The molecular mechanism of Nfib in promoting chondrocyte proliferation and inhibiting differentiation was probably achieved by stimulating Sox9 and its downstream genes. Thus, this study adds new insights regarding the underlying molecular mechanism of transcriptional regulation in cartilage.
Collapse
Affiliation(s)
- Daian Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Benxin Qian
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
5
|
Duarte-Olivenza C, Montero JA, Lorda-Diez CI. Effects of Berberine on the Chondrogenic Differentiation of Embryonic Limb Skeletal Progenitors. J Inflamm Res 2021; 14:5001-5011. [PMID: 34616169 PMCID: PMC8488050 DOI: 10.2147/jir.s324292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Berberine (BBR) is an isoquinoline plant alkaloid with demonstrated anti-inflammatory, anti-tumor and immunosuppressive pharmacological properties that functions via multiple signaling pathways and epigenetic modulators. Numerous studies have proposed BBR as a promising therapeutic agent for joint cartilage degeneration, and other connective tissue diseases. Purpose and Methods This work aimed to evaluate the effects of BBR on the growth and differentiation of embryonic skeletal progenitors using the limb mesoderm micromass culture assay. Results Our findings show that at difference of its apoptotic influence on a variety of tumor tissues, cell death was not induced in skeletal progenitors by the addition of 12 or 25 µM BBR concentration to the culture medium. Morphological and transcriptional analysis revealed dual and opposite effects of BBR treatments on chondrogenesis depending on the stage of differentiation of the cultured progenitors. At early stage of culture, BBR was a potent chondrogenic inhibitor, while chondrogenesis was intensified in treatments at advanced stages of culture. The chondrogenic promoting effect was accompanied by a moderate upregulation of gene markers of prehypertrophic cartilage, including ColXa1, alkaline phosphatase Alpl, Runx2, and Indian Hedgehog Ihh. We further observed a positive transcriptional influence of BBR in the expression of DNA methyltransferase genes, Dnmt1, Dnmt3a and Dnmt3b, suggesting a potential involvement of epigenetic factors in its effects. Conclusion Our study uncovers a new pharmacological influence of BBR in cartilage differentiation that must be taken into account in designing clinical protocols for its employment in the treatment of cartilage degenerative diseases.
Collapse
Affiliation(s)
- Cristina Duarte-Olivenza
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| | - Juan Antonio Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| | - Carlos Ignacio Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| |
Collapse
|
6
|
Newkirk SJ, An W. UHRF1: a jack of all trades, and a master epigenetic regulator during spermatogenesis. Biol Reprod 2021; 102:1147-1152. [PMID: 32101289 DOI: 10.1093/biolre/ioaa026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
7
|
Mancini M, Magnani E, Macchi F, Bonapace IM. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res 2021; 49:6053-6068. [PMID: 33939809 PMCID: PMC8216287 DOI: 10.1093/nar/gkab293] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
During S phase, the cooperation between the macromolecular complexes regulating DNA synthesis, epigenetic information maintenance and DNA repair is advantageous for cells, as they can rapidly detect DNA damage and initiate the DNA damage response (DDR). UHRF1 is a fundamental epigenetic regulator; its ability to coordinate DNA methylation and histone code is unique across proteomes of different species. Recently, UHRF1’s role in DNA damage repair has been explored and recognized to be as important as its role in maintaining the epigenome. UHRF1 is a sensor for interstrand crosslinks and a determinant for the switch towards homologous recombination in the repair of double-strand breaks; its loss results in enhanced sensitivity to DNA damage. These functions are finely regulated by specific post-translational modifications and are mediated by the SRA domain, which binds to damaged DNA, and the RING domain. Here, we review recent studies on the role of UHRF1 in DDR focusing on how it recognizes DNA damage and cooperates with other proteins in its repair. We then discuss how UHRF1’s epigenetic abilities in reading and writing histone modifications, or its interactions with ncRNAs, could interlace with its role in DDR.
Collapse
Affiliation(s)
- Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| |
Collapse
|
8
|
El Fersioui Y, Pinton G, Allaman-Pillet N, Schorderet DF. Hmx1 regulates urfh1 expression in the craniofacial region in zebrafish. PLoS One 2021; 16:e0245239. [PMID: 33465110 PMCID: PMC7815118 DOI: 10.1371/journal.pone.0245239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022] Open
Abstract
H6 family homeobox 1 (HMX1) regulates multiple aspects of craniofacial development as it is widely expressed in the eye, peripheral ganglia and branchial arches. Mutations in HMX1 are linked to an ocular defect termed Oculo-auricular syndrome of Schorderet-Munier-Franceschetti (MIM #612109). We identified UHRF1 as a target of HMX1 during development. UHRF1 and its partner proteins actively regulate chromatin modifications and cellular proliferation. Luciferase assays and in situ hybridization analyses showed that HMX1 exerts a transcriptional inhibitory effect on UHRF1 and a modification of its expression pattern. Overexpression of hmx1 in hsp70-hmx1 zebrafish increased uhrf1 expression in the cranial region, while mutations in the hmx1 dimerization domains reduced uhrf1 expression. Moreover, the expression level of uhrf1 and its partner dnmt1 was increased in the eye field in response to hmx1 overexpression. These results indicate that hmx1 regulates uhrf1 expression and, potentially through regulating the expression of factors involved in DNA methylation, contribute to the development of the craniofacial region of zebrafish.
Collapse
Affiliation(s)
- Younes El Fersioui
- IRO – Institute for Research in Ophthalmology, Sion, Switzerland
- * E-mail: (YEF); (DFS)
| | - Gaëtan Pinton
- IRO – Institute for Research in Ophthalmology, Sion, Switzerland
| | | | - Daniel F. Schorderet
- IRO – Institute for Research in Ophthalmology, Sion, Switzerland
- Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail: (YEF); (DFS)
| |
Collapse
|
9
|
Saeki N, Imai Y. Reprogramming of synovial macrophage metabolism by synovial fibroblasts under inflammatory conditions. Cell Commun Signal 2020; 18:188. [PMID: 33256735 PMCID: PMC7708128 DOI: 10.1186/s12964-020-00678-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Macrophages adapt to microenvironments, and change metabolic status and functions to regulate inflammation and/or maintain homeostasis. In joint cavities, synovial macrophages (SM) and synovial fibroblasts (SF) maintain homeostasis. However, under inflammatory conditions such as rheumatoid arthritis (RA), crosstalk between SM and SF remains largely unclear. Methods Immunofluorescent staining was performed to identify localization of SM and SF in synovium of collagen antibody induced arthritis (CAIA) model mice and normal mice. Murine arthritis tissue-derived SM (ADSM), arthritis tissue-derived SF (ADSF) and normal tissue-derived SF (NDSF) were isolated and the purity of isolated cells was examined by RT-qPCR and flow cytometry analysis. RNA-seq was conducted to reveal gene expression profile in ADSM, NDSF and ADSF. Cellular metabolic status and expression levels of metabolic genes and inflammatory genes were analyzed in ADSM treated with ADSM-conditioned medium (ADSM-CM), NDSF-CM and ADSF-CM.
Results SM and SF were dispersed in murine hyperplastic synovium. Isolations of ADSM, NDSF and ADSF to analyze the crosstalk were successful with high purity. From gene expression profiles by RNA-seq, we focused on secretory factors in ADSF-CM, which can affect metabolism and inflammatory activity of ADSM. ADSM exposed to ADSF-CM showed significantly upregulated glycolysis and mitochondrial respiration as well as glucose and glutamine uptake relative to ADSM exposed to ADSM-CM and NDSF-CM. Furthermore, mRNA expression levels of metabolic genes, such as Slc2a1, Slc1a5, CD36, Pfkfb1, Pfkfb3 and Irg1, were significantly upregulated in ADSM treated with ADSF-CM. Inflammation marker genes, including Nos2, Tnf, Il-1b and CD86, and the anti-inflammatory marker gene, Il-10, were also substantially upregulated by ADSF-CM. On the other hand, NDSF-CM did not affect metabolism and gene expression in ADSM. Conclusions These findings suggest that crosstalk between SM and SF under inflammatory conditions can induce metabolic reprogramming and extend SM viability that together can contribute to chronic inflammation in RA. Video Abstract
Collapse
Affiliation(s)
- Noritaka Saeki
- Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan. .,Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Yuuki Imai
- Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan. .,Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan. .,Department of Pathophysiology, Graduate School of Medicine, Ehime University, Ehime, Japan.
| |
Collapse
|
10
|
Smeriglio P, Grandi FC, Taylor SEB, Zalc A, Bhutani N. TET1 Directs Chondrogenic Differentiation by Regulating SOX9 Dependent Activation of Col2a1 and Acan In Vitro. JBMR Plus 2020; 4:e10383. [PMID: 33134768 PMCID: PMC7587462 DOI: 10.1002/jbm4.10383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal development is a tightly orchestrated process in which cartilage and bone differentiation are intricately intertwined. Recent studies have highlighted the contribution of epigenetic modifications and their writers to skeletal development. Methylated cytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the Ten-eleven-translocation (TET) enzymes leading to demethylation. We have previously demonstrated that 5hmC is stably accumulated on lineage-specific genes that are activated during in vitro chondrogenesis in the ATDC5 chondroprogenitors. Knockdown (KD) of Tet1 via short-hairpin RNAs blocked ATDC5 chondrogenic differentiation. Here, we aimed to provide the mechanistic basis for TET1 function during ATDC5 differentiation. Transcriptomic analysis of Tet1 KD cells demonstrated that 54% of downregulated genes were SOX9 targets, suggesting a role for TET1 in mediating activation of a subset of the SOX9 target genes. Using genome-wide mapping of 5hmC during ATDC5 differentiation, we found that 5hmC is preferentially accumulated at chondrocyte-specific class II binding sites for SOX9, as compared with the tissue-agnostic class I sites. Specifically, we find that SOX9 is unable to bind to Col2a1 and Acan after Tet1 KD, despite no changes in SOX9 levels. Finally, we compared this KD scenario with the genetic loss of TET1 in the growth plate using Tet1 -/- embryos, which are approximately 10% smaller than their WT counterparts. In E17.5 Tet1 -/- embryos, loss of SOX9 target gene expression is more modest than upon Tet1 KD in vitro. Overall, our data suggest a role for TET1-mediated 5hmC deposition in partly shaping an epigenome conducive for SOX9 function. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Piera Smeriglio
- Department of Orthopaedic Surgery Stanford University School of Medicine Stanford CA USA
| | - Fiorella Carla Grandi
- Department of Orthopaedic Surgery Stanford University School of Medicine Stanford CA USA.,Cancer Biology Program Stanford University School of Medicine Stanford CA USA
| | | | - Antoine Zalc
- Department of Chemical and Systems Biology Stanford University School of Medicine Stanford CA USA
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery Stanford University School of Medicine Stanford CA USA
| |
Collapse
|
11
|
Grandi FC, Bhutani N. Epigenetic Therapies for Osteoarthritis. Trends Pharmacol Sci 2020; 41:557-569. [PMID: 32586653 PMCID: PMC10621997 DOI: 10.1016/j.tips.2020.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is an age-associated disease characterized by chronic joint pain resulting from degradation of articular cartilage, inflammation of the synovial lining, and changes to the subchondral bone. Despite the wide prevalence, no FDA-approved disease-modifying drugs exist. Recent evidence has demonstrated that epigenetic dysregulation of multiple molecular pathways underlies OA pathogenesis, providing a new mechanistic and therapeutic axis with the advantage of targeting multiple deregulated pathways simultaneously. In this review, we focus on the epigenetic regulators that have been implicated in OA, their individual roles, and potential crosstalk. Finally, we discuss the pharmacological molecules that can modulate their activities and discuss the potential advantages and challenges associated with epigenome-based therapeutics for OA.
Collapse
Affiliation(s)
| | - Nidhi Bhutani
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
UHRF1-repressed 5'-hydroxymethylcytosine is essential for the male meiotic prophase I. Cell Death Dis 2020; 11:142. [PMID: 32081844 PMCID: PMC7035279 DOI: 10.1038/s41419-020-2333-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
5’-hydroxymethylcytosine (5hmC), an important 5’-cytosine modification, is altered highly in order in male meiotic prophase. However, the regulatory mechanism of this dynamic change and the function of 5hmC in meiosis remain largely unknown. Using a knockout mouse model, we showed that UHRF1 regulated male meiosis. UHRF1 deficiency led to failure of meiosis and male infertility. Mechanistically, the deficiency of UHRF1 altered significantly the meiotic gene profile of spermatocytes. Uhrf1 knockout induced an increase of the global 5hmC level. The enrichment of hyper-5hmC at transcriptional start sites (TSSs) was highly associated with gene downregulation. In addition, the elevated level of the TET1 enzyme might have contributed to the higher 5hmC level in the Uhrf1 knockout spermatocytes. Finally, we reported Uhrf1, a key gene in male meiosis, repressed hyper-5hmC by downregulating TET1. Furthermore, UHRF1 facilitated RNA polymerase II (RNA-pol2) loading to promote gene transcription. Thus our study demonstrated a potential regulatory mechanism of 5hmC dynamic change and its involvement in epigenetic regulation in male meiosis.
Collapse
|
13
|
Sawada Y, Kikugawa T, Iio H, Sakakibara I, Yoshida S, Ikedo A, Yanagihara Y, Saeki N, Győrffy B, Kishida T, Okubo Y, Nakamura Y, Miyagi Y, Saika T, Imai Y. GPRC5A facilitates cell proliferation through cell cycle regulation and correlates with bone metastasis in prostate cancer. Int J Cancer 2019; 146:1369-1382. [PMID: 31276604 DOI: 10.1002/ijc.32554] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022]
Abstract
The prognosis of patients with progressive prostate cancers that are hormone refractory and/or have bone metastasis is poor. Multiple therapeutic targets to improve prostate cancer patient survival have been investigated, including orphan GPCRs. In our study, we identified G Protein-Coupled Receptor Class C Group 5 Member A (GPRC5A) as a candidate therapeutic molecule using integrative gene expression analyses of registered data sets for prostate cancer cell lines. Kaplan-Meier analysis of TCGA data sets revealed that patients who have high GPRC5A expression had significantly shorter overall survival. PC3 prostate cancer cells with CRISPR/Cas9-mediated GPRC5A knockout exhibited significantly reduced cell proliferation both in vitro and in vivo. RNA-seq revealed that GPRC5A KO PC3 cells had dysregulated expression of cell cycle-related genes, leading to cell cycle arrest at the G2/M phase. Furthermore, the registered gene expression profile data set showed that the expression level of GPRC5A in original lesions of prostate cancer patients with bone metastasis was higher than that without bone metastasis. In fact, GPRC5A KO PC3 cells failed to establish bone metastasis in xenograft mice models. In addition, our clinical study revealed that GPRC5A expression levels in prostate cancer patient samples were significantly correlated with bone metastasis as well as the patient's Gleason score (GS). Combined assessment with the immunoreactivity of GPRC5A and GS displayed higher specificity for predicting the occurrence of bone metastasis. Together, our findings indicate that GPRC5A can be a possible therapeutic target and prognostic marker molecule for progressive prostate cancer.
Collapse
Affiliation(s)
- Yuichiro Sawada
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Japan.,Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Tadahiko Kikugawa
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hiroyuki Iio
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Japan.,Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Iori Sakakibara
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shuhei Yoshida
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Aoi Ikedo
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Yuta Yanagihara
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan.,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Japan
| | - Noritaka Saeki
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan.,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Japan
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yoichiro Okubo
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Takashi Saika
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yuuki Imai
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Japan.,Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Japan.,Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Toon, Japan
| |
Collapse
|
14
|
Wang S, Zhang C, Hasson D, Desai A, SenBanerjee S, Magnani E, Ukomadu C, Lujambio A, Bernstein E, Sadler KC. Epigenetic Compensation Promotes Liver Regeneration. Dev Cell 2019; 50:43-56.e6. [PMID: 31231040 PMCID: PMC6615735 DOI: 10.1016/j.devcel.2019.05.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
Two major functions of the epigenome are to regulate gene expression and to suppress transposons. It is unclear how these functions are balanced during physiological challenges requiring tissue regeneration, where exquisite coordination of gene expression is essential. Transcriptomic analysis of seven time points following partial hepatectomy identified the epigenetic regulator UHRF1, which is essential for DNA methylation, as dynamically expressed during liver regeneration in mice. UHRF1 deletion in hepatocytes (Uhrf1HepKO) caused genome-wide DNA hypomethylation but, surprisingly, had no measurable effect on gene or transposon expression or liver homeostasis. Partial hepatectomy of Uhrf1HepKO livers resulted in early and sustained activation of proregenerative genes and enhanced liver regeneration. This was attributed to redistribution of H3K27me3 from promoters to transposons, effectively silencing them and, consequently, alleviating repression of liver regeneration genes, priming them for expression in Uhrf1HepKO livers. Thus, epigenetic compensation safeguards the genome against transposon activation, indirectly affecting gene regulation.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chi Zhang
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anal Desai
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sucharita SenBanerjee
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; College of Arts and Sciences, Wentworth Institute of Technology, 504 Parker St., Boston, MA 02115, USA
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Chinweike Ukomadu
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kirsten C Sadler
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Program in Biology, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
| |
Collapse
|
15
|
Zhang X, Nie Y, Cai S, Ding S, Fu B, Wei H, Chen L, Liu X, Liu M, Yuan R, Qiu B, He Z, Cong P, Chen Y, Mo D. Earlier demethylation of myogenic genes contributes to embryonic precocious terminal differentiation of myoblasts in miniature pigs. FASEB J 2019; 33:9638-9655. [PMID: 31145867 DOI: 10.1096/fj.201900388r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here, we performed whole-genome bisulfite sequencing of longissimus dorsi muscle from Landrace and Wuzhishan (WZS) miniature pigs during 18, 21, and 28 d postcoitum. It was uncovered that in regulatory regions only around transcription start sites (TSSs), gene expression and methylation showed negative correlation, whereas in gene bodies, positive correlation occurred. Furthermore, earlier myogenic gene demethylation around TSSs and earlier hypermethylation of myogenic genes in gene bodies were considered to trigger their earlier expression in miniature pigs. Furthermore, by analyzing the methylation pattern of the myogenic differentiation 1(MyoD) promoter and distal enhancer, we found that earlier demethylation of the MyoD distal enhancer in WZSs contributes to its earlier expression. Moreover, DNA demethylase Tet1 was found to be involved in the demethylation of the myogenin promoter and promoted immortalized mouse myoblast cell line (C2C12) and porcine embryonic myogenic cell differentiation. This study reveals that earlier demethylation of myogenic genes contributes to precocious terminal differentiation of myoblasts in miniature pigs.-Zhang, X., Nie, Y., Cai, S., Ding, S., Fu, B., Wei, H., Chen, L., Liu, X., Liu, M., Yuan, R., Qiu, B., He, Z., Cong, P., Chen, Y., Mo, D. Earlier demethylation of myogenic genes contributes to embryonic precocious terminal differentiation of myoblasts in miniature pigs.
Collapse
Affiliation(s)
- Xumeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Shenzhen Kingsino Technology Company Limited, Shenzhen, China
| | - Yaping Nie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suying Ding
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bingqiang Fu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong Wei
- Shenzhen Kingsino Technology Company Limited, Shenzhen, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Minggui Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Boqin Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
UHRF genes regulate programmed interdigital tissue regression and chondrogenesis in the embryonic limb. Cell Death Dis 2019; 10:347. [PMID: 31024001 PMCID: PMC6484032 DOI: 10.1038/s41419-019-1575-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
The primordium of the limb contains a number of progenitors far superior to those necessary to form the skeletal components of this appendage. During the course of development, precursors that do not follow the skeletogenic program are removed by cell senescence and apoptosis. The formation of the digits provides the most representative example of embryonic remodeling via cell degeneration. In the hand/foot regions of the embryonic vertebrate limb (autopod), the interdigital tissue and the zones of interphalangeal joint formation undergo massive degeneration that accounts for jointed and free digit morphology. Developmental senescence and caspase-dependent apoptosis are considered responsible for these remodeling processes. Our study uncovers a new upstream level of regulation of remodeling by the epigenetic regulators Uhrf1 and Uhrf2 genes. These genes are spatially and temporally expressed in the pre-apoptotic regions. UHRF1 and UHRF2 showed a nuclear localization associated with foci of methylated cytosine. Interestingly, nuclear labeling increased in cells progressing through the stages of degeneration prior to TUNEL positivity. Functional analysis in cultured limb skeletal progenitors via the overexpression of either UHRF1 or UHRF2 inhibited chondrogenesis and induced cell senescence and apoptosis accompanied with changes in global and regional DNA methylation. Uhrfs modulated canonical cell differentiation factors, such as Sox9 and Scleraxis, promoted apoptosis via up-regulation of Bak1, and induced cell senescence, by arresting progenitors at the S phase and upregulating the expression of p21. Expression of Uhrf genes in vivo was positively modulated by FGF signaling. In the micromass culture assay Uhrf1 was down-regulated as the progenitors lost stemness and differentiated into cartilage. Together, our findings emphasize the importance of tuning the balance between cell differentiation and cell stemness as a central step in the initiation of the so-called “embryonic programmed cell death” and suggest that the structural organization of the chromatin, via epigenetic modifications, may be a precocious and critical factor in these regulatory events.
Collapse
|
17
|
Coordinated Dialogue between UHRF1 and DNMT1 to Ensure Faithful Inheritance of Methylated DNA Patterns. Genes (Basel) 2019; 10:genes10010065. [PMID: 30669400 PMCID: PMC6360023 DOI: 10.3390/genes10010065] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/22/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is an epigenetic mark that needs to be faithfully replicated during mitosis in order to maintain cell phenotype during successive cell divisions. This epigenetic mark is located on the 5′-carbon of the cytosine mainly within cytosine–phosphate–guanine (CpG) dinucleotides. DNA methylation is asymmetrically positioned on both DNA strands, temporarily generating a hemi-methylated state after DNA replication. Hemi-methylation is a particular status of DNA that is recognized by ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1) through its SET- (Su(var)3-9, Enhancer-of-zeste and Trithorax) and RING-associated (SRA) domain. This interaction is considered to be involved in the recruitment of DNMT1 to chromatin in order to methylate the adequate cytosine on the newly synthetized DNA strand. The UHRF1/DNMT1 tandem plays a pivotal role in the inheritance of DNA methylation patterns, but the fine-tuning mechanism remains a mystery. Indeed, because DNMT1 experiences difficulties in finding the cytosine to be methylated, it requires the help of a guide, i.e., of UHRF1, which exhibits higher affinity for hemi-methylated DNA vs. non-methylated DNA. Two models of the UHRF1/DNMT1 dialogue were suggested to explain how DNMT1 is recruited to chromatin: (i) an indirect communication via histone H3 ubiquitination, and (ii) a direct interaction of UHRF1 with DNMT1. In the present review, these two models are discussed, and we try to show that they are compatible with each other.
Collapse
|