1
|
Liu Y, Liao YL, Wang JX, Zhang BF, Tang QP, Ding Y, Zuo SJ, Zhou QH, Pei DS. The effect and mechanisms of nano cerium dioxide (Nano-CeO 2) on cardiovascular development in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126268. [PMID: 40250517 DOI: 10.1016/j.envpol.2025.126268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
The widespread application of nano-cerium dioxide (Nano-CeO2) in agriculture, industry, and other fields has led to an increasing amount of it being released into the environment and becoming a pollutant with potential biological hazards. However, studies on the effects of ceria on cardiovascular development were limited. This study aims to detect the cardiovascular toxicity of Nano-CeO2, focusing on its impact on zebrafish hematopoietic function and cardiac development, and to explore its potential molecular mechanisms. We found that exposing zebrafish embryos to different concentrations of Nano-CeO2 after 6 hpf of fertilization does not hinder the growth and development of zebrafish embryos during their early life stages. However, RNA-Seq analysis indicated that the gene expression related to zebrafish hematopoiesis was significantly downregulated, and the ECM-receptor interaction pathway was disrupted.The results of o-dianisidine staining, neutral red staining, and Sudan black staining showed that the hemoglobin, macrophages, and neutrophils of zebrafish were reduced, and the vascular dysplasia of zebrafish was observed. Meanwhile, Reactive oxygen species (ROS) accumulated in the heart of zebrafish larvae treated with Nano-CeO2, and heart development-related genes (nppa, hand2, nppb, nkx2.5, and myh7) were significantly down-regulated, while gata4 was up-regulated. The addition of the integrin agonist manganese ions restored the expression of genes related to ECM-receptor interaction pathways, alleviating cardiovascular abnormalities caused by Nano-CeO2. Besides, significant changes in cardiac histopathology were observed with long-term exposure (120 d post-fertilization), indicating that Nano-CeO2 exposure affected the development of the cardiovascular system in zebrafish. In summary, acute and chronic exposure to Nano-CeO2 exhibits cardiovascular toxicity in zebrafish, affecting hematopoietic function and cardiac development, and the mechanism may be related to the ECM-receptor interaction pathway. This study provides useful information for a comprehensive understanding of the toxicity mechanisms and environmental risks of Nano-CeO2.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Yan-Ling Liao
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jin-Xia Wang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Bao-Fu Zhang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Qi-Ping Tang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Yuan Ding
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Si-Jia Zuo
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Qin-Hong Zhou
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Li L, Lu M, Guo L, Zhang X, Liu Q, Zhang M, Gao J, Xu M, Lu Y, Zhang F, Li Y, Zhang R, Liu X, Pan S, Zhang X, Li Z, Chen Y, Su X, Zhang N, Guo W, Yang T, Chen J, Qin Y, Zhang Z, Cui W, Yu L, Gu Y, Yang H, Xu X, Wang J, Burns CE, Burns CG, Han K, Zhao L, Fan G, Su Y. An organ-wide spatiotemporal transcriptomic and cellular atlas of the regenerating zebrafish heart. Nat Commun 2025; 16:3716. [PMID: 40253397 PMCID: PMC12009352 DOI: 10.1038/s41467-025-59070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/10/2025] [Indexed: 04/21/2025] Open
Abstract
Adult zebrafish robustly regenerate injured hearts through a complex orchestration of molecular and cellular activities. However, this remarkable process, which is largely non-existent in humans, remains incompletely understood. Here, we utilize integrated spatial transcriptomics (Stereo-seq) and single-cell RNA-sequencing (scRNA-seq) to generate a spatially-resolved molecular and cellular atlas of regenerating zebrafish heart across eight stages. We characterize the cascade of cardiomyocyte cell states responsible for producing regenerated myocardium and explore a potential role for tpm4a in cardiomyocyte re-differentiation. Moreover, we uncover the activation of ifrd1 and atp6ap2 genes as a unique feature of regenerative hearts. Lastly, we reconstruct a 4D "virtual regenerating heart" comprising 569,896 cells/spots derived from 36 scRNA-seq libraries and 224 Stereo-seq slices. Our comprehensive atlas serves as a valuable resource to the cardiovascular and regeneration scientific communities and their ongoing efforts to understand the molecular and cellular mechanisms underlying vertebrate heart regeneration.
Collapse
Affiliation(s)
- Lei Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Meina Lu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Lidong Guo
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qun Liu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Meiling Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Junying Gao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Mengyang Xu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Yijian Lu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Fang Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yao Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Ruihua Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xiawei Liu
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Shanshan Pan
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xianghui Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Zhen Li
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Yadong Chen
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Xiaoshan Su
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Nannan Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Wenjie Guo
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Jing Chen
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Yating Qin
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | | | - Wei Cui
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Lindong Yu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ying Gu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Huanming Yang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI, Shenzhen, 518083, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Kai Han
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.
| | - Long Zhao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Fisheries, Ocean University of China, Qingdao, 266003, China.
| | - Guangyi Fan
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen, 518083, China.
- BGI Research, Sanya, 572025, China.
- BGI Research, Hangzhou, 310030, China.
| | - Ying Su
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Punde A, Rayrikar A, Maity S, Patra C. Extracellular matrix in cardiac morphogenesis, fibrosis, and regeneration. Cells Dev 2025:204023. [PMID: 40154789 DOI: 10.1016/j.cdev.2025.204023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The extracellular matrix (ECM) plays a crucial role in providing structural integrity and regulating cell communication essential for organ development, homeostasis, and regeneration, including hearts. Evidence indicates that disruptions in the spatiotemporal expression or alterations in ECM components lead to cardiac malformations, including a wide range of congenital heart diseases (CHDs). Furthermore, research on injured hearts across various vertebrate species, some of which show effective regeneration while others experience irreversible fibrosis, underscores the significance of ECM molecules in cardiac regeneration. This review presents an overview of heart development and the dynamics of ECM during cardiac morphogenesis, beginning with the formation of the contractile heart tube and advancing to the development of distinct chambers separated by valves to facilitate unidirectional blood flow. Furthermore, we discuss research emphasizing the multifaceted roles of secreted molecules in mediating fibrosis and regeneration following myocardial injury.
Collapse
Affiliation(s)
- Ashwini Punde
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Shreya Maity
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India.
| |
Collapse
|
4
|
Leerberg DM, Avillion GB, Priya R, Stainier DY, Yelon D. Regionalized regulation of actomyosin organization influences cardiomyocyte cell shape changes during chamber curvature formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631779. [PMID: 39829878 PMCID: PMC11741281 DOI: 10.1101/2025.01.07.631779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cardiac chambers emerge from a heart tube that balloons and bends to create expanded ventricular and atrial structures, each containing a convex outer curvature (OC) and a recessed inner curvature (IC). A comprehensive understanding of the cellular and molecular mechanisms underlying the formation of these characteristic curvatures remains lacking. Here, we demonstrate in zebrafish that the initially similar populations of OC and IC ventricular cardiomyocytes diverge in the organization of their actomyosin cytoskeleton and subsequently acquire distinct OC and IC cell shapes. Altering actomyosin dynamics hinders cell shape changes in the OC, and mosaic analyses indicate that actomyosin regulates cardiomyocyte shape in a cell-autonomous manner. Additionally, both blood flow and the transcription factor Tbx5a influence the basal enrichment of actomyosin and squamous cell morphologies in the OC. Together, our findings demonstrate that intrinsic and extrinsic factors intersect to control actomyosin organization in OC cardiomyocytes, which in turn promotes the cell shape changes that drive curvature morphogenesis.
Collapse
Affiliation(s)
- Dena M. Leerberg
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gabriel B. Avillion
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Deborah Yelon
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
5
|
Sánchez-Posada J, Derrick CJ, Noël ES. morphoHeart: A quantitative tool for integrated 3D morphometric analyses of heart and ECM during embryonic development. PLoS Biol 2025; 23:e3002995. [PMID: 39879226 PMCID: PMC11778784 DOI: 10.1371/journal.pbio.3002995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Heart development involves the complex structural remodelling of a linear heart tube into an asymmetrically looped and ballooned organ. Previous studies have associated regional expansion of extracellular matrix (ECM) space with tissue morphogenesis during development. We have developed morphoHeart, a 3D tissue segmentation and morphometry software with a user-friendly graphical interface (GUI) that delivers the first integrated 3D visualisation and multiparametric analysis of both heart and ECM morphology in live embryos. morphoHeart reveals that the ECM undergoes regional dynamic expansion and reduction during cardiac development, concomitant with chamber-specific morphological maturation. We use morphoHeart to demonstrate that regionalised ECM expansion driven by the ECM crosslinker Hapln1a promotes atrial lumen expansion during heart development. Finally, morphoHeart's GUI expands its use beyond that of cardiac tissue, allowing its segmentation and morphometric analysis tools to be applied to z-stack images of any fluorescently labelled tissue.
Collapse
Affiliation(s)
- Juliana Sánchez-Posada
- School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Christopher J. Derrick
- Biosciences Institute, Faculty of Biomedical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Emily S. Noël
- School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
6
|
Gentile A, Albu M, Xu Y, Mortazavi N, Ribeiro da Silva A, Stainier DYR, Gunawan F. Mechanical forces remodel the cardiac extracellular matrix during zebrafish development. Development 2024; 151:dev202310. [PMID: 38984541 PMCID: PMC11266798 DOI: 10.1242/dev.202310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/07/2024] [Indexed: 07/11/2024]
Abstract
The cardiac extracellular matrix (cECM) is fundamental for organ morphogenesis and maturation, during which time it undergoes remodeling, yet little is known about whether mechanical forces generated by the heartbeat regulate this remodeling process. Using zebrafish as a model and focusing on stages when cardiac valves and trabeculae form, we found that altering cardiac contraction impairs cECM remodeling. Longitudinal volumetric quantifications in wild-type animals revealed region-specific dynamics: cECM volume decreases in the atrium but not in the ventricle or atrioventricular canal. Reducing cardiac contraction resulted in opposite effects on the ventricular and atrial ECM, whereas increasing the heart rate affected the ventricular ECM but had no effect on the atrial ECM, together indicating that mechanical forces regulate the cECM in a chamber-specific manner. Among the ECM remodelers highly expressed during cardiac morphogenesis, we found one that was upregulated in non-contractile hearts, namely tissue inhibitor of matrix metalloproteinase 2 (timp2). Loss- and gain-of-function analyses of timp2 revealed its crucial role in cECM remodeling. Altogether, our results indicate that mechanical forces control cECM remodeling in part through timp2 downregulation.
Collapse
Affiliation(s)
- Alessandra Gentile
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Marga Albu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Yanli Xu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Newsha Mortazavi
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster 48149, Germany
| | - Agatha Ribeiro da Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Felix Gunawan
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster 48149, Germany
| |
Collapse
|
7
|
Schmandt B, Diduff M, Smart G, Williams LM. Environmentally Relevant Concentrations of Triphenyl Phosphate (TPhP) Impact Development in Zebrafish. TOXICS 2024; 12:368. [PMID: 38787147 PMCID: PMC11125690 DOI: 10.3390/toxics12050368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
A common flame-retardant and plasticizer, triphenyl phosphate (TPhP) is an aryl phosphate ester found in many aquatic environments at nM concentrations. Yet, most studies interrogating its toxicity have used µM concentrations. In this study, we used the model organism zebrafish (Danio rerio) to uncover the developmental impact of nM exposures to TPhP at the phenotypic and molecular levels. At concentrations of 1.5-15 nM (0.5 µg/L-5 µg/L), chronically dosed 5dpf larvae were shorter in length and had pericardial edema phenotypes that had been previously reported for exposures in the µM range. Cardiotoxicity was observed but did not present as cardiac looping defects as previously reported for µM concentrations. The RXR pathway does not seem to be involved at nM concentrations, but the tbx5a transcription factor cascade including natriuretic peptides (nppa and nppb) and bone morphogenetic protein 4 (bmp4) were dysregulated and could be contributing to the cardiac phenotypes. We also demonstrate that TPhP is a weak pro-oxidant, as it increases the oxidative stress response within hours of exposure. Overall, our data indicate that TPhP can affect animal development at environmentally relevant concentrations and its mode of action involves multiple pathways.
Collapse
|
8
|
Guo Y, Zhang T, Wang X, Zhang J, Miao W, Li QX, Fan Y. Toxic effects of the insecticide tolfenpyrad on zebrafish embryos: Cardiac toxicity and mitochondrial damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2583-2595. [PMID: 38205909 DOI: 10.1002/tox.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Tolfenpyrad, a highly effective and broad-spectrum insecticide and acaricide extensively utilized in agriculture, presents a potential hazard to nontarget organisms. This study was designed to explore the toxic mechanisms of tolfenpyrad on zebrafish embryos. Between 24 and 96 h after exposure of the fertilized embryos to tolfenpyrad at concentrations ranging from 0.001 to 0.016 mg/L (96 h-LC50 = 0.017 mg/L), lethal effects were apparent, accompanied with notable anomalies including pericardial edema, increased pericardial area, diminished heart rate, and an elongated distance between the venous sinus and the arterial bulb. Tolfenpyrad elicited noteworthy alterations in the expression of genes pertinent to cardiac development and apoptosis, with the most pronounced changes observed in the cardiac development-related genes of bone morphogenetic protein 2b (bmp2b) and p53 upregulated modulator of apoptosis (puma). The findings underscore that tolfenpyrad induces severe cardiac toxicity and mitochondrial damage in zebrafish embryos. This data is imperative for a comprehensive assessment of tolfenpyrad risks to aquatic ecosystems, particularly considering the limited knowledge regarding its detrimental impact on aquatic vertebrates.
Collapse
Affiliation(s)
- Yuzhao Guo
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Taiyu Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Xinyu Wang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| |
Collapse
|
9
|
Gonzalez V, Grant MG, Suzuki M, Christophers B, Rowland Williams J, Burdine RD. Cooperation between Nodal and FGF signals regulates zebrafish cardiac cell migration and heart morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574380. [PMID: 38260277 PMCID: PMC10802409 DOI: 10.1101/2024.01.05.574380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Asymmetric vertebrate heart development is driven by an intricate sequence of morphogenetic cell movements, the coordination of which requires precise interpretation of signaling cues by heart primordia. Here we show that Nodal functions cooperatively with FGF during heart tube formation and asymmetric placement. Both pathways act as migratory stimuli for cardiac progenitor cells (CPCs), but FGF is dispensable for directing heart tube asymmetry, which is governed by Nodal. We further find that Nodal controls CPC migration by inducing left-right asymmetries in the formation of actin-based protrusions in CPCs. Additionally, we define a developmental window in which FGF signals are required for proper heart looping and show cooperativity between FGF and Nodal in this process. We present evidence FGF may promote heart looping through addition of the secondary heart field. Finally, we demonstrate that loss of FGF signaling affects proper development of the atrioventricular canal (AVC), which likely contributes to abnormal chamber morphologies in FGF-deficient hearts. Together, our data shed insight into how the spatiotemporal dynamics of signaling cues regulate the cellular behaviors underlying organ morphogenesis.
Collapse
Affiliation(s)
- Vanessa Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA, 08544
| | - Meagan G. Grant
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA, 08544
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan, 739-8526
| | - Briana Christophers
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA, 08544
| | - Jessica Rowland Williams
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA, 08544
- Current affiliation: National Institute for Student Success, at Georgia State University, Atlanta, GA 30303
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA, 08544
| |
Collapse
|
10
|
Ma J, Jiang P, Huang Y, Lu C, Tian G, Xiao X, Meng Y, Xiong X, Cheng B, Wang D, Lu H. Oxidative stress contributes to flumioxazin-induced cardiotoxicity in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2737-2746. [PMID: 37712518 DOI: 10.1002/etc.5746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Flumioxazin is a widely applied herbicide for the control of broadleaf weeds, including aquatic plants. Current evidence suggests that flumioxazin could induce cardiac defects (ventricular septal defects) in vertebrates, but the underlining mechanisms remain unclear. Because of the inhibitory effect of flumioxazin on polyphenol oxidase, the assumption is made that flumioxazin-induced cardiotoxicity is caused by oxidative stress. To verify whether oxidative stress plays an important role in flumioxazin-induced cardiotoxicity, we compared the differences in heart phenotype, oxidative stress level, apoptosis, and gene expression between flumioxazin exposure and a normal environment, and we also tested whether cardiotoxicity could be rescued with astaxanthin. The results showed that flumioxazin induced both cardiac malformations and the abnormal gene expression associated with cardiac development. Cardiac malformations included pericardial edema, cardiac linearization, elongated heart, cardiomegaly, cardiac wall hypocellularity, myocardial cell atrophy with a granular appearance, and a significant gap between the myocardial intima and the adventitia. An increase in oxidative stress and apoptosis was observed in the cardiac region of zebrafish after exposure to flumioxazin. The antioxidant astaxanthin reversed the cardiac malformations, excessive production of reactive oxygen species (ROS), and expression of genes for cardiac developmental and apoptosis regulation induced by flumioxazin. In addition, flumioxazin also activated aryl hydrocarbon receptor (AhR) signaling pathway genes (aryl hydrocarbon receptor 2 [ahr2], cytochrome p450 family subfamily a [cyp1a1], and b [cyp1b1]) and increased the concentration of porphyrins. The results suggest that excessive ROS production, which could be mediated through AhR, led to apoptosis, contributing to the cardiotoxicity of flumioxazin in zebrafish embryos. Environ Toxicol Chem 2023;42:2737-2746. © 2023 SETAC.
Collapse
Affiliation(s)
- Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of the Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Ping Jiang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Nudear Industry Ganzhou Geotechnech Investigation & Design Group Company Limited, Guangzhou, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Food College, Nanchang University, Nanchang, China
| | - Chen Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Guiyou Tian
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Xiaoping Xiao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Xiaoqiang Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Di Wang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of the Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, China
| |
Collapse
|
11
|
Loss of GLTSCR1 causes congenital heart defects by regulating NPPA transcription. Angiogenesis 2023; 26:217-232. [PMID: 36745292 PMCID: PMC10119265 DOI: 10.1007/s10456-023-09869-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023]
Abstract
Precise and specific spatiotemporal domains of gene expression regulation are critical for embryonic development. Recent studies have identified GLTSCR1 as a gene transcriptional elongation regulator in cancer research. However, the function of GLTSCR1, especially in embryonic development, remains poorly understood. Here, we found that GLTSCR1 was essential for cardiac development because Gltscr1 knockout (Gltscr1-/-) led to embryonic lethality in mice with severe congenital heart defects (CHDs). Ventricular septal defect and double outflow right ventricular were also observed in neural crest cells with conditional deletion of Gltscr1, which were associated with neonatal lethality in mice. Mechanistically, GLTSCR1 deletion promoted NPPA expression by coordinating the CHD risk G allele of rs56153133 in the NPPA enhancer and releasing the transcription factor ZNF740-binding site on the NPPA promoter. These findings demonstrated that GLTSCR1 acts as a candidate CHD-related gene.
Collapse
|
12
|
Wu Y, Ye X, Jiang L, Wang A, Wang J, Yao W, Qin Y, Wang B. Developmental toxicity induced by brodifacoum in zebrafish (Danio rerio) early life stages. Birth Defects Res 2023; 115:318-326. [PMID: 36326103 DOI: 10.1002/bdr2.2118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The present study mainly focused on the assessment of developmental toxicity induced by exposure to brodifacoum (BDF) in zebrafish at early life stages. MATERIAL AND METHODS Zebrafish embryos were exposed to 0.2, 0.4, and 0.8 mg/L of BDF from 6 to 96 hr post-fertilization (hpf), and the toxic effects of BDF on early embryonic development were investigated in terms of morphological changes, oxidative stress, and alterations in heart development-related genes. RESULTS The experimental results showed that BDF significantly decreased the heart rate, survival rate, body length, and spontaneous movements of zebrafish embryos at 0.8 mg/L, and the morphological developmental abnormalities were also observed at 96 hpf. In addition, exposure to BDF significantly increased oxidative stress levels in zebrafish embryos by increasing the enzymatic activities of catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels, and decreased glutathione (GSH) levels. Furthermore, BDF treatment-induced alterations in the expression levels of the heart development-related genes (gata4, sox9b, tbx2b, and nppa). CONCLUSION Results from this study indicated that exposure to BDF could lead to marked growth inhibition and significantly alter the activities of antioxidant enzymes in zebrafish embryos. Moreover, BDF exposure exhibited severe cardiotoxicity and significantly disrupted heart development-related genes. The results indicated that BDF could induce developmental and cardiac toxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| | - Xinyu Ye
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| | - Linyi Jiang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| | - Yazhou Qin
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| |
Collapse
|
13
|
Chen T, Chen H, Wang A, Yao W, Xu Z, Wang B, Wang J, Wu Y. Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. TOXICS 2023; 11:84. [PMID: 36668810 PMCID: PMC9866970 DOI: 10.3390/toxics11010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Methyl parathion (MP) has been widely used as an organophosphorus pesticide for food preservation and pest management, resulting in its accumulation in the aquatic environment. However, the early developmental toxicity of MP to non-target species, especially aquatic vertebrates, has not been thoroughly investigated. In this study, zebrafish embryos were treated with 2.5, 5, or 10 mg/L of MP solution until 72 h post-fertilization (hpf). The results showed that MP exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Astaxanthin could rescue MP-induced heart development defects by down-regulating oxidative stress. These findings suggest that MP induces cardiac developmental toxicity and provides additional evidence of MP toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Haoze Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Anli Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| |
Collapse
|
14
|
Akerberg AA, Trembley M, Butty V, Schwertner A, Zhao L, Beerens M, Liu X, Mahamdeh M, Yuan S, Boyer L, MacRae C, Nguyen C, Pu WT, Burns CE, Burns CG. RBPMS2 Is a Myocardial-Enriched Splicing Regulator Required for Cardiac Function. Circ Res 2022; 131:980-1000. [PMID: 36367103 PMCID: PMC9770155 DOI: 10.1161/circresaha.122.321728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND RBPs (RNA-binding proteins) perform indispensable functions in the post-transcriptional regulation of gene expression. Numerous RBPs have been implicated in cardiac development or physiology based on gene knockout studies and the identification of pathogenic RBP gene mutations in monogenic heart disorders. The discovery and characterization of additional RBPs performing indispensable functions in the heart will advance basic and translational cardiovascular research. METHODS We performed a differential expression screen in zebrafish embryos to identify genes enriched in nkx2.5-positive cardiomyocytes or cardiopharyngeal progenitors compared to nkx2.5-negative cells from the same embryos. We investigated the myocardial-enriched gene RNA-binding protein with multiple splicing (variants) 2 [RBPMS2)] by generating and characterizing rbpms2 knockout zebrafish and human cardiomyocytes derived from RBPMS2-deficient induced pluripotent stem cells. RESULTS We identified 1848 genes enriched in the nkx2.5-positive population. Among the most highly enriched genes, most with well-established functions in the heart, we discovered the ohnologs rbpms2a and rbpms2b, which encode an evolutionarily conserved RBP. Rbpms2 localizes selectively to cardiomyocytes during zebrafish heart development and strong cardiomyocyte expression persists into adulthood. Rbpms2-deficient embryos suffer from early cardiac dysfunction characterized by reduced ejection fraction. The functional deficit is accompanied by myofibril disarray, altered calcium handling, and differential alternative splicing events in mutant cardiomyocytes. These phenotypes are also observed in RBPMS2-deficient human cardiomyocytes, indicative of conserved molecular and cellular function. RNA-sequencing and comparative analysis of genes mis-spliced in RBPMS2-deficient zebrafish and human cardiomyocytes uncovered a conserved network of 29 ortholog pairs that require RBPMS2 for alternative splicing regulation, including RBFOX2, SLC8A1, and MYBPC3. CONCLUSIONS Our study identifies RBPMS2 as a conserved regulator of alternative splicing, myofibrillar organization, and calcium handling in zebrafish and human cardiomyocytes.
Collapse
Affiliation(s)
- Alexander A. Akerberg
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Michael Trembley
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Vincent Butty
- BioMicroCenter, Department of Biology (V.B.), Massachusetts Institute of Technology, Cambridge‚ MA
- Department of Biology (V.B., L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
| | - Asya Schwertner
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Long Zhao
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Manu Beerens
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (M.B., C.M.)
| | - Xujie Liu
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Mohammed Mahamdeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Shiaulou Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| | - Laurie Boyer
- Department of Biology (V.B., L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
- Department of Biological Engineering (L.B.), Massachusetts Institute of Technology, Cambridge‚ MA
| | - Calum MacRae
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (M.B., C.M.)
| | - Christopher Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Innovation Research Center, Heart Vascular & Thoracic Institute, Cleveland Clinic‚ Cleveland‚ OH (C.N.)
| | - William T. Pu
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Harvard Stem Cell Institute, Cambridge, MA (W.T.P., C.E.B.)
| | - Caroline E. Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
- Harvard Stem Cell Institute, Cambridge, MA (W.T.P., C.E.B.)
| | - C. Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children’s Hospital, Boston‚ MA (A.A.A., M.T., X.L., W.T.P., C.E.B., C.G.B.)
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown‚ MA (A.A.A., A.S., L.Z., M.M., S.Y., C.N., C.E.B., C.G.B.)
- Harvard Medical School, Boston, MA (A.A.A., M.T., A.S., L.Z., M.B., X.L., M.M., S.Y., C.M., C.N., W.T.P., C.E.B., C.G.B.)
| |
Collapse
|
15
|
Collective cell migration during optic cup formation features changing cell-matrix interactions linked to matrix topology. Curr Biol 2022; 32:4817-4831.e9. [PMID: 36208624 DOI: 10.1016/j.cub.2022.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
Cell migration is crucial for organismal development and shapes organisms in health and disease. Although a lot of research has revealed the role of intracellular components and extracellular signaling in driving single and collective cell migration, the influence of physical properties of the tissue and the environment on migration phenomena in vivo remains less explored. In particular, the role of the extracellular matrix (ECM), which many cells move upon, is currently unclear. To overcome this gap, we use zebrafish optic cup formation, and by combining novel transgenic lines and image analysis pipelines, we study how ECM properties influence cell migration in vivo. We show that collectively migrating rim cells actively move over an immobile extracellular matrix. These cell movements require cryptic lamellipodia that are extended in the direction of migration. Quantitative analysis of matrix properties revealed that the topology of the matrix changes along the migration path. These changes in matrix topologies are accompanied by changes in the dynamics of cell-matrix interactions. Experiments and theoretical modeling suggest that matrix porosity could be linked to efficient migration. Indeed, interfering with matrix topology by increasing its porosity results in a loss of cryptic lamellipodia, less-directed cell-matrix interactions, and overall inefficient migration. Thus, matrix topology is linked to the dynamics of cell-matrix interactions and the efficiency of directed collective rim cell migration during vertebrate optic cup morphogenesis.
Collapse
|
16
|
Han X, Xu X, Yu T, Li M, Liu Y, Lai J, Mao H, Hu C, Wang S. Diflubenzuron Induces Cardiotoxicity in Zebrafish Embryos. Int J Mol Sci 2022; 23:11932. [PMID: 36233243 PMCID: PMC9570284 DOI: 10.3390/ijms231911932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Diflubenzuron is an insecticide that serves as a chitin inhibitor to restrict the growth of many harmful larvae, including mosquito larvae, cotton bollworm and flies. The residue of diflubenzuron is often detected in aquaculture, but its potential toxicity to aquatic organisms is still obscure. In this study, zebrafish embryos (from 6 h to 96 h post-fertilization, hpf) were exposed to different concentrations of diflubenzuron (0, 0.5, 1.5, 2.5, 3.5 and 4.5 mg/L), and the morphologic changes, mortality rate, hatchability rate and average heart rate were calculated. Diflubenzuron exposure increased the distance between the venous sinus and bulbar artery (SV-BA), inhibited proliferation of myocardial cells and damaged vascular development. In addition, diflubenzuron exposure also induced contents of reactive oxygen species (ROS) and malondialdehyde (MDA) and inhibited the activity of antioxidants, including SOD (superoxide dismutase) and CAT (catalase). Moreover, acridine orange (AO) staining showed that diflubenzuron exposure increased the apoptotic cells in the heart. Q-PCR also indicated that diflubenzuron exposure promoted the expression of apoptosis-related genes (bax, bcl2, p53, caspase3 and caspase9). However, the expression of some heart-related genes were inhibited. The oxidative stress-induced apoptosis damaged the cardiac development of zebrafish embryos. Therefore, diflubenzuron exposure induced severe cardiotoxicity in zebrafish embryos. The results contribute to a more comprehensive understanding of the safety use of diflubenzuron.
Collapse
Affiliation(s)
- Xue Han
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Tingting Yu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Meifeng Li
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yulong Liu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jingli Lai
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Shanghong Wang
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
17
|
Sankar S, Jayabalan M, Venkatesh S, Ibrahim M. Effect of hyperglycemia on tbx5a and nppa gene expression and its correlation to structural and functional changes in developing zebrafish heart. Cell Biol Int 2022; 46:2173-2184. [PMID: 36069519 DOI: 10.1002/cbin.11901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
The objective of the current study is to analyze the effects of gestational diabetes on structural and functional changes in correlation with these two essential regulators of developing hearts in vivo using zebrafish embryos. We employed fertilized zebrafish embryos exposed to a hyperglycemic condition of 25 mM glucose for 96 h postfertilization. The embryos were subjected to various structural and functional analyses in a time-course manner. The data showed that exposure to high glucose significantly affected the embryo's size, heart length, heart rate, and looping of the heart compared to the control. Further, we observed an increased incidence of ventricular standstill and valvular regurgitation with a marked reduction of peripheral blood flow in the high glucose-exposed group compared to the control. In addition, the histological data showed that the high-glucose exposure markedly reduced the thickness of the wall and the number of cardiomyocytes in both atrium and ventricles. We also observed striking alterations in the pericardium like edema, increase in diameter with thinning of the wall compared to the control group. Interestingly, the expression of tbx5a and nppa was increased in the early development and found to be repressed in the later stage of development in the hyperglycemic group compared to the control. In conclusion, the developing heart is more susceptible to hyperglycemia in the womb, thereby showing various developmental defects possibly by altering the expression of crucial gene regulators such as tbx5a and nppa.
Collapse
Affiliation(s)
- Suruthi Sankar
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Monisha Jayabalan
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Sundararajan Venkatesh
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Muhammed Ibrahim
- Department of Anatomy, Dr. ALM Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
18
|
Pentachloronitrobenzene Reduces the Proliferative Capacity of Zebrafish Embryonic Cardiomyocytes via Oxidative Stress. TOXICS 2022; 10:toxics10060299. [PMID: 35736907 PMCID: PMC9231182 DOI: 10.3390/toxics10060299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022]
Abstract
Pentachloronitrobenzene (PCNB) is an organochlorine protective fungicide mainly used as a soil and seed fungicide. Currently, there are few reports on the toxicity of PCNB to zebrafish embryo. Here, we evaluated the toxicity of PCNB in aquatic vertebrates using a zebrafish model. Exposure of zebrafish embryos to PCNB at concentrations of 0.25 mg/L, 0.5 mg/L, and 0.75 mg/L from 6 hpf to 72 hpf resulted in abnormal embryonic development, including cardiac malformation, pericardial edema, decreased heart rate, decreased blood flow velocity, deposition at yolk sac, shortened body length, and increased distance between venous sinus and arterial bulb (SV-BA). The expression of genes related to cardiac development was disordered. However, due to the unstable embryo status in the 0.75 mg/L exposure concentration group, the effect of PCNB on the expression levels of cardiac-related genes was not concentration-dependent. We found that PCNB increased reactive oxygen species stress levels in zebrafish, increased malondialdehyde (MDA) content and catalase (CAT) activity, and decreased superoxide dismutase (SOD) activity. The increased level of oxidative stress reduced the proliferation ability of zebrafish cardiomyocytes, and the expressions of zebrafish proliferation-related genes such as cdk-2, cdk-6, ccnd1, and ccne1 were significantly down-regulated. Astaxanthin (AST) attenuates PCNB-induced reduction in zebrafish cardiomyocyte proliferation by reducing oxidative stress levels. Our study shows that PCNB can cause severe oxidative stress in zebrafish, thereby reducing the proliferative capacity of cardiomyocytes, resulting in zebrafish cardiotoxicity.
Collapse
|
19
|
Amini R, Bhatnagar A, Schlüßler R, Möllmert S, Guck J, Norden C. Amoeboid-like migration ensures correct horizontal cell layer formation in the developing vertebrate retina. eLife 2022; 11:e76408. [PMID: 35639083 PMCID: PMC9208757 DOI: 10.7554/elife.76408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Migration of cells in the developing brain is integral for the establishment of neural circuits and function of the central nervous system. While migration modes during which neurons employ predetermined directional guidance of either preexisting neuronal processes or underlying cells have been well explored, less is known about how cells featuring multipolar morphology migrate in the dense environment of the developing brain. To address this, we here investigated multipolar migration of horizontal cells in the zebrafish retina. We found that these cells feature several hallmarks of amoeboid-like migration that enable them to tailor their movements to the spatial constraints of the crowded retina. These hallmarks include cell and nuclear shape changes, as well as persistent rearward polarization of stable F-actin. Interference with the organization of the developing retina by changing nuclear properties or overall tissue architecture hampers efficient horizontal cell migration and layer formation showing that cell-tissue interplay is crucial for this process. In view of the high proportion of multipolar migration phenomena observed in brain development, the here uncovered amoeboid-like migration mode might be conserved in other areas of the developing nervous system.
Collapse
Affiliation(s)
- Rana Amini
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Archit Bhatnagar
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Raimund Schlüßler
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Stephanie Möllmert
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
- Physics of Life, Technische Universität DresdenDresdenGermany
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6OeirasPortugal
| |
Collapse
|
20
|
Capon SJ, Uribe V, Dominado N, Ehrlich O, Smith KA. Endocardial identity is established during early somitogenesis by Bmp signalling acting upstream of npas4l and etv2. Development 2022; 149:275317. [PMID: 35531980 PMCID: PMC9148566 DOI: 10.1242/dev.190421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/28/2022] [Indexed: 12/28/2022]
Abstract
The endocardium plays important roles in the development and function of the vertebrate heart; however, few molecular markers of this tissue have been identified and little is known about what regulates its differentiation. Here, we describe the Gt(SAGFF27C); Tg(4xUAS:egfp) line as a marker of endocardial development in zebrafish. Transcriptomic comparison between endocardium and pan-endothelium confirms molecular distinction between these populations and time-course analysis suggests differentiation as early as eight somites. To investigate what regulates endocardial identity, we employed npas4l, etv2 and scl loss-of-function models. Endocardial expression is lost in npas4l mutants, significantly reduced in etv2 mutants and only modestly affected upon scl loss-of-function. Bmp signalling was also examined: overactivation of Bmp signalling increased endocardial expression, whereas Bmp inhibition decreased expression. Finally, epistasis experiments showed that overactivation of Bmp signalling was incapable of restoring endocardial expression in etv2 mutants. By contrast, overexpression of either npas4l or etv2 was sufficient to rescue endocardial expression upon Bmp inhibition. Together, these results describe the differentiation of the endocardium, distinct from vasculature, and place npas4l and etv2 downstream of Bmp signalling in regulating its differentiation. Summary: A zebrafish transgenic reporter of the endocardium is identified, permitting transcriptomic analysis and identification of new endocardial markers. Epistasis experiments demonstrate npas4l and etv2 act downstream of Bmp signalling to regulate endocardial differentiation.
Collapse
Affiliation(s)
- Samuel J Capon
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Veronica Uribe
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nicole Dominado
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ophelia Ehrlich
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Department of Anatomy & Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
21
|
Halawa S, Latif N, Tseng YT, Ibrahim AM, Chester AH, Moustafa A, Aguib Y, Yacoub MH. Profiling Genome-Wide DNA Methylation Patterns in Human Aortic and Mitral Valves. Front Cardiovasc Med 2022; 9:840647. [PMID: 35463757 PMCID: PMC9019152 DOI: 10.3389/fcvm.2022.840647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/11/2022] [Indexed: 12/05/2022] Open
Abstract
Cardiac valves exhibit highly complex structures and specialized functions that include dynamic interactions between cells, extracellular matrix (ECM) and their hemodynamic environment. Valvular gene expression is tightly regulated by a variety of mechanisms including epigenetic factors such as histone modifications, RNA-based mechanisms and DNA methylation. To date, methylation fingerprints of non-diseased human aortic and mitral valves have not been studied. In this work we analyzed the differential methylation profiles of 12 non-diseased aortic and mitral valve tissue samples (in matched pairs). Analysis of methylation data [reduced representation bisulfite sequencing (RRBS)] of 16,101 promoters genome-wide revealed 584 differentially methylated (DM) promoters, of which 13 were reported in endothelial mesenchymal trans-differentiation (EMT), 37 in aortic and mitral valve disease and 7 in ECM remodeling. Both functional classification as well as network analysis showed that the genes associated with the DM promoters were enriched for WNT-, Cadherin-, Endothelin-, PDGF-, HIF-1 and VEGF- signaling implicated in valvular physiology and pathophysiology. Additional enrichment was detected for TGFB-, NOTCH- and Integrin- signaling involved in EMT as well as ECM remodeling. This data provides the first insight into differential regulation of human aortic and mitral valve tissue and identifies candidate genes linked to DM promoters. Our work will improve the understanding of valve biology, valve tissue engineering approaches and contributes to the identification of relevant drug targets.
Collapse
Affiliation(s)
- Sarah Halawa
- Aswan Heart Centre, Aswan, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
- Sarah Halawa
| | - Najma Latif
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Yuan-Tsan Tseng
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Ayman M. Ibrahim
- Aswan Heart Centre, Aswan, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Adrian H. Chester
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Ahmed Moustafa
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
- Department of Biology, American University in Cairo, New Cairo, Egypt
| | - Yasmine Aguib
- Aswan Heart Centre, Aswan, Egypt
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- Yasmine Aguib
| | - Magdi H. Yacoub
- Aswan Heart Centre, Aswan, Egypt
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- *Correspondence: Magdi H. Yacoub
| |
Collapse
|
22
|
Lv F, Ge X, Qian P, Lu X, Liu D, Chen C. Neuron navigator 3 (NAV3) is required for heart development in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:173-183. [PMID: 35039994 DOI: 10.1007/s10695-022-01049-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
As a tightly controlled biological process, cardiogenesis requires the specification and migration of a suite of cell types to form a particular three-dimensional configuration of the heart. Many genetic factors are involved in the formation and maturation of the heart, and any genetic mutations may result in severe cardiac failures. The neuron navigator (NAV) family consists of three vertebrate homologs (NAV1, NAV2, and NAV3) of the neural guidance molecule uncoordinated-53 (UNC-53) in Caenorhabditis elegans. Although they are recognized as neural regulators, their expressions are also detected in many organs, including the heart, kidney, and liver. However, the functions of NAVs, regardless of neural guidance, remain largely unexplored. In our study, we found that nav3 gene was expressed in the cardiac region of zebrafish embryos from 24 to 48 h post-fertilization (hpf) by means of in situ hybridization (ISH) assay. A CRISPR/Cas9-based genome editing method was utilized to delete the nav3 gene in zebrafish and loss of function of Nav3 resulted in a severe deficiency in its cardiac morphology and structure. The similar phenotypic defects of the knockout mutants could recur by nav3 morpholino injection and be rescued by nav3 mRNA injection. Dual-color fluorescence imaging of ventricle and atrium markers further confirmed the disruption of the heart development in nav3-deleted mutants. Although the heart rate was not affected by the deletion of nav3, the heartbeat intensity was decreased in the mutants. All these findings indicate that Nav3 was required for cardiogenesis in developing zebrafish embryos.
Collapse
Affiliation(s)
- Feng Lv
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China
| | - Xiaojuan Ge
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China
| | - Peipei Qian
- Medical School, Nantong University, Nantong, China
| | - Xiaofeng Lu
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China
| | - Dong Liu
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China.
| | - Changsheng Chen
- Nantong Science and Technology College, School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
23
|
Cardiac forces regulate zebrafish heart valve delamination by modulating Nfat signaling. PLoS Biol 2022; 20:e3001505. [PMID: 35030171 PMCID: PMC8794269 DOI: 10.1371/journal.pbio.3001505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2022] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
In the clinic, most cases of congenital heart valve defects are thought to arise through errors that occur after the endothelial–mesenchymal transition (EndoMT) stage of valve development. Although mechanical forces caused by heartbeat are essential modulators of cardiovascular development, their role in these later developmental events is poorly understood. To address this question, we used the zebrafish superior atrioventricular valve (AV) as a model. We found that cellularized cushions of the superior atrioventricular canal (AVC) morph into valve leaflets via mesenchymal–endothelial transition (MEndoT) and tissue sheet delamination. Defects in delamination result in thickened, hyperplastic valves, and reduced heart function. Mechanical, chemical, and genetic perturbation of cardiac forces showed that mechanical stimuli are important regulators of valve delamination. Mechanistically, we show that forces modulate Nfatc activity to control delamination. Together, our results establish the cellular and molecular signature of cardiac valve delamination in vivo and demonstrate the continuous regulatory role of mechanical forces and blood flow during valve formation. Why do developing zebrafish atrioventricular heart valves become hyperplastic under certain hemodynamic conditions? This study suggests that part of the answer lies in how the mechanosensitive Nfat pathway regulates the valve mesenchymal-to-endothelial transition.
Collapse
|
24
|
Derrick CJ, Sánchez-Posada J, Hussein F, Tessadori F, Pollitt EJG, Savage AM, Wilkinson RN, Chico TJ, van Eeden FJ, Bakkers J, Noël ES. Asymmetric Hapln1a drives regionalized cardiac ECM expansion and promotes heart morphogenesis in zebrafish development. Cardiovasc Res 2022; 118:226-240. [PMID: 33616638 PMCID: PMC8752364 DOI: 10.1093/cvr/cvab004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/08/2021] [Indexed: 01/24/2023] Open
Abstract
AIMS Vertebrate heart development requires the complex morphogenesis of a linear tube to form the mature organ, a process essential for correct cardiac form and function, requiring coordination of embryonic laterality, cardiac growth, and regionalized cellular changes. While previous studies have demonstrated broad requirements for extracellular matrix (ECM) components in cardiac morphogenesis, we hypothesized that ECM regionalization may fine tune cardiac shape during heart development. METHODS AND RESULTS Using live in vivo light sheet imaging of zebrafish embryos, we describe a left-sided expansion of the ECM between the myocardium and endocardium prior to the onset of heart looping and chamber ballooning. Analysis using an ECM sensor revealed the cardiac ECM is further regionalized along the atrioventricular axis. Spatial transcriptomic analysis of gene expression in the heart tube identified candidate genes that may drive ECM expansion. This approach identified regionalized expression of hapln1a, encoding an ECM cross-linking protein. Validation of transcriptomic data by in situ hybridization confirmed regionalized hapln1a expression in the heart, with highest levels of expression in the future atrium and on the left side of the tube, overlapping with the observed ECM expansion. Analysis of CRISPR-Cas9-generated hapln1a mutants revealed a reduction in atrial size and reduced chamber ballooning. Loss-of-function analysis demonstrated that ECM expansion is dependent upon Hapln1a, together supporting a role for Hapln1a in regionalized ECM modulation and cardiac morphogenesis. Analysis of hapln1a expression in zebrafish mutants with randomized or absent embryonic left-right asymmetry revealed that laterality cues position hapln1a-expressing cells asymmetrically in the left side of the heart tube. CONCLUSION We identify a regionalized ECM expansion in the heart tube which promotes correct heart development, and propose a novel model whereby embryonic laterality cues orient the axis of ECM asymmetry in the heart, suggesting these two pathways interact to promote robust cardiac morphogenesis.
Collapse
Affiliation(s)
- Christopher J Derrick
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Juliana Sánchez-Posada
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Farah Hussein
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Federico Tessadori
- Hubrecht Institute for Developmental and Stem Cell Biology, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands
| | - Eric J G Pollitt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Aaron M Savage
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Robert N Wilkinson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Timothy J Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Fredericus J van Eeden
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Jeroen Bakkers
- Hubrecht Institute for Developmental and Stem Cell Biology, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands
| | - Emily S Noël
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
25
|
Ma J, Huang Y, Peng Y, Xu Z, Wang Z, Chen X, Xie S, Jiang P, Zhong K, Lu H. Bifenazate exposure induces cardiotoxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116539. [PMID: 33549839 DOI: 10.1016/j.envpol.2021.116539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/24/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Bifenazate is a novel acaricide for selective foliar spraying and is widely used to control mites in agricultural production. However, its toxicity to aquatic organisms is unknown. Here, a zebrafish model was used to study bifenazate toxicity to aquatic organisms. Exposure to bifenazate was found to cause severe cardiotoxicity in zebrafish embryos, along with disorders in the gene expression related to heart development. Bifenazate also caused oxidative stress. Cardiotoxicity caused by bifenazate was partially rescued by astaxanthin (an antioxidant), accompanied by cardiac genes and oxidative stress-related indicators becoming normalized. Our results showed that exposure to bifenazate can significantly change the ATPase activity and gene expression levels of the calcium signaling pathway. These led to heart failure, in which the blood accumulated outside the heart without entering it, eventually leading to death. The results indicated that bifenazate exposure caused cardiotoxicity in zebrafish embryos through the induction of oxidative stress and inhibition of the calcium signaling pathway.
Collapse
Affiliation(s)
- Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000 Jiangxi, China
| | - Yuyang Peng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zhaopeng Xu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ziqin Wang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaobei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuling Xie
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ping Jiang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000 Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
26
|
Abstract
The developing heart is formed of two tissue layers separated by an extracellular matrix (ECM) that provides chemical and physical signals to cardiac cells. While deposition of specific ECM components creates matrix diversity, the cardiac ECM is also dynamic, with modification and degradation playing important roles in ECM maturation and function. In this Review, we discuss the spatiotemporal changes in ECM composition during cardiac development that support distinct aspects of heart morphogenesis. We highlight conserved requirements for specific ECM components in human cardiac development, and discuss emerging evidence of a central role for the ECM in promoting heart regeneration.
Collapse
Affiliation(s)
| | - Emily S Noël
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
27
|
Han CR, Wang H, Hoffmann V, Zerfas P, Kruhlak M, Cheng SY. Thyroid Hormone Receptor α Mutations Cause Heart Defects in Zebrafish. Thyroid 2021; 31:315-326. [PMID: 32762296 PMCID: PMC7891307 DOI: 10.1089/thy.2020.0332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Mutations of thyroid hormone receptor α1 (TRα1) cause resistance to thyroid hormone (RTHα). Patients exhibit growth retardation, delayed bone development, anemia, and bradycardia. By using mouse models of RTHα, much has been learned about the molecular actions of TRα1 mutants that underlie these abnormalities in adults. Using zebrafish models of RTHα that we have recently created, we aimed to understand how TRα1 mutants affect the heart function during this period. Methods: In contrast to human and mice, the thra gene is duplicated, thraa and thrab, in zebrafish. Using CRISPR/Cas9-mediated targeted mutagenesis, we created C-terminal mutations in each of two duplicated thra genes in zebrafish (thraa 8-bp insertion or thrab 1-bp insertion mutations). We recently showed that these mutant fish faithfully recapitulated growth retardation as found in patients and thra mutant mice. In the present study, we used histological analysis, gene expression profiles, confocal fluorescence, and transmission electron microscopy (TEM) to comprehensively analyze the phenotypic characteristics of mutant fish heart during development. Results: We found both a dilated atrium and an abnormally shaped ventricle in adult mutant fish. The retention of red blood cells in the two abnormal heart chambers, and the decreased circulating blood speed and reduced expression of contractile genes indicated weakened contractility in the heart of mutant fish. These abnormalities were detected in mutant fish as early as 35 days postfertilization (juveniles). Furthermore, the expression of genes associated with the sarcomere assembly was suppressed in the heart of mutant fish, resulting in abnormalities of sarcomere organization as revealed by TEM, suggesting that the abnormal sarcomere organization could underlie the bradycardia exhibited in mutant fish. Conclusions: Using a zebrafish model of RTHα, the present study demonstrated for the first time that TRα1 mutants could act to cause abnormal heart structure, weaken contractility, and disrupt sarcomere organization that affect heart functions. These findings provide new insights into the bradycardia found in RTHα patients.
Collapse
Affiliation(s)
- Cho Rong Han
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Wang
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria Hoffmann
- Diagnostic and Research Services Branch, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricia Zerfas
- Diagnostic and Research Services Branch, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Address correspondence to: Sheue-Yann Cheng, PhD, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5128, Bethesda, MD 20892-4264, USA
| |
Collapse
|
28
|
Man JCK, van Duijvenboden K, Krijger PHL, Hooijkaas IB, van der Made I, de Gier-de Vries C, Wakker V, Creemers EE, de Laat W, Boukens BJ, Christoffels VM. Genetic Dissection of a Super Enhancer Controlling the Nppa-Nppb Cluster in the Heart. Circ Res 2021; 128:115-129. [PMID: 33107387 DOI: 10.1161/circresaha.120.317045] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide), encoded by the clustered genes Nppa and Nppb, are important prognostic, diagnostic, and therapeutic proteins in cardiac disease. The spatiotemporal expression pattern and stress-induction of the Nppa and Nppb are tightly regulated, possibly involving their coregulation by an evolutionary conserved enhancer cluster. OBJECTIVE To explore the physiological functions of the enhancer cluster and elucidate the genomic mechanism underlying Nppa-Nppb coregulation in vivo. METHODS AND RESULTS By analyzing epigenetic data we uncovered an enhancer cluster with super enhancer characteristics upstream of Nppb. Using CRISPR/Cas9 genome editing, the enhancer cluster or parts thereof, Nppb and flanking regions or the entire genomic block spanning Nppa-Nppb, respectively, were deleted from the mouse genome. The impact on gene regulation and phenotype of the respective mouse lines was investigated by transcriptomic, epigenomic, and phenotypic analyses. The enhancer cluster was essential for prenatal and postnatal ventricular expression of Nppa and Nppb but not of any other gene. Enhancer cluster-deficient mice showed enlarged hearts before and after birth, similar to Nppa-Nppb compound knockout mice we generated. Analysis of the other deletion alleles indicated the enhancer cluster engages the promoters of Nppa and Nppb in a competitive rather than a cooperative mode, resulting in increased Nppa expression when Nppb and flanking sequences were deleted. The enhancer cluster maintained its active epigenetic state and selectivity when its target genes are absent. In enhancer cluster-deficient animals, Nppa was induced but remained low in the postmyocardial infarction border zone and in the hypertrophic ventricle, involving regulatory sequences proximal to Nppa. CONCLUSIONS Coordinated ventricular expression of Nppa and Nppb is controlled in a competitive manner by a shared super enhancer, which is also required to augment stress-induced expression and to prevent premature hypertrophy.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Binding Sites
- Binding, Competitive
- CRISPR-Cas Systems
- Cell Line
- Disease Models, Animal
- Enhancer Elements, Genetic
- Epigenesis, Genetic
- Gene Expression Regulation, Developmental
- Humans
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Mice, Knockout
- Multigene Family
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Promoter Regions, Genetic
- Mice
Collapse
Affiliation(s)
- Joyce C K Man
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (P.H.L.K., W.d.L.)
| | - Ingeborg B Hooijkaas
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Esther E Creemers
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (P.H.L.K., W.d.L.)
| | - Bastiaan J Boukens
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| |
Collapse
|
29
|
Li R, Zupanic A, Talikka M, Belcastro V, Madan S, Dörpinghaus J, Berg CV, Szostak J, Martin F, Peitsch MC, Hoeng J. Systems Toxicology Approach for Testing Chemical Cardiotoxicity in Larval Zebrafish. Chem Res Toxicol 2020; 33:2550-2564. [PMID: 32638588 DOI: 10.1021/acs.chemrestox.0c00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcriptomic approaches can give insight into molecular mechanisms underlying chemical toxicity and are increasingly being used as part of toxicological assessments. To aid the interpretation of transcriptomic data, we have developed a systems toxicology method that relies on a computable biological network model. We created the first network model describing cardiotoxicity in zebrafish larvae-a valuable emerging model species in testing cardiotoxicity associated with drugs and chemicals. The network is based on scientific literature and represents hierarchical molecular pathways that lead from receptor activation to cardiac pathologies. To test the ability of our approach to detect cardiotoxic outcomes from transcriptomic data, we have selected three publicly available data sets that reported chemically induced heart pathologies in zebrafish larvae for five different chemicals. Network-based analysis detected cardiac perturbations for four out of five chemicals tested, for two of them using transcriptomic data collected up to 3 days before the onset of a visible phenotype. Additionally, we identified distinct molecular pathways that were activated by the different chemicals. The results demonstrate that the proposed integrational method can be used for evaluating the effects of chemicals on the zebrafish cardiac function and, together with observed cardiac apical end points, can provide a comprehensive method for connecting molecular events to organ toxicity. The computable network model is freely available and may be used to generate mechanistic hypotheses and quantifiable perturbation values from any zebrafish transcriptomic data.
Collapse
Affiliation(s)
- Roman Li
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland.,PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Anze Zupanic
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Marja Talikka
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Vincenzo Belcastro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sumit Madan
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin 53754, Germany
| | - Jens Dörpinghaus
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin 53754, Germany
| | - Colette Vom Berg
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
30
|
Okuda KS, Hogan BM. Endothelial Cell Dynamics in Vascular Development: Insights From Live-Imaging in Zebrafish. Front Physiol 2020; 11:842. [PMID: 32792978 PMCID: PMC7387577 DOI: 10.3389/fphys.2020.00842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/23/2020] [Indexed: 01/16/2023] Open
Abstract
The formation of the vertebrate vasculature involves the acquisition of endothelial cell identities, sprouting, migration, remodeling and maturation of functional vessel networks. To understand the cellular and molecular processes that drive vascular development, live-imaging of dynamic cellular events in the zebrafish embryo have proven highly informative. This review focusses on recent advances, new tools and new insights from imaging studies in vascular cell biology using zebrafish as a model system.
Collapse
Affiliation(s)
- Kazuhide S Okuda
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Gunawan F, Gentile A, Gauvrit S, Stainier DYR, Bensimon-Brito A. Nfatc1 Promotes Interstitial Cell Formation During Cardiac Valve Development in Zebrafish. Circ Res 2020; 126:968-984. [PMID: 32070236 DOI: 10.1161/circresaha.119.315992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE The transcription factor NFATC1 (nuclear factor of activated T-cell 1) has been implicated in cardiac valve formation in humans and mice, but we know little about the underlying mechanisms. To gain mechanistic understanding of cardiac valve formation at single-cell resolution and insights into the role of NFATC1 in this process, we used the zebrafish model as it offers unique attributes for live imaging and facile genetics. OBJECTIVE To understand the role of Nfatc1 in cardiac valve formation. METHODS AND RESULTS Using the zebrafish atrioventricular valve, we focus on the valve interstitial cells (VICs), which confer biomechanical strength to the cardiac valve leaflets. We find that initially atrioventricular endocardial cells migrate collectively into the cardiac jelly to form a bilayered structure; subsequently, the cells that led this migration invade the ECM (extracellular matrix) between the 2 endocardial cell monolayers, undergo endothelial-to-mesenchymal transition as marked by loss of intercellular adhesion, and differentiate into VICs. These cells proliferate and are joined by a few neural crest-derived cells. VIC expansion and a switch from a promigratory to an elastic ECM drive valve leaflet elongation. Functional analysis of Nfatc1 reveals its requirement during VIC development. Zebrafish nfatc1 mutants form significantly fewer VICs due to reduced proliferation and impaired recruitment of endocardial and neural crest cells during the early stages of VIC development. With high-speed microscopy and echocardiography, we show that reduced VIC formation correlates with valvular dysfunction and severe retrograde blood flow that persist into adulthood. Analysis of downstream effectors reveals that Nfatc1 promotes the expression of twist1b-a well-known regulator of epithelial-to-mesenchymal transition. CONCLUSIONS Our study sheds light on the function of Nfatc1 in zebrafish cardiac valve development and reveals its role in VIC formation. It also further establishes the zebrafish as a powerful model to carry out longitudinal studies of valve formation and function.
Collapse
Affiliation(s)
- Felix Gunawan
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.).,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim (F.G., S.G., D.Y.R.S., A.B.-B.)
| | - Alessandra Gentile
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.)
| | - Sébastien Gauvrit
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.).,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim (F.G., S.G., D.Y.R.S., A.B.-B.)
| | - Didier Y R Stainier
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.).,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim (F.G., S.G., D.Y.R.S., A.B.-B.)
| | - Anabela Bensimon-Brito
- From the Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (F.G., A.G., S.G., D.Y.R.S., A.B.-B.).,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim (F.G., S.G., D.Y.R.S., A.B.-B.)
| |
Collapse
|
32
|
Grassini DR, da Silva J, Hall TE, Baillie GJ, Simons C, Parton RG, Hogan BM, Smith KA. Myosin Vb is required for correct trafficking of N-cadherin and cardiac chamber ballooning. Dev Dyn 2019; 248:284-295. [PMID: 30801852 DOI: 10.1002/dvdy.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND During heart morphogenesis, the cardiac chambers undergo ballooning: a process involving regionalized elongation of cardiomyocytes. Cardiomyocyte shape changes require reorganization of the actin cytoskeleton; however, the genetic regulation of this process is not well understood. RESULTS From a forward genetic screen, we identified the zebrafish uq 23ks mutant which manifests chamber ballooning defects. Whole-genome sequencing-mapping identified a truncating mutation in the gene, myo5b. myo5b encodes an atypical myosin required for endosome recycling and, consistent with this, increased vesicles were observed in myo5b mutant cardiomyocytes. Expression of RFP-Rab11a (a recycling endosome marker) confirmed increased recycling endosomes in cardiomyocytes of myo5b mutants. To investigate potential cargo of MyoVb-associated vesicles, we examined the adherens junction protein, N-cadherin. N-cadherin appeared mispatterned at cell junctions, and an increase in the number of intracellular particles was also apparent. Co-localization with RFP-Rab11a confirmed increased N-cadherin-positive recycling endosomes, demonstrating N-cadherin trafficking is perturbed in myo5b mutants. Finally, phalloidin staining showed disorganized F-actin in myo5b cardiomyocytes, suggesting the cytoskeleton fails to remodel, obstructing chamber ballooning. CONCLUSIONS MyoVb is required for cardiomyocyte endosomal recycling and appropriate N-cadherin localization during the onset of chamber ballooning. Cardiomyocytes lacking MyoVb are unable to reorganize their actin cytoskeleton, resulting in failed chamber ballooning. Developmental Dynamics 248:284-295, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniela R Grassini
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jason da Silva
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Gregory J Baillie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Cas Simons
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin M Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kelly A Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
33
|
Rasouli SJ, El-Brolosy M, Tsedeke AT, Bensimon-Brito A, Ghanbari P, Maischein HM, Kuenne C, Stainier DY. The flow responsive transcription factor Klf2 is required for myocardial wall integrity by modulating Fgf signaling. eLife 2018; 7:e38889. [PMID: 30592462 PMCID: PMC6329608 DOI: 10.7554/elife.38889] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/24/2018] [Indexed: 12/17/2022] Open
Abstract
Complex interplay between cardiac tissues is crucial for their integrity. The flow responsive transcription factor KLF2, which is expressed in the endocardium, is vital for cardiovascular development but its exact role remains to be defined. To this end, we mutated both klf2 paralogues in zebrafish, and while single mutants exhibit no obvious phenotype, double mutants display a novel phenotype of cardiomyocyte extrusion towards the abluminal side. This extrusion requires cardiac contractility and correlates with the mislocalization of N-cadherin from the lateral to the apical side of cardiomyocytes. Transgenic rescue data show that klf2 expression in endothelium, but not myocardium, prevents this cardiomyocyte extrusion phenotype. Transcriptome analysis of klf2 mutant hearts reveals that Fgf signaling is affected, and accordingly, we find that inhibition of Fgf signaling in wild-type animals can lead to abluminal cardiomyocyte extrusion. These studies provide new insights into how Klf2 regulates cardiovascular development and specifically myocardial wall integrity.
Collapse
Affiliation(s)
- Seyed Javad Rasouli
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Mohamed El-Brolosy
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Ayele Taddese Tsedeke
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Anabela Bensimon-Brito
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Parisa Ghanbari
- Department of Cardiac Development and RemodelingMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Hans-Martin Maischein
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Carsten Kuenne
- Bioinformatics Core UnitMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Didier Y Stainier
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| |
Collapse
|