1
|
Negueruela S, Morenilla-Palao C, Sala S, Ordoño P, Herrera M, Coca Y, López-Cascales MT, Florez-Paz D, Gomis A, Herrera E. Proper Frequency of Perinatal Retinal Waves Is Essential for the Precise Wiring of Visual Axons in Nonimage-Forming Nuclei. J Neurosci 2024; 44:e1408232024. [PMID: 39151955 PMCID: PMC11450533 DOI: 10.1523/jneurosci.1408-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
The development of the visual system is a complex and multistep process characterized by the precise wiring of retinal ganglion cell (RGC) axon terminals with their corresponding neurons in the visual nuclei of the brain. Upon reaching primary image-forming nuclei (IFN), such as the superior colliculus and the lateral geniculate nucleus, RGC axons undergo extensive arborization that refines over the first few postnatal weeks. The molecular mechanisms driving this activity-dependent remodeling process, which is influenced by waves of spontaneous activity in the developing retina, are still not well understood. In this study, by manipulating the activity of RGCs in mice from either sex and analyzing their transcriptomic profiles before eye-opening, we identified the Type I membrane protein synaptotagmin 13 (Syt13) as involved in spontaneous activity-dependent remodeling. Using these mice, we also explored the impact of spontaneous retinal activity on the development of other RGC recipient targets such as nonimage-forming (NIF) nuclei and demonstrated that proper frequency and duration of retinal waves occurring prior to visual experience are essential for shaping the connectivity of the NIF circuit. Together, these findings contribute to a deeper understanding of the molecular and physiological mechanisms governing activity-dependent axon refinement during the assembly of the visual circuit.
Collapse
Affiliation(s)
- Santiago Negueruela
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Cruz Morenilla-Palao
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Salvador Sala
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Patricia Ordoño
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Macarena Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Yaiza Coca
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Maria Teresa López-Cascales
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Danny Florez-Paz
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Ana Gomis
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| | - Eloísa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), San Juan de Alicante 03550, Spain
| |
Collapse
|
2
|
Herrera E, Chédotal A, Mason C. Development of the Binocular Circuit. Annu Rev Neurosci 2024; 47:303-322. [PMID: 38635868 DOI: 10.1146/annurev-neuro-111020-093230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Seeing in three dimensions is a major property of the visual system in mammals. The circuit underlying this property begins in the retina, from which retinal ganglion cells (RGCs) extend to the same or opposite side of the brain. RGC axons decussate to form the optic chiasm, then grow to targets in the thalamus and midbrain, where they synapse with neurons that project to the visual cortex. Here we review the cellular and molecular mechanisms of RGC axonal growth cone guidance across or away from the midline via receptors to cues in the midline environment. We present new views on the specification of ipsi- and contralateral RGC subpopulations and factors implementing their organization in the optic tract and termination in subregions of their targets. Lastly, we describe the functional and behavioral aspects of binocular vision, focusing on the mouse, and discuss recent discoveries in the evolution of the binocular circuit.
Collapse
Affiliation(s)
- Eloísa Herrera
- Instituto de Neurociencias (CSIC-UMH), Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Alicante, Spain;
| | - Alain Chédotal
- Université Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
- Institut de Pathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
- Institut de la Vision, INSERM, Sorbonne Université, Paris, France;
| | - Carol Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Zuckerman Institute, Columbia University, New York, NY, USA;
| |
Collapse
|
3
|
Mehta K, Daghsni M, Raeisossadati R, Xu Z, Davis E, Naidich A, Wang B, Tao S, Pi S, Chen W, Kostka D, Liu S, Gross JM, Kuwajima T, Aldiri I. A cis-regulatory module underlies retinal ganglion cell genesis and axonogenesis. Cell Rep 2024; 43:114291. [PMID: 38823017 PMCID: PMC11238474 DOI: 10.1016/j.celrep.2024.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Atoh7 is transiently expressed in retinal progenitor cells (RPCs) and is required for retinal ganglion cell (RGC) differentiation. In humans, a deletion in a distal non-coding regulatory region upstream of ATOH7 is associated with optic nerve atrophy and blindness. Here, we functionally interrogate the significance of the Atoh7 regulatory landscape to retinogenesis in mice. Deletion of the Atoh7 enhancer structure leads to RGC deficiency, optic nerve hypoplasia, and retinal blood vascular abnormalities, phenocopying inactivation of Atoh7. Further, loss of the Atoh7 remote enhancer impacts ipsilaterally projecting RGCs and disrupts proper axonal projections to the visual thalamus. Deletion of the Atoh7 remote enhancer is also associated with the dysregulation of axonogenesis genes, including the derepression of the axon repulsive cue Robo3. Our data provide insights into how Atoh7 enhancer elements function to promote RGC development and optic nerve formation and highlight a key role of Atoh7 in the transcriptional control of axon guidance molecules.
Collapse
Affiliation(s)
- Kamakshi Mehta
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marwa Daghsni
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Reza Raeisossadati
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zhongli Xu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Emily Davis
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Abigail Naidich
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bingjie Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shiyue Tao
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dennis Kostka
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeffrey M Gross
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Takaaki Kuwajima
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Issam Aldiri
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Kerschensteiner D, Feller MB. Mapping the Retina onto the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041512. [PMID: 38052498 PMCID: PMC10835620 DOI: 10.1101/cshperspect.a041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Vision begins in the retina, which extracts salient features from the environment and encodes them in the spike trains of retinal ganglion cells (RGCs), the output neurons of the eye. RGC axons innervate diverse brain areas (>50 in mice) to support perception, guide behavior, and mediate influences of light on physiology and internal states. In recent years, complete lists of RGC types (∼45 in mice) have been compiled, detailed maps of their dendritic connections drawn, and their light responses surveyed at scale. We know less about the RGCs' axonal projection patterns, which map retinal information onto the brain. However, some organizing principles have emerged. Here, we review the strategies and mechanisms that govern developing RGC axons and organize their innervation of retinorecipient brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences
- Department of Neuroscience
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Dang Do AN, Sleat DE, Campbell K, Johnson NL, Zheng H, Wassif CA, Dale RK, Porter FD. Cerebrospinal Fluid Protein Biomarker Discovery in CLN3. J Proteome Res 2023; 22:2493-2508. [PMID: 37338096 PMCID: PMC11095826 DOI: 10.1021/acs.jproteome.3c00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Syndromic CLN3-Batten is a fatal, pediatric, neurodegenerative disease caused by variants in CLN3, which encodes the endolysosomal transmembrane CLN3 protein. No approved treatment for CLN3 is currently available. The protracted and asynchronous disease presentation complicates the evaluation of potential therapies using clinical disease progression parameters. Biomarkers as surrogates to measure the progression and effect of potential therapeutics are needed. We performed proteomic discovery studies using cerebrospinal fluid (CSF) samples from 28 CLN3-affected and 32 age-similar non-CLN3 individuals. Proximal extension assay (PEA) of 1467 proteins and untargeted data-dependent mass spectrometry [MS; MassIVE FTP server (ftp://MSV000090147@massive.ucsd.edu)] were used to generate orthogonal lists of protein marker candidates. At an adjusted p-value of <0.1 and threshold CLN3/non-CLN3 fold-change ratio of 1.5, PEA identified 54 and MS identified 233 candidate biomarkers. Some of these (NEFL, CHIT1) have been previously linked with other neurologic conditions. Others (CLPS, FAM217B, QRICH2, KRT16, ZNF333) appear to be novel. Both methods identified 25 candidate biomarkers, including CHIT1, NELL1, and ISLR2 which had absolute fold-change ratios >2. NELL1 and ISLR2 regulate axonal development in neurons and are intriguing new candidates for further investigation in CLN3. In addition to identifying candidate proteins for CLN3 research, this study provides a comparison of two large-scale proteomic discovery methods in CSF.
Collapse
Affiliation(s)
- An N. Dang Do
- Unit on Cellular Stress in Development and Diseases, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David E. Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
- Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| | - Kiersten Campbell
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nicholas L. Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| | - Christopher A. Wassif
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ryan K. Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Forbes D. Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
6
|
Santana NNM, Silva EHA, dos Santos SF, Costa MSMO, Nascimento Junior ES, Engelberth RCJG, Cavalcante JS. Retinorecipient areas in the common marmoset ( Callithrix jacchus): An image-forming and non-image forming circuitry. Front Neural Circuits 2023; 17:1088686. [PMID: 36817647 PMCID: PMC9932520 DOI: 10.3389/fncir.2023.1088686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.
Collapse
Affiliation(s)
- Nelyane Nayara M. Santana
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eryck H. A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Junior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil,*Correspondence: Jeferson S. Cavalcante,
| |
Collapse
|
7
|
Godement P. A Stay in Friedrich Bonhoeffer's Lab in Tubingen in the Mid-eighties. Neuroscience 2023; 508:52-61. [PMID: 36464176 DOI: 10.1016/j.neuroscience.2022.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The main focus of research for which Friedrich Bonhoeffer's work is known in the Neuroscience community was pioneer experiments on how axonal projections could organize into "maps", what mechanisms are involved in axon guidance and involve gradients of guiding molecules, and isolation of the first such molecules, e.g. RAGS (ephrin A5) and RGM (repulsive guidance molecule). Other papers have described in detail these contributions as well as Friedrich Bonhoeffer's personality. In the mid-eighties, I made a 2-year stay in his lab and initiated a line of research on development of binocular connections in Mammals, particularly the guidance of retinal fibers to one or the other side of the brain. In this paper I recall these circumstances as they pertain to Neuroscience as it stood at the time, and explain as best as I can how his lab was a conducive setting for the discoveries made there and how Friedrich Bonhoeffer acted for me as a scientist and a tutor.
Collapse
Affiliation(s)
- Pierre Godement
- Centre National de la Recherche Scientifique, Paris, France.
| |
Collapse
|
8
|
Miyaguchi M, Nakanishi Y, Maturana AD, Mizutani K, Niimi T. Conformational Change of the Hairpin-like-structured Robo2 Ectodomain Allows NELL1/2 Binding. J Mol Biol 2022; 434:167777. [DOI: 10.1016/j.jmb.2022.167777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 10/16/2022]
|
9
|
Ahmed M, Owens MJS, Toledo EM, Arenas E, Bradley M, ffrench-Constant C. Combinatorial ECM Arrays Identify Cooperative Roles for Matricellular Proteins in Enhancing the Generation of TH+ Neurons From Human Pluripotent Cells. Front Cell Dev Biol 2021; 9:755406. [PMID: 34926447 PMCID: PMC8672163 DOI: 10.3389/fcell.2021.755406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
The development of efficient cell culture strategies for the generation of dopaminergic neurons is an important goal for transplantation-based approaches to treat Parkinson's disease. To identify extracellular matrix molecules that enhance differentiation and might be used in these cell cultures we have used micro-contact printed arrays on glass slides presenting 190 combinations of 19 extracellular matrix molecules selected on the basis of their expression during embryonic development of the ventral midbrain. Using long-term neuroepithelial stem cells (Lt-NES), this approach identified a number of matricellular proteins that enhanced differentiation, with the combination of Sparc, Sparc-like (Sparc-l1) and Nell2 increasing the number of tyrosine hydroxylase+ neurons derived from Lt-NES cells and, critically for further translation, human pluripotent stem cells.
Collapse
Affiliation(s)
- Maqsood Ahmed
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew J. S. Owens
- School of Chemistry, EaStCHEM, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique M. Toledo
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ernest Arenas
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, Edinburgh, United Kingdom
| | - Charles ffrench-Constant
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, England
| |
Collapse
|
10
|
Wang Y, Li M, Zhang L, Chen Y, Zhang S. m6A demethylase FTO induces NELL2 expression by inhibiting E2F1 m6A modification leading to metastasis of non-small cell lung cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:367-376. [PMID: 34169146 PMCID: PMC8190133 DOI: 10.1016/j.omto.2021.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/24/2021] [Indexed: 12/25/2022]
Abstract
Non-small cell lung cancer (NSCLC) represents one of the primary causes of cancer-related mortality all over the world. Following our initial finding of the upregulated expression of E2F transcription factor-1 (E2F1) in the NSCLC-related microarray, this study aimed to explore the regulatory role of E2F1 and underlying mechanism in NSCLC development. NSCLC cell viability, migration, and invasion were evaluated utilizing Cell Counting Kit 8 (CCK-8), 5-ethynyl-2′-deoxyuridine (EdU), wound-healing, and Transwell assays. Loss- and gain-function assays were performed to determine the effects of the fat mass and obesity-associated protein (FTO)/E2F1/neural epidermal growth factor-like 2 (NELL2) axis on NSCLC cell behaviors in vitro and NSCLC tumor growth in vivo. E2F1 was highly expressed in both NSCLC tissues and cells. E2F1 augmented the viability, migration, and invasion of NSCLC cells, which was attributable to E2F1 transcriptionally activating NELL2. FTO upregulated the expression of E2F1 by inhibiting the m6A modification of E2F1. The FTO/E2F1/NELL2 axis modulated NSCLC cell viability, migration, and invasion in vitro as well as affected NSCLC tumor growth and metastasis in vivo. The FTO/E2F1/NELL2 axis may impart pro-tumorigenic effects on the cell behavior of NSCLC cells and thus accelerate NSCLC progression.
Collapse
Affiliation(s)
- Yanyun Wang
- Department of Medical Oncology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, P.R. China
| | - Man Li
- Department of Radiology and Imaging, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, P.R. China
| | - Lin Zhang
- Department of Medical Oncology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, P.R. China
| | - Yitong Chen
- Department of Medical Oncology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, P.R. China
| | - Shoudan Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, P.R. China
| |
Collapse
|
11
|
Nakamura R, Oyama T, Inokuchi M, Ishikawa S, Hirata M, Kawashima H, Ikeda H, Dobashi Y, Ooi A. Neural EGFL like 2 expressed in myoepithelial cells and suppressed breast cancer cell migration. Pathol Int 2021; 71:326-336. [PMID: 33657249 DOI: 10.1111/pin.13087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/13/2021] [Indexed: 11/30/2022]
Abstract
Breast tissue has a branching structure that contains double-layered cells, consisting primarily of luminal epithelial cells inside and myoepithelial cells outside. Ductal carcinoma in situ (DCIS) still has myoepithelial cells surrounding the cancer cells. However, myoepithelial cells disappear in invasive ductal carcinoma. In this study, we detected expression of neural EGFL like (NELL) 2 and one of its receptors, roundabout guidance receptor (ROBO) 3, in myoepithelial and luminal epithelial cells (respectively) in normal breast tissue. NELL2 also was expressed in myoepithelial cells surrounding the non-cancerous intraductal proliferative lesions and DCIS. However, the expression level and proportion of NELL2-positive cells in DCIS were lower than those in normal and non-cancerous intraductal proliferative lesions. ROBO3 expression was decreased in invasive ductal carcinoma compared to that in normal and non-cancerous intraductal proliferative lesions. An evaluation of NELL2's function in breast cancer cell lines demonstrated that full-length NELL2 suppressed cell adhesion and migration in vitro. In contrast, the N-terminal domain of NELL2 increased cell adhesion in the early phase and migration in vitro in some breast cancer cells. These results suggested that full-length NELL2 protein, when expressed in myoepithelial cells, might serve as an inhibitor of breast cancer cell migration.
Collapse
Affiliation(s)
- Ritsuko Nakamura
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Takeru Oyama
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Masafumi Inokuchi
- Department of Breast Surgery, Kanazawa University Hospital, Ishikawa, Japan.,Department of Breast and Endocrine Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Satoko Ishikawa
- Department of Breast Surgery, Kanazawa University Hospital, Ishikawa, Japan
| | - Miki Hirata
- Department of Breast Surgery, Kanazawa University Hospital, Ishikawa, Japan
| | - Hiroko Kawashima
- Radiology Division, Kanazawa University Hospital, Ishikawa, Japan
| | - Hiroko Ikeda
- Division of Diagnostic Pathology, Kanazawa University Hospital, Ishikawa, Japan
| | - Yoh Dobashi
- Department of Pathology, Saitama Medical Center, Jichi Medical University, Saitama, Japan.,Department of Pathology, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Akishi Ooi
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
12
|
Abstract
Binocular vision depends on retinal ganglion cell (RGC) axon projection either to the same side or to the opposite side of the brain. In this article, we review the molecular mechanisms for decussation of RGC axons, with a focus on axon guidance signaling at the optic chiasm and ipsi- and contralateral axon organization in the optic tract prior to and during targeting. The spatial and temporal features of RGC neurogenesis that give rise to ipsilateral and contralateral identity are described. The albino visual system is highlighted as an apt comparative model for understanding RGC decussation, as albinos have a reduced ipsilateral projection and altered RGC neurogenesis associated with perturbed melanogenesis in the retinal pigment epithelium. Understanding the steps for RGC specification into ipsi- and contralateral subtypes will facilitate differentiation of stem cells into RGCs with proper navigational abilities for effective axon regeneration and correct targeting of higher-order visual centers.
Collapse
Affiliation(s)
- Carol Mason
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10027, USA; .,Department of Neuroscience, Columbia University, New York, NY 10027, USA.,Department of Ophthalmology, Columbia University, New York, NY 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| | - Nefeli Slavi
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
13
|
Pak JS, DeLoughery ZJ, Wang J, Acharya N, Park Y, Jaworski A, Özkan E. NELL2-Robo3 complex structure reveals mechanisms of receptor activation for axon guidance. Nat Commun 2020; 11:1489. [PMID: 32198364 PMCID: PMC7083938 DOI: 10.1038/s41467-020-15211-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/24/2020] [Indexed: 11/24/2022] Open
Abstract
Axon pathfinding is critical for nervous system development, and it is orchestrated by molecular cues that activate receptors on the axonal growth cone. Robo family receptors bind Slit guidance cues to mediate axon repulsion. In mammals, the divergent family member Robo3 does not bind Slits, but instead signals axon repulsion from its own ligand, NELL2. Conversely, canonical Robos do not mediate NELL2 signaling. Here, we present the structures of NELL-Robo3 complexes, identifying a mode of ligand engagement for Robos that is orthogonal to Slit binding. We elucidate the structural basis for differential binding between NELL and Robo family members and show that NELL2 repulsive activity is a function of its Robo3 affinity and is enhanced by ligand trimerization. Our results reveal a mechanism of oligomerization-induced Robo activation for axon guidance and shed light on Robo family member ligand binding specificity, conformational variability, divergent modes of signaling, and evolution.
Collapse
Affiliation(s)
- Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA
| | - Zachary J DeLoughery
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI, 02912, USA
| | - Jing Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA
| | - Nischal Acharya
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI, 02912, USA
| | - Yeonwoo Park
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Alexander Jaworski
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.
- Robert J. and Nancy D. Carney Institute for Brain Science, Providence, RI, 02912, USA.
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|