1
|
Zhou B, Hu J, Yu Y, Sun L, Wang Y, Zhang Q, Jiang Y, Wang O, Xing X, Xia W, Wang L, Zhang G, Li M. Novel Aptamers Targeting Sclerostin Loop3 Improve Skeletal and Muscle Properties Without Adverse Cardiovascular Effects in Orchiectomized Mice. J Cachexia Sarcopenia Muscle 2025; 16:e13831. [PMID: 40464222 PMCID: PMC12134771 DOI: 10.1002/jcsm.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/07/2025] [Accepted: 04/06/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND The Wnt/β-catenin pathway and its bone-specific inhibitor, sclerostin, play important roles in skeletal development and homeostasis. The humanized sclerostin antibody, romosozumab, can significantly increase bone mineral density (BMD) of patients with osteoporosis, but it may also increase cardiovascular adverse events, particularly in male patients. We try to investigate the effects of novel aptamers targeting the sclerostin loop3 on the skeleton and muscle of orchiectomized (ORX) mice. METHODS After 12 weeks of ORX surgery, mice were randomly assigned to receive treatment with sclerostin aptamers (Apc001OA or Apc001OA-d6), alendronate (ALN), teriparatide (PTH 1-34) or phosphate-buffered saline (PBS). After 12 weeks of treatment, skeletal and muscle properties and safety indicators were evaluated in detail. RESULTS Treatment with Apc001OA and Apc001OA-d6 significantly increased trabecular BMD at the femur by +11.9% and +17.1%, improved parameters of bone microarchitecture (BV/TV by +84.5% and +106.8%), bone strength (maximum load by +30.5% and +31.6%) and bone histological properties (all p < 0.05 vs. PBS group). The therapeutic effects were similar among Apc001OA, Apc001OA-d6, ALN and PTH 1-34 groups (all p > 0.05). After treatment with Apc001OA or Apc001OA-d6, serum sclerostin levels significantly decreased by 25.0% and 24.9% (p < 0.05 vs. PBS group). The expression levels of key genes in the Wnt/β-catenin pathway, Ctnnb1 and Lef1 significantly increased by 2.4- and 3.4-fold in the Apc001OA group and by 2.5- and 3.5-fold in the Apc001OA-d6 group (p < 0.05 vs. PBS group), indicating that the aptamers improved bone properties through activating Wnt/β-catenin pathway. Apc001OA and Apc001OA-d6 significantly improved rotarod latency (p < 0.05 vs. PBS group) of ORX mice, and Apc001OA-d6 could increase forelimb grip strength. Apc001OA, Apc001OA-d6 and PTH 1-34 improved histological properties of muscle in ORX mice. No lesions or pathological changes were observed in the heart, aortic roots, liver, spleen, lungs or kidneys. Immunohistochemistry revealed no abnormal staining of interleukin 6 (IL-6) and tumour necrosis factor-α (TNF-α) in the heart. There was no significant difference in serum concentrations of cardiac functional biomarkers, including creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), B-type natriuretic peptide (BNP) and inflammatory mediators (IL-6 and TNF-α) across all groups, indicating that Apc001OA and Apc001OA-d6 had no adverse cardiovascular effects in ORX mice. CONCLUSIONS The novel aptamers Apc001OA and Apc001OA-d6, targeting sclerostin loop3, could significantly increase BMD and improve bone microarchitecture, bone biomechanics, muscle function and histological properties of muscle and bone in ORX mice, without adverse cardiovascular effects. These aptamers may serve as potential agents for treating osteoporosis and sarcopenia in men.
Collapse
Affiliation(s)
- Bingna Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jing Hu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
| | - Lei Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yanye Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese MedicineHong Kong Baptist UniversityHong Kong SARChina
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
Mahenge CM, Akasheh RT, Kinder B, Nguyen XV, Kalam F, Cheng TYD. CT-Scan-Assessed Body Composition and Its Association with Tumor Protein Expression in Endometrial Cancer: The Role of Muscle and Adiposity Quantities. Cancers (Basel) 2024; 16:4222. [PMID: 39766121 PMCID: PMC11674723 DOI: 10.3390/cancers16244222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Endometrial cancer is strongly associated with obesity, and tumors often harbor mutations in major cancer signaling pathways. To inform the integration of body composition into targeted therapy paradigms, this hypothesis-generating study explores the association between muscle mass, body fat, and tumor proteomics. Methods: We analyzed data from 113 patients in The Cancer Genome Atlas (TCGA) and Cancer Proteomic Tumor Analysis Consortium (CPTAC) cohorts and their corresponding abdominal CT scans. Among these patients, tumor proteomics data were available for 45 patients, and 133 proteins were analyzed. Adiposity and muscle components were assessed at the L3 vertebral level on the CT scans. Patients were stratified into tertiles of muscle and fat mass and categorized into three groups: high muscle/low adiposity, high muscle/high adiposity, and low muscle/all adiposities. Linear and Cox regression models were adjusted for study cohort, stage, histology type, age, race, and ethnicity. Results: Compared with the high-muscle/low-adiposity group, both the high-muscle/high-adiposity (HR = 4.3, 95% CI = 1.0-29.0) and low-muscle (HR = 4.4, 95% CI = 1.3-14.9) groups experienced higher mortality. Low muscle was associated with higher expression of phospho-4EBP1(T37 and S65), phospho-GYS(S641) and phospho-MAPK(T202/Y204) but lower expression of ARID1A, CHK2, SYK, LCK, EEF2, CYCLIN B1, and FOXO3A. High muscle/high adiposity was associated with higher expression of phospho-4EBP1 (T37), phospho-GYS (S641), CHK1, PEA15, SMAD3, BAX, DJ1, GYS, PKM2, COMPLEX II Subunit 30, and phospho-P70S6K (T389) but with lower expression of CHK2, CRAF, MSH6, TUBERIN, PR, ERK2, beta-CATENIN, AKT, and S6. Conclusions: These findings demonstrate an association between body composition and proteins involved in key cancer signaling pathways, notably the PI3K/AKT/MTOR, MAPK/ERK, cell cycle regulation, DNA damage response, and mismatch repair pathways. These findings warrant further validation and assessment in relation to prognosis and outcomes in these patients.
Collapse
Affiliation(s)
- Cuthbert Mario Mahenge
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| | - Rand Talal Akasheh
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| | - Ben Kinder
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| | - Xuan Viet Nguyen
- Department of Radiology, College of Medicine, The Ohio State University, 395 W 12th Ave., Suite 486, Columbus, OH 43210, USA;
| | - Faiza Kalam
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| | - Ting-Yuan David Cheng
- Division of Cancer Control and Prevention, Department of Internal Medicine, College of Medicine, The Ohio State University, 3650 Olentangy River Rd., Suite 200, Columbus, OH 43214, USA; (C.M.M.); (R.T.A.); (F.K.)
| |
Collapse
|
3
|
Zhou X, Ding Y, Yang C, Li C, Su Z, Xu J, Qu C, Shi Y, Kang X. FHL3 gene regulates bovine skeletal muscle cell growth through the PI3K/Akt/mTOR signaling pathway. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101356. [PMID: 39549419 DOI: 10.1016/j.cbd.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Beef quality is a critical factor in evaluating the effectiveness of beef cattle production. Fiber types play key roles in determining muscle growth and meat quality characteristics. FHL3 is de novo expressed in skeletal muscle and is responsible for MyHC isoform expression in C2C12 cells. Nevertheless, the precise function of this factor in regulating the proliferation, differentiation, and fiber type of bovine skeletal muscle cells (BSMCs) have yet to be identified. This study aimed to investigate the impact of the FHL3 on BSMCs proliferation, differentiation, and muscle fiber types. The results revealed that the FHL3 promoted BSMCs proliferation, inhibited differentiation, increased type II muscle fiber expression, and decreased type I muscle fiber expression. Meanwhile, the FHL3 promoted the expression and phosphorylation levels of PI3K, Akt, and mTOR in the PI3K/Akt/mTOR signaling pathway, and inhibited the expression and phosphorylation levels of PI3K, Akt, and mTOR after treatment with the pathway inhibitor LY294002, furthermore, it promoted differentiation and inhibited proliferation of BSMCs, while promoting the expression of type II muscle fibers and inhibiting the expression of type I muscle fibers. The results suggest that the FHL3 has an effect on promoting the proliferation and inhibiting the differentiation of BSMCs through the PI3K/Akt/mTOR signaling pathway, but the effect of the FHL3 on myofiber type conversion is not regulated by this pathway. The objective of this study is to enhance our understanding of the molecular function of FHL3 in the development of BSMCs.
Collapse
Affiliation(s)
- Xiaonan Zhou
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yanling Ding
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Chaoyun Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Chenglong Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zonghua Su
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Junjie Xu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Chang Qu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yuangang Shi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xiaolong Kang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| |
Collapse
|
4
|
Bagri KM, Pereira MG, Leichtweis KS, Abreu JG, Costa ML, Mermelstein C. Lysosomes accumulate at the perinuclear region of muscle cells during chick myogenesis. Cell Biol Int 2024; 48:1625-1636. [PMID: 39252384 DOI: 10.1002/cbin.12238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 09/11/2024]
Abstract
Lysosomes are involved in a myriad of cellular functions, such as degradation of macromolecules, endocytosis and exocytosis, modulation of several signaling pathways, and regulation of cell metabolism. To fulfill these diverse functions, lysosomes can undergo several dynamic changes in their content, size, pH, and location within cells. Here, we studied some of these parameters during embryonic chick skeletal muscle cells. We used an anti-lysosome-associated membrane protein 2 (LAMP2) antibody to specifically determine the intracellular localization of lysosomes in these cells. Our data shows that lysosomes are highly enriched in the perinuclear region of chick embryonic muscle cells. We also showed that the wingless signaling pathway (Wnt)/β-catenin signaling pathway can modulate the location of LAMP2 in chick myogenic cells. Our results highlight the role of lysosomes during muscle differentiation and particularly the presence of a subcellular population of lysosomes that are concentrated in the perinuclear region of muscle cells.
Collapse
Affiliation(s)
- Kayo Moreira Bagri
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miria Gomes Pereira
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Kamila Souto Leichtweis
- Laboratório de Embriologia de Vertebrados, Instituto de Ciências Biomédicas, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Jose G Abreu
- Laboratório de Embriologia de Vertebrados, Instituto de Ciências Biomédicas, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Cai H, Meng Z, Yu F. The involvement of ROS-regulated programmed cell death in hepatocellular carcinoma. Crit Rev Oncol Hematol 2024; 197:104361. [PMID: 38626849 DOI: 10.1016/j.critrevonc.2024.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Reactive oxidative species (ROS) is a crucial factor in the regulation of cellular biological activity and function, and aberrant levels of ROS can contribute to the development of a variety of diseases, particularly cancer. Numerous discoveries have affirmed that this process is strongly associated with "programmed cell death (PCD)," which refers to the suicide protection mechanism initiated by cells in response to external stimuli, such as apoptosis, autophagy, ferroptosis, etc. Research has demonstrated that ROS-induced PCD is crucial for the development of hepatocellular carcinoma (HCC). These activities serve a dual function in both facilitating and inhibiting cancer, suggesting the existence of a delicate balance within healthy cells that can be disrupted by the abnormal generation of reactive oxygen species (ROS), thereby influencing the eventual advancement or regression of a tumor. In this review, we summarize how ROS regulates PCD to influence the tumorigenesis and progression of HCC. Studying how ROS-induced PCD affects the progression of HCC at a molecular level can help develop better prevention and treatment methods and facilitate the design of more effective preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Hanchen Cai
- The First Afliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ziqi Meng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
6
|
Hao X, Fu Y, Li S, Nie J, Zhang B, Zhang H. Porcine transient receptor potential channel 1 (TRPC1) regulates muscle growth via the Wnt/β-catenin and Wnt/Ca 2+ pathways. Int J Biol Macromol 2024; 265:130855. [PMID: 38490377 DOI: 10.1016/j.ijbiomac.2024.130855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Transient receptor potential canonical (TRPC) channels allow the intracellular entry of Ca2+ and play important roles in several physio-pathological processes. In this study, we constructed transgenic mice expressing porcine TRPC1 (Tg-pTRPC1) to verify the effects of TRPC1 on skeletal muscle growth and elucidate the underlying mechanism. Porcine TRPC1 increased the muscle mass, fiber cross-sectional area, and exercise endurance of mice and accelerated muscle repair and regeneration. TRPC1 overexpression enhanced β-catenin expression and promoted myogenesis, which was partly reversed by inhibitors of β-catenin. TRPC1 facilitated the accumulation of intracellular Ca2+ and nuclear translocation of the NFATC2/NFATC2IP complex involved in the Wnt/Ca2+ pathway, promoting muscle growth. Paired related homeobox 1 (Prrx1) promoted the expression of TRPC1, NFATC2, and NFATC2IP that participate in the regulation of muscle growth. Taken together, our findings indicate that porcine TRPC1 promoted by Prrx1 could regulate muscle development through activating the canonical Wnt/β-catenin and non-canonical Wnt/Ca2+ pathways.
Collapse
Affiliation(s)
- Xin Hao
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Yu Fu
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Shixin Li
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Jingru Nie
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China.
| |
Collapse
|
7
|
Xie S, Liu Q, Fu C, Chen Y, Li M, Tian C, Li J, Han M, Li C. Molecular Regulation of Porcine Skeletal Muscle Development: Insights from Research on CDC23 Expression and Function. Int J Mol Sci 2024; 25:3664. [PMID: 38612477 PMCID: PMC11011816 DOI: 10.3390/ijms25073664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cell division cycle 23 (CDC23) is a component of the tetratricopeptide repeat (TPR) subunit in the anaphase-promoting complex or cyclosome (APC/C) complex, which participates in the regulation of mitosis in eukaryotes. However, the regulatory model and mechanism by which the CDC23 gene regulates muscle production in pigs are largely unknown. In this study, we investigated the expression of CDC23 in pigs, and the results indicated that CDC23 is widely expressed in various tissues and organs. In vitro cell experiments have demonstrated that CDC23 promotes the proliferation of myoblasts, as well as significantly positively regulating the differentiation of skeletal muscle satellite cells. In addition, Gene Set Enrichment Analysis (GSEA) revealed a significant downregulation of the cell cycle pathway during the differentiation process of skeletal muscle satellite cells. The protein-protein interaction (PPI) network showed a high degree of interaction between genes related to the cell cycle pathway and CDC23. Subsequently, in differentiated myocytes induced after overexpression of CDC23, the level of CDC23 exhibited a significant negative correlation with the expression of key factors in the cell cycle pathway, suggesting that CDC23 may be involved in the inhibition of the cell cycle signaling pathway in order to promote the differentiation process. In summary, we preliminarily determined the function of CDC23 with the aim of providing new insights into molecular regulation during porcine skeletal muscle development.
Collapse
Affiliation(s)
- Su Xie
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.X.); (Q.L.)
| | - Quan Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.X.); (Q.L.)
| | - Chong Fu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.X.); (Q.L.)
| | - Yansen Chen
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium;
| | - Mengxun Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.X.); (Q.L.)
| | - Cheng Tian
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.X.); (Q.L.)
| | - Jiaxuan Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.X.); (Q.L.)
| | - Min Han
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.X.); (Q.L.)
| | - Changchun Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.X.); (Q.L.)
| |
Collapse
|
8
|
Abstract
The need for clinical remedies to the multiple age-related deficiencies in skin function brought on by extrinsic and intrinsic causes is increased by these demographic changes. Reactive oxygen species (ROS), mitochondrial deoxyribonucleic acid (mtDNA) mutations, telomere shortening, as well as other factors, contribute to the aging of the skin. In this overview, the issue of human skin aging is introduced, along with several pathways and the protective effects of ferulic acid in light of current patents. The complex antioxidant effect of ferulic acid depends on the "sweeping" away of free radicals as well as the suppression of the synthesis of ROS or nitrogen. Furthermore, Cu (II) or Fe protonated metal ions are chelated by this acid (II). Ferulic acid is a free radical scavenger as well as an enzyme inhibitor, increasing the activity of enzymes that scavenge free radicals while decreasing the activity of enzymes that speed up the creation of free radicals. AMPK signalling, which can regulate cellular homeostasis, stress tolerance, cell survival and proliferation, cell death, and autophagy, has recently been linked to aging and lifespan. Therefore, Caenorhabditis elegans (C. elegans) and rodents had longer life-spans due to specific AMPK activation. By inhibiting the TGF-β/Smad signalling pathway, UV irradiation can reduce the production of procollagen. Glycation changes the skin's physical characteristics, making it less elastic and stiffer. . Excessive free radicals simultaneously trigger the nuclear factor kappa B (NF- κB) signalling pathway, increasing TNF levels and matrix metalloproteinase production (MMPs).
Collapse
Affiliation(s)
- Deepa Neopane
- Department of Pharmacy, Integral University, Lucknow, India
| | | | - Aditya Singh
- Department of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
9
|
Janečková E, Feng J, Guo T, Han X, Ghobadi A, Araujo-Villalba A, Rahman MS, Ziaei H, Ho TV, Pareek S, Alvarez J, Chai Y. Canonical Wnt signaling regulates soft palate development by mediating ciliary homeostasis. Development 2023; 150:dev201189. [PMID: 36825984 PMCID: PMC10108707 DOI: 10.1242/dev.201189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Craniofacial morphogenesis requires complex interactions involving different tissues, signaling pathways, secreted factors and organelles. The details of these interactions remain elusive. In this study, we have analyzed the molecular mechanisms and homeostatic cellular activities governing soft palate development to improve regenerative strategies for individuals with cleft palate. We have identified canonical Wnt signaling as a key signaling pathway primarily active in cranial neural crest (CNC)-derived mesenchymal cells surrounding soft palatal myogenic cells. Using Osr2-Cre;β-cateninfl/fl mice, we show that Wnt signaling is indispensable for mesenchymal cell proliferation and subsequently for myogenesis through mediating ciliogenesis. Specifically, we have identified that Wnt signaling directly regulates expression of the ciliary gene Ttll3. Impaired ciliary disassembly leads to differentiation defects in mesenchymal cells and indirectly disrupts myogenesis through decreased expression of Dlk1, a mesenchymal cell-derived pro-myogenesis factor. Moreover, we show that siRNA-mediated reduction of Ttll3 expression partly rescues mesenchymal cell proliferation and myogenesis in the palatal explant cultures from Osr2-Cre;β-cateninfl/fl embryos. This study highlights the role of Wnt signaling in palatogenesis through the control of ciliary homeostasis, which establishes a new mechanism for Wnt-regulated craniofacial morphogenesis.
Collapse
Affiliation(s)
- Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Aileen Ghobadi
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Angelita Araujo-Villalba
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Md Shaifur Rahman
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Heliya Ziaei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Siddhika Pareek
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jasmine Alvarez
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
10
|
Wei X, Chen Q, Bu L, Wan X, Jiao Z, Han Z, Zou D, Zheng J, Yang C. Improved Muscle Regeneration into a Joint Prosthesis with Mechano-Growth Factor Loaded within Mesoporous Silica Combined with Carbon Nanotubes on a Porous Titanium Alloy. ACS NANO 2022; 16:14344-14361. [PMID: 36053268 DOI: 10.1021/acsnano.2c04591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Total joint replacement (TJR) is widely applied as a promising treatment for the reconstruction of serious joint diseases but is usually characterized by critical loss of skeletal muscle attachment to metal joint prostheses, resulting in fibrous scar tissue formation and subsequent motor dysfunction. Tissue engineering technology may provide a potential strategy for skeletal muscle regeneration into metal joint prostheses. Here, a porous titanium (Ti) alloy scaffold coated with carbon nanotubes (CNTs) and mesoporous silica nanoparticles (MSNs) through electrophoretic deposition (EPD) was designed as a mechano-growth factor (MGF) carrier. This two-layered coating exhibits a nanostructured topology, excellent MGF loading, and prolonged release performance via covalent bonding to improve myoblast adhesion, proliferation and myogenic differentiation in porous Ti alloy scaffolds without cytotoxicity. The Akt/mTOR signaling pathway plays a key role in this process. Furthermore, in vivo studies show that the scaffold promotes the growth of muscle, rather than fibrotic tissue, into the porous Ti alloy structure and improves muscle-derived mechanical properties, the migration of satellite cells, and possibly immunomodulation. In summary, this nanomaterial-coated scaffold provides a practical biomaterial platform to regenerate periprosthetic muscle tissue and restore comparable motor function to that of the natural joint.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Qin Chen
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Lingtong Bu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Xi Wan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zixian Jiao
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Zixiang Han
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Duohong Zou
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Jisi Zheng
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Chi Yang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| |
Collapse
|
11
|
Fei W, Pang E, Hou L, Dai J, Liu M, Wang X, Xie B, Wang J. Synergistic Effect of Hydrogen and 5-Aza on Myogenic Differentiation through the p38 MAPK Signaling Pathway in Adipose-Derived Mesenchymal Stem Cells. Int J Stem Cells 2022; 16:78-92. [PMID: 36042011 PMCID: PMC9978834 DOI: 10.15283/ijsc21238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives This study aims to clarify the systems underlying regulation and regulatory roles of hydrogen combined with 5-Aza in the myogenic differentiation of adipose mesenchymal stem cells (ADSCs). Methods and Results In this study, ADSCs acted as an in vitro myogenic differentiating mode. First, the Alamar blue Staining and mitochondrial tracer technique were used to verify whether hydrogen combined with 5-Aza could promote cell proliferation. In addition, this study assessed myogenic differentiating markers (e.g., Myogenin, Mhc and Myod protein expressions) based on the Western blotting assay, analysis on cellular morphological characteristics (e.g., Myotube number, length, diameter and maturation index), RT-PCR (Myod, Myogenin and Mhc mRNA expression) and Immunofluorescence analysis (Desmin, Myosin and β-actin protein expression). Finally, to verify the mechanism of myogenic differentiation of hydrogen-bound 5-Aza, we performed bioinformatics analysis and Western blot to detect the expression of p-P38 protein. Hydrogen combined with 5-Aza significantly enhanced the proliferation and myogenic differentiation of ADSCs in vitro by increasing the number of single-cell mitochondria and upregulating the expression of myogenic biomarkers such as Myod, Mhc and myotube formation. The expressions of p-P38 was up-regulated by hydrogen combined with 5-Aza. The differentiating ability was suppressed when the cells were cultivated in combination with SB203580 (p38 MAPK signal pathway inhibitor). Conclusions Hydrogen alleviates the cytotoxicity of 5-Aza and synergistically promotes the myogenic differentiation capacity of adipose stem cells via the p38 MAPK pathway. Thus, the mentioned results present insights into myogenic differentiation and are likely to generate one potential alternative strategy for skeletal muscle related diseases.
Collapse
Affiliation(s)
- Wenyong Fei
- Department of Sports Medicine, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Erkai Pang
- Department of Sports Medicine, Northern Jiangsu People’s Hospital, Dalian Medical University, Dalian, China
| | - Lei Hou
- Department of Sports Medicine, Northern Jiangsu People’s Hospital, Dalian Medical University, Dalian, China
| | - Jihang Dai
- Department of Sports Medicine, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Mingsheng Liu
- Department of Sports Medicine, Northern Jiangsu People’s Hospital, Dalian Medical University, Dalian, China
| | - Xuanqi Wang
- Department of Sports Medicine, Northern Jiangsu People’s Hospital, Dalian Medical University, Dalian, China
| | - Bin Xie
- Department of Sports Medicine, Northern Jiangsu People’s Hospital, Dalian Medical University, Dalian, China
| | - Jingcheng Wang
- Department of Sports Medicine, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China,Correspondence to Jingcheng Wang, Department of Sports Medicine, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, 98# Nantong xi Road, Yangzhou 225001, China , Tel: +86-13909254888, Fax: +86-051487373425, E-mail:
| |
Collapse
|
12
|
Jin Z, Da W, Zhao Y, Wang T, Xu H, Shu B, Gao X, Shi Q, Ma Y, Zhang Y, Wang Y, Tang D. Role of skeletal muscle satellite cells in the repair of osteoporotic fractures mediated by β-catenin. J Cachexia Sarcopenia Muscle 2022; 13:1403-1417. [PMID: 35178895 PMCID: PMC8977954 DOI: 10.1002/jcsm.12938] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Osteoporosis is a metabolic disease, and osteoporotic fracture (OPF) is one of its most serious complications. It is often ignored that the influence of the muscles surrounding the fracture on the healing of OPF. We aimed to clarify the role of skeletal muscle satellite cells (SMSCs) in promoting OPF healing by β-catenin, to improve our understanding of SMSCs, and let us explore its potential as a therapeutic target. METHODS Skeletal muscles were obtained from control non-OPF or OPF patients for primary SMSCs culture (n = 3, 33% females, mean age 60 ± 15.52). Expression of SMSCs was measured. In vivo, 3-month-old female C57BL/6 mice underwent OVX surgery. Three months later, the left tibia fracture model was again performed. The control and the treatment group (n = 24, per group, female). The treatment group was treated with an agonist (osthole). Detection of SMSCs in muscles and fracture healing at 7, 14, and 28 three time points (n = 8, 8, 8, female). To further clarify the scientific hypothesis, we innovatively used Pax7-CreERT2/+ ;β-cateninfx/fx transgenic mice (n = 12, per group, male). Knock out β-catenin in SMSC to observe the proliferation and osteogenic differentiation of SMSCs, and OPF healing. In vitro primary cells of SMSCs from 3-month-old litter-negative β-cateninfx/fx transgenic mice. After adenovirus-CRE transfection, the myogenic and osteogenic differentiation of SMSC was observed. RESULTS We find that human SMSCs reduced proliferation and osteogenic differentiation in patients with OPF (-38.63%, P < 0.05). And through animal experiments, it was found that activation of β-catenin promoted the proliferation and osteogenic differentiation of SMSC at the fracture site, thereby accelerating the healing of the fracture site (189.47%, P < 0.05). To prove this point of view, in the in vivo Pax7-CreERT2/+ ;β-cateninfx/fx transgenic mouse experiment, we innovatively found that knocking out β-catenin in SMSC will cause a decrease in bone mass and bone microstructure, and accompanied by delayed fracture healing (-35.04%, P < 0.001). At the same time, through in vitro SMSC culture experiments, it was found that their myogenic (-66.89%, P < 0.01) and osteogenic differentiation (-16.5%, P < 0.05) ability decreased. CONCLUSIONS These results provide the first practical evidence for a direct contribution of SMSCs to promote the healing of OPF with important clinical implications as it may help in the treatment of delayed healing and non-union of OPFs, and mobilization of autologous stem cell therapy in orthopaedic applications.
Collapse
Affiliation(s)
- Zhenxiong Jin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Da
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tengteng Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Shu
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang Gao
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Ma
- Department of Orthopedics, Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjun Wang
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dezhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Zhang Y, Wang H, Tu W, Abbas Raza SH, Cao J, Huang J, Wu H, Fan C, Wang S, Zhao Y, Tan Y. Comparative Transcriptome Analysis Provides Insight into Spatio-Temporal Expression Characteristics and Genetic Regulatory Network in Postnatal Developing Subcutaneous and Visceral Fat of Bama Pig. Front Genet 2022; 13:844833. [PMID: 35432468 PMCID: PMC9008487 DOI: 10.3389/fgene.2022.844833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
The depot differences between Subcutaneous Fat (SAF) and Visceral Fat (VAF) are critical for human well-being and disease processes in regard to energy metabolism and endocrine function. Miniature pigs (Sus scrofa) are ideal biomedical models for human energy metabolism and obesity due to the similarity of their lipid metabolism with that of humans. However, the regulation of differences in fat deposition and development remains unclear. In this study, the development of SAF and VAF was characterized and compared in Bama pig during postnatal development (infancy, puberty and adulthood), using RNA sequencing techniques (RNA-Seq). The transcriptome of SAF and VAF was profiled and isolated from 1-, 3- and 6 months-old pigs and identified 23,636 expressed genes, of which 1,165 genes were differentially expressed between the depots and/or developmental stages. Upregulated genes in SAF showed significant function and pathway enrichment in the central nervous system development, lipid metabolism, oxidation-reduction process and cell adhesion, whereas genes involved in the immune system, actin cytoskeleton organization, male gonad development and the hippo signaling pathway were preferentially expressed in VAF. Miner analysis of short time-series expression demonstrated that differentiation in gene expression patterns between the two depots corresponded to their distinct responses in sexual development, hormone signaling pathways, lipid metabolism and the hippo signaling pathway. Transcriptome analysis of SAF and VAF suggested that the depot differences in adipose tissue are not only related to lipid metabolism and endocrine function, but are closely associated with sexual development and organ size regulation.
Collapse
Affiliation(s)
- Yingying Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
- *Correspondence: Yingying Zhang, ; Yongsong Tan,
| | - Hongyang Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Weilong Tu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | | | - Jianguo Cao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Ji Huang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Huali Wu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Chun Fan
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | | | - Ying Zhao
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Yongsong Tan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
- *Correspondence: Yingying Zhang, ; Yongsong Tan,
| |
Collapse
|
14
|
Kim HJ, Lee JH, Kim SW, Lee SH, Jung DW, Williams DR. Investigation of niclosamide as a repurposing agent for skeletal muscle atrophy. PLoS One 2021; 16:e0252135. [PMID: 34038481 PMCID: PMC8153455 DOI: 10.1371/journal.pone.0252135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle atrophy is a feature of aging (termed sarcopenia) and various diseases, such as cancer and kidney failure. Effective drug treatment options for muscle atrophy are lacking. The tapeworm medication, niclosamide is being assessed for repurposing to treat numerous diseases, including end-stage cancer metastasis and hepatic steatosis. In this study, we investigated the potential of niclosamide as a repurposing drug for muscle atrophy. In a myotube atrophy model using the glucocorticoid, dexamethasone, niclosamide did not prevent the reduction in myotube diameter or the decreased expression of phosphorylated FOXO3a, which upregulates the ubiquitin-proteasome pathway of muscle catabolism. Treatment of normal myotubes with niclosamide did not activate mTOR, a major regulator of muscle protein synthesis, and increased the expression of atrogin-1, which is induced in catabolic states. Niclosamide treatment also inhibited myogenesis in muscle precursor cells, enhanced the expression of myoblast markers Pax7 and Myf5, and downregulated the expression of differentiation markers MyoD, MyoG and Myh2. In an animal model of muscle atrophy, niclosamide did not improve muscle mass, grip strength or muscle fiber cross-sectional area. Muscle atrophy is also feature of cancer cachexia. IC50 analyses indicated that niclosamide was more cytotoxic for myoblasts than cancer cells. In addition, niclosamide did not suppress the induction of iNOS, a key mediator of atrophy, in an in vitro model of cancer cachexia and did not rescue myotube diameter. Overall, these results suggest that niclosamide may not be a suitable repurposing drug for glucocorticoid-induced skeletal muscle atrophy or cancer cachexia. Nevertheless, niclosamide may be employed as a compound to study mechanisms regulating myogenesis and catabolic pathways in skeletal muscle.
Collapse
Affiliation(s)
- Hyun-Jun Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
| | - Ji-Hyung Lee
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
| | - Seon-Wook Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
| | - Sang-Hoon Lee
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
- * E-mail: (D-WJ); (DRW)
| | - Darren R. Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
- * E-mail: (D-WJ); (DRW)
| |
Collapse
|
15
|
Yoshioka H, Ramakrishnan SS, Shim J, Suzuki A, Iwata J. Excessive All-Trans Retinoic Acid Inhibits Cell Proliferation Through Upregulated MicroRNA-4680-3p in Cultured Human Palate Cells. Front Cell Dev Biol 2021; 9:618876. [PMID: 33585479 PMCID: PMC7876327 DOI: 10.3389/fcell.2021.618876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Cleft palate is the second most common congenital birth defect, and both environmental and genetic factors are involved in the etiology of the disease. However, it remains largely unknown how environmental factors affect palate development. Our previous studies show that several microRNAs (miRs) suppress the expression of genes involved in cleft palate. Here we show that miR-4680-3p plays a crucial role in cleft palate pathogenesis. We found that all-trans retinoic acid (atRA) specifically induces miR-4680-3p in cultured human embryonic palatal mesenchymal (HEPM) cells. Overexpression of miR-4680-3p inhibited cell proliferation in a dose-dependent manner through the suppression of expression of ERBB2 and JADE1, which are known cleft palate-related genes. Importantly, a miR-4680-3p-specific inhibitor normalized cell proliferation and altered expression of ERBB2 and JADE1 in cells treated with atRA. Taken together, our results suggest that upregulation of miR-4680-3p induced by atRA may cause cleft palate through suppression of ERBB2 and JADE1. Thus, miRs may be potential targets for the prevention and diagnosis of cleft palate.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Junbo Shim
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
16
|
Kohsaka S, Hirata M, Ikegami M, Ueno T, Kojima S, Sakai T, Ito K, Naka N, Ogura K, Kawai A, Iwata S, Okuma T, Yonemoto T, Kobayashi H, Suehara Y, Hiraga H, Kawamoto T, Motoi T, Oda Y, Matsubara D, Matsuda K, Nishida Y, Mano H. Comprehensive molecular and clinicopathological profiling of desmoid tumours. Eur J Cancer 2021; 145:109-120. [PMID: 33444924 DOI: 10.1016/j.ejca.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Previous studies have not clearly identified a prognostic factor for desmoid tumours (DT). Whole-exome sequencing (WES) and/or RNA sequencing (RNA-seq) were performed in 64 cases of DT to investigate the molecular profiles in combination with the clinicopathological characteristics. CTNNB1 mutations with specific hotspots were identified in 56 cases (87.5%). A copy number loss in chromosome 6 (chr6) was identified in 14 cases (21.9%). Clustering based on the mRNA expression profiles was predictive of the patients' prognoses. The risk score generated by the expression of a three-gene set (IFI6, LGMN, and CKLF) was a strong prognostic marker for recurrence-free survival (RFS) in our cohort. In risk groups stratified by the expression of IFI6, the hazard ratio for recurrence-free survival in the high-risk group relative to the low-risk group was 12.12 (95% confidence interval: 1.56-94.2; p = 8.0 × 106). In conclusion, CTNNB1 mutations and a chr6 copy number loss are likely the causative mutations underlying the tumorigenesis of DT while the gene expression profiles may help to differentiate patients who would be good candidates for wait-and-see management and those who might benefit from additional systemic or radiation therapies.
Collapse
Affiliation(s)
- Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Makoto Hirata
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tomohisa Sakai
- Department of Orthopaedic Surgery, Nagoya University Hospital, Nagoya, 466-8550, Japan
| | - Kan Ito
- Department of Orthopaedic Surgery, Nagoya University Hospital, Nagoya, 466-8550, Japan
| | - Norifumi Naka
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Koichi Ogura
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan; Division of Orthopaedic Surgery, Chiba Cancer Center, Chiba, 260-8717, Japan
| | - Tomotake Okuma
- Department of Muscloskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, 113-0021, Japan
| | - Tsukasa Yonemoto
- Division of Orthopaedic Surgery, Chiba Cancer Center, Chiba, 260-8717, Japan
| | - Hiroshi Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Hiroaki Hiraga
- Department of Orthopaedic Surgery, Hokkaido Cancer Center, Sapporo, 003-0804, Japan
| | - Teruya Kawamoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Toru Motoi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, 113-0021, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Matsubara
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, 329-0498, Japan
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yoshihiro Nishida
- Department of Orthopaedic Surgery, Nagoya University Hospital, Nagoya, 466-8550, Japan.
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
17
|
Guo Y, Wang M, Ge J, Niu W, Chen M, Cheng W, Lei B. Bioactive biodegradable polycitrate nanoclusters enhances the myoblast differentiation and in vivo skeletal muscle regeneration via p38 MAPK signaling pathway. Bioact Mater 2020; 5:486-495. [PMID: 32322759 PMCID: PMC7162996 DOI: 10.1016/j.bioactmat.2020.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/23/2022] Open
Abstract
Complete skeletal muscle repair and regeneration due to severe large injury or disease is still a challenge. Biochemical cues are critical to control myoblast cell function and can be utilized to develop smart biomaterials for skeletal muscle engineering. Citric acid-based biodegradable polymers have received much attention on tissue engineering, however, their regulation on myoblast cell differentiation and mechanism was few investigated. Here, we find that citrate-based polycitrate-polyethylene glycol-polyethylenimine (POCG-PEI600) nanoclusters can significantly enhance the in vitro myoblast proliferation by probably reinforcing the mitochondrial number, promote the myotube formation and full-thickness skeletal muscle regeneration in vivo by activating the myogenic biomarker genes expression of Myod and Mhc. POCG-PEI600 nanoclusters could also promote the phosphorylation of p38 in MAP kinases (MAPK) signaling pathway, which led to the promotion of the myoblast differentiation. The in vivo skeletal muscle loss rat model also confirmed that POCG-PEI600 nanoclusters could significantly improve the angiogenesis, myofibers formation and complete skeletal muscle regeneration. POCG-PEI600 nanocluster could be also biodegraded into small molecules and eliminated in vivo, suggesting their high biocompatibility and biosafety. This study could provide a bioactive biomaterial-based strategy to repair and regenerate skeletal muscle tissue.
Collapse
Affiliation(s)
- Yi Guo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Juan Ge
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
18
|
Xu L, Dai Z, Xia C, Wu Z, Feng Z, Sun X, Liu Z, Qiu Y, Cheng JCY, Zhu Z. Asymmetric Expression of Wnt/B-catenin Pathway in AIS: Primary or Secondary to the Curve? Spine (Phila Pa 1976) 2020; 45:E677-E683. [PMID: 32044811 DOI: 10.1097/brs.0000000000003409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective case-control study. OBJECTIVES To investigate whether the asymmetric changes are primary or secondary to spinal deformity. SUMMARY OF BACKGROUND DATA Previous study reported significantly decreased expression of Wnt/B-catenin pathway in adolescent idiopathic scoliosis (AIS) patients. To date, there is a lack of study investigating the relationship between differentially expressed Wnt/B-catenin pathway and the onset of the curve. METHODS Paraspinal muscles were collected from 40 female AIS patients and 20 age-matched congenital scoliosis (CS) patients. For CS patients, the samples were collected from the concave side and the convex side at the apical region. For AIS patients, the samples were collected from the proximal bilateral sides of the spine in addition to the apical region. qPCR and western blot were used to determine the expression of LBX1, B-catenin, and PAX3, all of which are regulated by the Wnt/B-catenin pathway. The relative mRNA expression level between the concave and the convex side was performed with the Student t test. Pearson correlation analysis was used to determine the relationship between gene expression and the curve magnitude. RESULTS AIS patients were found to have remarkably lower mRNA and protein expression of B-catenin, LBX1, and PAX3 in the concave side than in the convex side at the apical region. By contrast, at the proximal region, the mRNA expression of these three genes was comparable. Moreover, no significant difference regarding mRNA expression was found between the concave side and the convex side of CS patients. There was no remarkable correlation between the mRNA expression of the three genes and Cobb angle. CONCLUSION There exists remar kably asymmetric expression of Wnt/B-catenin pathway at the apical region of AIS, which however was comparable at the apical region of CS patients. Further investigation of Wnt/B-catenin signaling pathway may help reveal the etiology of AIS in future study. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
- Leilei Xu
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Zhicheng Dai
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Chao Xia
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Zhichong Wu
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Zhenhua Feng
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Xu Sun
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Zhen Liu
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Yong Qiu
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| | - Jack Chun-Yiu Cheng
- Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zezhang Zhu
- Department of Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Joint Scoliosis Research Center of The Chinese University of Hong Kong and Nanjing University, Nanjing & Hong Kong, China
| |
Collapse
|
19
|
Mechanisms regulating myoblast fusion: A multilevel interplay. Semin Cell Dev Biol 2020; 104:81-92. [PMID: 32063453 DOI: 10.1016/j.semcdb.2020.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
Myoblast fusion into myotubes is one of the crucial steps of skeletal muscle development (myogenesis). The fusion is preceded by specification of a myogenic lineage (mesodermal progenitors) differentiating into myoblasts and is followed by myofiber-type specification and neuromuscular junction formation. Similarly to other processes of myogenesis, the fusion requires a very precise spatial and temporal regulation occuring both during embryonic development as well as regeneration and repair of the muscle. A plethora of genes and their products is involved in regulation of myoblast fusion and a precise multilevel interplay between them is crucial for myogenic cells to fuse. In this review, we describe both cellular events taking place during myoblast fusion (migration, adhesion, elongation, cell-cell recognition, alignment, and fusion of myoblast membranes enabling formation of myotubes) as well as recent findings on mechanisms regulating this process. Also, we present muscle disorders in humans that have been associated with defects in genes involved in regulation of myoblast fusion.
Collapse
|
20
|
New Insights for Cellular and Molecular Mechanisms of Aging and Aging-Related Diseases: Herbal Medicine as Potential Therapeutic Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4598167. [PMID: 31915506 PMCID: PMC6930799 DOI: 10.1155/2019/4598167] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/28/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Aging is a progressive disease affecting around 900 million people worldwide, and in recent years, the mechanism of aging and aging-related diseases has been well studied. Treatments for aging-related diseases have also made progress. For the long-term treatment of aging-related diseases, herbal medicine is particularly suitable for drug discovery. In this review, we discuss cellular and molecular mechanisms of aging and aging-related diseases, including oxidative stress, inflammatory response, autophagy and exosome interactions, mitochondrial injury, and telomerase damage, and summarize commonly used herbals and compounds concerned with the development of aging-related diseases, including Ginkgo biloba, ginseng, Panax notoginseng, Radix astragali, Lycium barbarum, Rhodiola rosea, Angelica sinensis, Ligusticum chuanxiong, resveratrol, curcumin, and flavonoids. We also summarize key randomized controlled trials of herbal medicine for aging-related diseases during the past ten years. Adverse reactions of herbs were also described. It is expected to provide new insights for slowing aging and treating aging-related diseases with herbal medicine.
Collapse
|
21
|
Suzuki A, Shim J, Ogata K, Yoshioka H, Iwata J. Cholesterol metabolism plays a crucial role in the regulation of autophagy for cell differentiation of granular convoluted tubules in male mouse submandibular glands. Development 2019; 146:dev.178335. [PMID: 31558435 DOI: 10.1242/dev.178335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
It has been long appreciated that sex hormone receptors are expressed in various non-gonadal organs. However, it remains unclear how sex hormones regulate the morphogenesis of these non-gonadal organs. To address this issue, we used a male mouse model of androgen-dependent salivary gland morphogenesis. Mice with excessive cholesterol synthesis in the salivary glands exhibited defects in the maturation of granular convoluted tubules (GCTs), which is regulated through sex hormone-dependent cascades. We found that excessive cholesterol synthesis resulted in autophagy failure specifically in the duct cells of salivary glands, followed by the accumulation of NRF2, a transcription factor known as one of the specific substrates for autophagy. The accumulated NRF2 suppressed the expression of Foxa1, which forms a transcriptional complex with the androgen receptor to regulate target genes. Taken together, our results indicate that cholesterol metabolism plays a crucial role in GCT differentiation through autophagy.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Junbo Shim
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Kenichi Ogata
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA .,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA.,MD Anderson Cancer Center University of Texas Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
22
|
Janečková E, Feng J, Li J, Rodriguez G, Chai Y. Dynamic activation of Wnt, Fgf, and Hh signaling during soft palate development. PLoS One 2019; 14:e0223879. [PMID: 31613912 PMCID: PMC6793855 DOI: 10.1371/journal.pone.0223879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
The soft palate is a key component of the oropharyngeal complex that is critical for swallowing, breathing, hearing and speech. However, complete functional restoration in patients with cleft soft palate remains a challenging task. New insights into the molecular signaling network governing the development of soft palate will help to overcome these clinical challenges. In this study, we investigated whether key signaling pathways required for hard palate development are also involved in soft palate development in mice. We described the dynamic expression patterns of signaling molecules from well-known pathways, such as Wnt, Hh, and Fgf, during the development of the soft palate. We found that Wnt signaling is active throughout the development of soft palate myogenic sites, predominantly in cells of cranial neural crest (CNC) origin neighboring the myogenic cells, suggesting that Wnt signaling may play a significant role in CNC-myogenic cell-cell communication during myogenic differentiation in the soft palate. Hh signaling is abundantly active in early palatal epithelium, some myogenic cells, and the CNC-derived cells adjacent to the myogenic cells. Hh signaling gradually diminishes during the later stages of soft palate development, indicating its involvement mainly in early embryonic soft palate development. Fgf signaling is expressed most prominently in CNC-derived cells in the myogenic sites and persists until later stages of embryonic soft palate development. Collectively, our results highlight a network of Wnt, Hh, and Fgf signaling that may be involved in the development of the soft palate, particularly soft palate myogenesis. These findings provide a foundation for future studies on the functional significance of these signaling pathways individually and collectively in regulating soft palate development.
Collapse
Affiliation(s)
- Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Gabriela Rodriguez
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Fu Y, Li S, Tong H, Li S, Yan Y. WDR13 promotes the differentiation of bovine skeletal muscle-derived satellite cells by affecting PI3K/AKT signaling. Cell Biol Int 2019; 43:799-808. [PMID: 31050064 DOI: 10.1002/cbin.11160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/29/2019] [Indexed: 01/28/2023]
Abstract
Muscle satellite cells are usually at rest, and when externally stimulated or regulated, they can be further differentiated by cell fusion to form new myotubes and muscle fibers. WD repeat domain 13 (WDR13) is highly conserved in vertebrates. Studies have shown that mice lacking the Wdr13 gene develop mild obesity, hyperinsulinemia, and increased islet β cell proliferation. However, the role of WDR13 in bovine cells is unclear. Here, we investigated the effect of WDR13 on bovine skeletal muscle-derived satellite cells (MDSCs). We found that WDR13 was upregulated in bovine MDSCs using western blotting and immunofluorescence experiments. Moreover, activation and inhibition of WDR13 expression increased and decreased cell differentiation, respectively, suggesting that WDR13 promotes bovine MDSC differentiation. To further understand the mechanism of action of WDR13, we examined changes in the PI3K/AKT signaling pathway following WDR13 activation or inhibition. In addition, cells were treated with a phosphoinositide kinase 3 (PI3K) inhibitor, LY294004, to observe cell differentiation. The results showed that activation of WDR13 inhibited the PI3K/AKT signaling pathway and enhanced cell differentiation. These data suggest that WDR13 can promote the differentiation of bovine MDSCs by affecting the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yuying Fu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Shuang Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Huili Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Shufeng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yunqin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| |
Collapse
|
24
|
Zhang L, Shao L, Hu Y. Long noncoding RNA LINC00961 inhibited cell proliferation and invasion through regulating the Wnt/β‐catenin signaling pathway in tongue squamous cell carcinoma. J Cell Biochem 2019; 120:12429-12435. [PMID: 30854692 DOI: 10.1002/jcb.28509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/12/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Ying Hu
- Jinan Stomatological Hospital Jinan China
| |
Collapse
|