1
|
Gürhan G, Sevinç K, Aztekin C, Gayretli M, Yılmaz A, Yıldız AB, Ervatan EN, Morova T, Datlı E, Coleman OD, Kawamura A, Lack NA, Syed H, Önder T. A chromatin-focused CRISPR screen identifies USP22 as a barrier to somatic cell reprogramming. Commun Biol 2025; 8:454. [PMID: 40102626 PMCID: PMC11920211 DOI: 10.1038/s42003-025-07899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Cell-autonomous barriers to reprogramming somatic cells into induced pluripotent stem cells (iPSCs) remain poorly understood. Using a focused CRISPR-Cas9 screen, we identified Ubiquitin-specific peptidase 22 (USP22) as a key chromatin-based barrier to human iPSC derivation. Suppression of USP22 significantly enhances reprogramming efficiency. Surprisingly, this effect is likely to be independent of USP22's deubiquitinase activity or its association with the SAGA complex, as shown through module-specific knockouts, and genetic rescue experiments. USP22 is not required for iPSC derivation or maintenance. Mechanistically, USP22 loss during reprogramming downregulates fibroblast-specific genes while activating pluripotency-associated genes, including DNMT3L, LIN28A, SOX2, and GDF3. Additionally, USP22 loss enhances reprogramming efficiency under naïve stem cell conditions. These findings reveal an unrecognized role for USP22 in maintaining somatic cell identity and repressing pluripotency genes, highlighting its potential as a target to improve reprogramming efficiency.
Collapse
Affiliation(s)
- Gülben Gürhan
- School of Medicine, Koç University, Istanbul, Turkey
| | - Kenan Sevinç
- School of Medicine, Koç University, Istanbul, Turkey
| | - Can Aztekin
- School of Medicine, Koç University, Istanbul, Turkey
| | - Mert Gayretli
- School of Medicine, Koç University, Istanbul, Turkey
| | | | | | | | - Tunç Morova
- School of Medicine, Koç University, Istanbul, Turkey
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, BC, Canada
| | - Elif Datlı
- School of Medicine, Koç University, Istanbul, Turkey
| | - Oliver D Coleman
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle, United Kingdom
| | - Akane Kawamura
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle, United Kingdom
| | - Nathan A Lack
- School of Medicine, Koç University, Istanbul, Turkey
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, BC, Canada
| | - Hamzah Syed
- School of Medicine, Koç University, Istanbul, Turkey
- Biostatistics, Bioinformatics and Data Management Core, KUTTAM, Koç University, Istanbul, Turkey
| | - Tamer Önder
- School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
2
|
Dent SYR. KAT tales: Functions of Gcn5 and PCAF lysine acetyltransferases in SAGA and ATAC. J Biol Chem 2024; 300:107744. [PMID: 39222683 PMCID: PMC11439848 DOI: 10.1016/j.jbc.2024.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The Allis group identified Gcn5 as the first transcription-related lysine acetyltransferase in 1996, providing a molecular "missing link" between chromatin organization and gene regulation. This review will focus on functions subsequently identified for Gcn5 and the closely related PCAF protein, in the context of two major complexes, SAGA and ATAC, and how the study of these enzymes informs long standing questions regarding the importance of lysine acetylation.
Collapse
Affiliation(s)
- Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer, Center for Cancer Epigenetics, University of Texas M.D. Anderson/UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
3
|
Xing X, Zhang G, Yi F, Xu X. Overexpression of USP22 ameliorates LPS-induced endometrial stromal cells inflammation and modulates cells decidualization by inhibiting ferroptosis. Reprod Biol 2024; 24:100913. [PMID: 38896999 DOI: 10.1016/j.repbio.2024.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Endometritis and the failure of decidualization of the endometrium are important factors contributing to the increased incidence of abortion. USP22 is associated with various inflammatory diseases and has been shown to be involved in endometrial decidualization in mice. This study aims to investigate whether USP22 is involved in the regulation of inflammatory response and decidualization in human endometrial stromal cells (hESCs). In this study, lipopolysaccharide (LPS) was used to induce inflammation in hESCs, and MPA combined with cAMP was used to induce decidualization of hESCs. USP22 overexpression vector was constructed to study the role of USP22 in endometritis. The results showed that the USP22 protein and mRNA levels were decreased in LPS-induced hESCs. LPS induction increased the levels of TNF-α, IL-1β, and IL-6, as well as the expression of iNOS and COX2 proteins in hESCs. In the LPS group, the levels of F-actin, PRL, IGFBP1, SLC7A11, and GPX4 proteins decreased, while the levels of lipid peroxidation and total iron content increased. Additionally, the levels of ACSL4 and TFR1 proteins were up-regulated. Overexpression of USP22 reversed LPS-induced cellular inflammation, attenuated decidualization, and inhibited ferroptosis. However, the use of ferroptosis inducers diminished the regulatory effects of USP22 on inflammatory responses and decidualization. In summary, these suggested that USP22 reduces the LPS-induced inflammatory response and regulates the decidualization of hESCs, and possibly involving ferroptosis.
Collapse
Affiliation(s)
- Xiuye Xing
- Department of Reproductive Medicine, Haidian District Maternal and Child Health Care Hospital, Beijing 100080, China.
| | - Guoli Zhang
- School of Clinic and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong 25000, China
| | - Fangjie Yi
- School of Clinic and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong 25000, China
| | - Xinghua Xu
- School of Clinic and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong 25000, China
| |
Collapse
|
4
|
Zhou M, Gao Y, Wu S, Wang Y, Yang J. USP22 is required for human endometrial stromal cell proliferation and decidualization by deubiquitinating FoxM1. Cell Signal 2024; 121:111265. [PMID: 38897527 DOI: 10.1016/j.cellsig.2024.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Despite significant advances in assisted reproductive technology (ART), recurrent implantation failure (RIF) still occurs in some patients. Poor endometrial receptivity and abnormal human endometrial stromal cell (HESC) proliferation and decidualization have been identified as the major causes. Ubiquitin-specific protease 22 (USP22) has been reported to participate in the decidualization of endometrial stromal cells in mice. However, the role of USP22 in HESC function and RIF development remains unknown. In this study, clinical endometrial tissue samples were gathered to investigate the involvement of USP22 in RIF, and HESCs were utilized to examine the molecular mechanisms of USP22 and Forkhead box M1 (FoxM1). The findings indicated a high expression of USP22 in the secretory phase of the endometrium. Knockdown of USP22 led to a notable reduction in the proliferation and decidualization of HESCs, along with a decrease in FoxM1 expression, while overexpression of USP22 yielded opposite results. Furthermore, USP22 was found to deubiquitinate FoxM1 in HESCs. Moreover, both USP22 and FoxM1 were downregulated in the endometria of patients with RIF. In conclusion, these results suggest that USP22 may have a significant impact on HESCs proliferation and decidualization through its interaction with FoxM1, potentially contributing to the underlying mechanisms of RIF pathogenesis.
Collapse
Affiliation(s)
- Mengqi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China
| | - Yue Gao
- Department of Reproductive Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, China
| | - Shujuan Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China
| | - Yaqin Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China.
| |
Collapse
|
5
|
Shastry S, Samal D, Pethe P. Histone H2A deubiquitinase BAP1 is essential for endothelial cell differentiation from human pluripotent stem cells. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00935-x. [PMID: 38976206 DOI: 10.1007/s11626-024-00935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/25/2024] [Indexed: 07/09/2024]
Abstract
Polycomb group proteins (PcGs) add repressive post translational histone modifications such as H2AK119ub1, and histone H2A deubiquitinases remove it. Mice lacking histone H2A deubiquitinases such as Usp16 and Bap1 die in embryonic stage, while mice lacking Usp3, Mysm1, Usp12, and Usp21 have been shown to be deficient in hematopoietic lineage differentiation, cell cycle regulation, and DNA repair. Thus, it is likely that histone deubiquitinases may also be required for human endothelial cell differentiation; however, there are no reports about the role of histone H2A deubiquitinase BAP1 in human endothelial cell development. We differentiated human pluripotent stem cells into the endothelial lineage which expressed stable inducible shRNA against BAP1. Our results show that BAP1 is required for human endothelial cell differentiation.
Collapse
Affiliation(s)
- Shruti Shastry
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Worcester Polytechnic Institute (WPI), Boston, USA
| | - Dharitree Samal
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
6
|
Zhang X, He H, Yu H, Teng X, Wang Z, Li C, Li J, Yang H, Shen J, Wu T, Zhang F, Zhang Y, Wu Q. Maternal RNA transcription in Dlk1-Dio3 domain is critical for proper development of the mouse placental vasculature. Commun Biol 2024; 7:363. [PMID: 38521877 PMCID: PMC10960817 DOI: 10.1038/s42003-024-06038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
The placenta is a unique organ for ensuring normal embryonic growth in the uterine. Here, we found that maternal RNA transcription in Dlk1-Dio3 imprinted domain is essential for placentation. PolyA signals were inserted into Gtl2 to establish a mouse model to prevent the expression of maternal RNAs in the domain. The maternal allele knock-in (MKI) and homozygous (HOMO) placentas showed an expanded junctional zone, reduced labyrinth and poor vasculature impacting both fetal and maternal blood spaces. The MKI and HOMO models displayed dysregulated gene expression in the Dlk1-Dio3 domain. In situ hybridization detected Dlk1, Gtl2, Rtl1, miR-127 and Rian dysregulated in the labyrinth vasculature. MKI and HOMO induced Dlk1 to lose imprinting, and DNA methylation changes of IG-DMR and Gtl2-DMR, leading to abnormal gene expression, while the above changes didn't occur in paternal allele knock-in placentas. These findings demonstrate that maternal RNAs in the Dlk1-Dio3 domain are involved in placental vasculature, regulating gene expression, imprinting status and DNA methylation.
Collapse
Affiliation(s)
- Ximeijia Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Haoran Yu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Xiangqi Teng
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Ziwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Chenghao Li
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Jiahang Li
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Haopeng Yang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Jiwei Shen
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Tong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Fengwei Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Yan Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China.
| |
Collapse
|
7
|
Koch I, Slovik M, Zhang Y, Liu B, Rennie M, Konz E, Cogne B, Daana M, Davids L, Diets IJ, Gold NB, Holtz AM, Isidor B, Mor-Shaked H, Neira Fresneda J, Niederhoffer KY, Nizon M, Pfundt R, Simon M, Stegmann A, Guillen Sacoto MJ, Wevers M, Barakat TS, Yanovsky-Dagan S, Atanassov BS, Toth R, Gao C, Bustos F, Harel T. USP27X variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms. Life Sci Alliance 2024; 7:e202302258. [PMID: 38182161 PMCID: PMC10770416 DOI: 10.26508/lsa.202302258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024] Open
Abstract
Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.
Collapse
Affiliation(s)
- Intisar Koch
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Maya Slovik
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Yuling Zhang
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, PR China
| | - Bingyu Liu
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, PR China
| | - Martin Rennie
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emily Konz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Benjamin Cogne
- Nantes Université, CHU de Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France
| | - Muhannad Daana
- Child Development Centers, Clalit Health Care Services, Jerusalem, Israel
| | - Laura Davids
- Department of Neurosciences, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Illja J Diets
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nina B Gold
- Massachusetts General Hospital for Children, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alexander M Holtz
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Bertrand Isidor
- Nantes Université, CHU de Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France
| | - Hagar Mor-Shaked
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | | | | | - Mathilde Nizon
- Nantes Université, CHU de Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Meh Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Apa Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Marijke Wevers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | | | - Boyko S Atanassov
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chengjiang Gao
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, PR China
| | - Francisco Bustos
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, University of South Dakota, Sioux Falls, SD, USA
| | - Tamar Harel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
8
|
Prokakis E, Bamahmoud H, Jansari S, Fritsche L, Dietz A, Boshnakovska A, Rehling P, Johnsen SA, Gallwas J, Wegwitz F. USP22 supports the aggressive behavior of basal-like breast cancer by stimulating cellular respiration. Cell Commun Signal 2024; 22:120. [PMID: 38347585 PMCID: PMC10863169 DOI: 10.1186/s12964-023-01441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most frequent tumor entity in women worldwide with a high chance of therapeutic response in early- and non-metastatic disease stages. Among all BC subtypes, triple-negative BC (TNBC) is the most challenging cancer subtype lacking effective molecular targets due to the particular enrichment of cancer stem cells (CSCs), frequently leading to a chemoresistant phenotype and metastasis. The Ubiquitin Specific Peptidase 22 (USP22) is a deubiquitinase that has been frequently associated with a CSC-promoting function and intimately implicated in resistance to conventional therapies, tumor relapse, metastasis and overall poor survival in a broad range of cancer entities, including BC. To date, though, the role of USP22 in TNBC has been only superficially addressed. METHODS The current study utilized the MMTV-cre, Usp22fl/fl transgenic mouse model to study the involvement of USP22 in the stem cell-like properties of the growing mammary tissue. Additionally, we combined high-throughput transcriptomic analyses with publicly available patient transcriptomic data and utilized TNBC culture models to decipher the functional role of USP22 in the CSC characteristics of this disease. RESULTS Interestingly, we identified that USP22 promotes CSC properties and drug tolerance by supporting the oxidative phosphorylation program, known to be largely responsible for the poor response to conventional therapies in this particularly aggressive BC subtype. CONCLUSIONS This study suggests a novel tumor-supportive role of USP22 in sustaining cellular respiration to facilitate the drug-tolerant behavior of HER2+-BC and TNBC cells. Therefore, we posit USP22 as a promising therapeutic target to optimize standard therapies and combat the aggressiveness of these malignancies. Video Abstract.
Collapse
Affiliation(s)
- Evangelos Prokakis
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Husam Bamahmoud
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Shaishavi Jansari
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Lena Fritsche
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Dietz
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- The Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Julia Gallwas
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
9
|
Kuang X, Salinger A, Benavides F, Muller WJ, Dent SYR, Koutelou E. USP22 overexpression fails to augment tumor formation in MMTV-ERBB2 mice but loss of function impacts MMTV promoter activity. PLoS One 2024; 19:e0290837. [PMID: 38236941 PMCID: PMC10796002 DOI: 10.1371/journal.pone.0290837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 01/22/2024] Open
Abstract
The Ubiquitin Specific Peptidase 22 (USP22), a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) histone modifying complex, is overexpressed in multiple human cancers, but how USP22 impacts tumorigenesis is not clear. We reported previously that Usp22 loss in mice impacts execution of several signaling pathways driven by growth factor receptors such as erythroblastic oncogene B b2 (ERBB2). To determine whether changes in USP22 expression affects ERBB2-driven tumorigenesis, we introduced conditional overexpression or deletion alleles of Usp22 into mice bearing the Mouse mammary tumor virus-Neu-Ires-Cre (MMTV-NIC) transgene, which drives both rat ERBB2/NEU expression and Cre recombinase activity from the MMTV promoter resulting in mammary tumor formation. We found that USP22 overexpression in mammary glands did not further enhance primary tumorigenesis in MMTV-NIC female mice, but increased lung metastases were observed. However, deletion of Usp22 significantly decreased tumor burden and increased survival of MMTV-NIC mice. These effects were associated with markedly decreased levels of both Erbb2 mRNA and protein, indicating Usp22 loss impacts MMTV promoter activity. Usp22 loss had no impact on ERBB2 expression in other settings, including MCF10A cells bearing a Cytomegalovirus (CMV)-driven ERBB2 transgene or in human epidermal growth factor receptor 2 (HER2)+ human SKBR3 and HCC1953 cells. Decreased activity of the MMTV promoter in MMTV-NIC mice correlated with decreased expression of known regulatory factors, including the glucocorticoid receptor (GR), the progesterone receptor (PR), and the chromatin remodeling factor Brahma-related gene-1 (BRG1). Together our findings indicate that increased expression of USP22 does not augment the activity of an activated ERBB2/NEU transgene but impacts of Usp22 loss on tumorigenesis cannot be assessed in this model due to unexpected effects on MMTV-driven Erbb2/Neu expression.
Collapse
Affiliation(s)
- Xianghong Kuang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Andrew Salinger
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - William J. Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
- Faculty of Medicine, McGill University, Montreal, Canada
| | - Sharon Y. R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center/UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
10
|
Zhang K, Sun T, Li W, Guo Y, Li A, Hsieh M, Wang J, Wu J, Arvanitis L, Raz DJ. Inhibition of USP7 upregulates USP22 and activates its downstream cancer-related signaling pathways in human cancer cells. Cell Commun Signal 2023; 21:319. [PMID: 37946202 PMCID: PMC10634000 DOI: 10.1186/s12964-023-01320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Deubiquitinases (DUBs) play important roles in various human cancers and targeting DUBs is considered as a novel anticancer therapeutic strategy. Overexpression of ubiquitin specific protease 7 and 22 (USP7 and USP22) are associated with malignancy, therapy resistance, and poor prognosis in many cancers. Although both DUBs are involved in the regulation of similar genes and signaling pathways, such as histone H2B monoubiquitination (H2Bub1), c-Myc, FOXP3, and p53, the interdependence of USP22 and USP7 expression has never been described. In the study, we found that targeting USP7 via either siRNA-mediated knockdown or pharmaceutical inhibitors dramatically upregulates USP22 in cancer cells. Mechanistically, the elevated USP22 occurs through a transcriptional pathway, possibly due to desuppression of the transcriptional activity of SP1 via promoting its degradation upon USP7 inhibition. Importantly, increased USP22 expression leads to significant activation of downstream signal pathways including H2Bub1 and c-Myc, which may potentially enhance cancer malignancy and counteract the anticancer efficacy of USP7 inhibition. Importantly, targeting USP7 further suppresses the in vitro proliferation of USP22-knockout (USP22-Ko) A549 and H1299 lung cancer cells and induces a stronger activation of p53 tumor suppressor signaling pathway. In addition, USP22-Ko cancer cells are more sensitive to a combination of cisplatin and USP7 inhibitor. USP7 inhibitor treatment further suppresses in vivo angiogenesis and tumor growth and induced more apoptosis in USP22-Ko cancer xenografts. Taken together, our findings demonstrate that USP7 inhibition can dramatically upregulate USP22 in cancer cells; and targeting USP7 and USP22 may represent a more effective approach for targeted cancer therapy, which warrants further study. Video Abstract.
Collapse
Affiliation(s)
- Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| | - Ting Sun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Faculty of Health Science, University of Macau, Macau, China
| | - Wendong Li
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuming Guo
- Division of Comparative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Aimin Li
- Pathology Core of Shared Resources, City of Hope National Medical Center, Duarte, CA, USA
| | - Marcus Hsieh
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Jinghan Wang
- Department of Hepatobiliary and Pancreatic Surgery, East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Wu
- Division of Comparative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
11
|
He L, Zhan F, Lu L, Zhang X, Wu J. Role of necroptosis and immune infiltration in preeclampsia: novel insights from bioinformatics analyses. BMC Pregnancy Childbirth 2023; 23:495. [PMID: 37403014 DOI: 10.1186/s12884-023-05821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is a serious pregnancy complication that can adversely affect the mother and fetus. Necroptosis is a recently discovered new form of programmed cell death involved in the pathological process of various pregnancy complications. Our study aimed to identify the necroptosis-related differentially expressed genes (NRDEGs), create a diagnosis model and related disease subtypes model based on these genes, and further investigate their relationship with immune infiltration. METHODS In this study, we identified NRDEGs by analyzing data from various databases, including Molecular Signatures, GeneCards, and Gene Expression Omnibus (GEO). Using minor absolute shrinkage and selection operator (LASSO) and logistic Cox regression analysis, we developed a novel PE diagnosis model based on NRDEGs. Furthermore, we developed PE subtype models using consensus clustering analysis based on key gene modules screened out by weighted correlation network analysis (WGCNA). Finally, we identified the difference in immune infiltration between the PE and control groups as well as between both PE subtypes by analyzing the immune cell infiltration across combined datasets and PE datasets. RESULTS Our study discovered that the necroptosis pathway was significantly enriched and active in PE samples. We identified nine NRDEGs that involved in this pathway, including BRAF, PAWR, USP22, SYNCRIP, KRT86, MERTK, BAP1, CXCL5, and STK38. Additionally, we developed a diagnostic model based on a regression model including six NRDEGs and identified two PE subtypes: Cluster1 and Cluster2, based on key module genes. Furthermore, correlation analysis showed that the abundance of immune cell infiltration was related to necroptosis genes and PE disease subtypes. CONCLUSION According to the present study, necroptosis is a phenomenon that occurs in PE and is connected to immune cell infiltration. This result suggests that necroptosis and immune-related factors may be the underlying mechanisms of PE pathophysiology. This study opens new avenues for future research into PE's pathogenesis and treatment options.
Collapse
Affiliation(s)
- Lidan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fujian, 350004, China
| | - Feng Zhan
- College of Engineering, Fujian Jiangxia University, Fuzhou, 350108, China
| | - Lin Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fujian, 350004, China
| | - Xia Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fujian, 350004, China
| | - Jianbo Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fujian, 350004, China.
| |
Collapse
|
12
|
USP22 upregulates ZEB1-mediated VEGFA transcription in hepatocellular carcinoma. Cell Death Dis 2023; 14:194. [PMID: 36906615 PMCID: PMC10008583 DOI: 10.1038/s41419-023-05699-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common solid tumor with high rate of recurrence and mortality. Anti-angiogenesis drugs have been used for the therapy of HCC. However, anti-angiogenic drug resistance commonly occurs during HCC treatment. Thus, identification of a novel VEGFA regulator would be better understanding for HCC progression and anti-angiogenic therapy resistance. Ubiquitin specific protease 22 (USP22) as a deubiquitinating enzyme, participates in a variety of biological processes in numerous tumors. While the molecular mechanism underlying the effects of USP22 on angiogenesis is still needed to be clarified. Here, our results demonstrated that USP22 acts as a co-activator of VEGFA transcription. Importantly, USP22 is involved in maintenance of ZEB1 stability via its deubiquitinase activity. USP22 was recruited to ZEB1-binding elements on the promoter of VEGFA, thereby altering histone H2Bub levels, to enhance ZEB1-mediated VEGFA transcription. USP22 depletion decreased cell proliferation, migration, Vascular Mimicry (VM) formation, and angiogenesis. Furthermore, we provided the evidence to show that knockdown of USP22 inhibited HCC growth in tumor-bearing nude mice. In addition, the expression of USP22 is positively correlated with that of ZEB1 in clinical HCC samples. Our findings suggest that USP22 participates in the promotion of HCC progression, if not all, at least partially via up-regulation of VEGFA transcription, providing a novel therapeutic target for anti-angiogenic drug resistance in HCC.
Collapse
|
13
|
Exploration of the Potential Link, Hub Genes, and Potential Drugs for Coronavirus Disease 2019 and Lung Cancer Based on Bioinformatics Analysis. JOURNAL OF ONCOLOGY 2022; 2022:8124673. [PMID: 36199786 PMCID: PMC9529395 DOI: 10.1155/2022/8124673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) has a huge influence on global public health and the economy. Lung cancer is one of the high-risk factors of COVID-19, but the molecular mechanism of lung cancer and COVID-19 is still unclear, and further research is needed. Therefore, we used the transcriptome information of the public database and adopted bioinformatics methods to identify the common pathways and molecular biomarkers of lung cancer and COVID-19 to further understand the connection between them. The two RNA-seq data sets in this study—GSE147507 (COVID-19) and GSE33532 (lung cancer)—were both derived from the Gene Expression Omnibus (GEO) database and identified differentially expressed genes (DEGs) for lung cancer and COVID-19 patients. We conducted Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis and found some common features between lung cancer and COVID-19. We also performed TFs-gene, miRNAs-gene, and gene-drug analyses. In total, 32 DEGs were found. A protein-protein interaction (PPI) network was constructed by DEGs, and 10 hub genes were screened. Finally, the identified drugs may be helpful for COVID-19 treatment.
Collapse
|
14
|
Bouron A, Fauvarque MO. Genome-wide analysis of genes encoding core components of the ubiquitin system during cerebral cortex development. Mol Brain 2022; 15:72. [PMID: 35974412 PMCID: PMC9380329 DOI: 10.1186/s13041-022-00958-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Ubiquitination involves three types of enzymes (E1, E2, and E3) that sequentially attach ubiquitin (Ub) to target proteins. This posttranslational modification controls key cellular processes, such as the degradation, endocytosis, subcellular localization and activity of proteins. Ubiquitination, which can be reversed by deubiquitinating enzymes (DUBs), plays important roles during brain development. Furthermore, deregulation of the Ub system is linked to the pathogenesis of various diseases, including neurodegenerative disorders. We used a publicly available RNA-seq database to perform an extensive genome-wide gene expression analysis of the core components of the ubiquitination machinery, covering Ub genes as well as E1, E2, E3 and DUB genes. The ubiquitination network was governed by only Uba1 and Ube2m, the predominant E1 and E2 genes, respectively; their expression was positively regulated during cortical formation. The principal genes encoding HECT (homologous to the E6-AP carboxyl terminus), RBR (RING-in-between-RING), and RING (really interesting new gene) E3 Ub ligases were also highly regulated. Pja1, Dtx3 (RING ligases) and Stub1 (U-box RING) were the most highly expressed E3 Ub ligase genes and displayed distinct developmental expression patterns. Moreover, more than 80 DUB genes were expressed during corticogenesis, with two prominent genes, Uch-l1 and Usp22, showing highly upregulated expression. Several components of the Ub system overexpressed in cancers were also highly expressed in the cerebral cortex under conditions not related to tumour formation or progression. Altogether, this work provides an in-depth overview of transcriptomic changes during embryonic formation of the cerebral cortex. The data also offer new insight into the characterization of the Ub system and may contribute to a better understanding of its involvement in the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, Inserm, CEA, UMR 1292, 38000, Grenoble, France. .,Genetics and Chemogenomics Lab, Building C3, CEA, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France.
| | | |
Collapse
|
15
|
Fischer V, Hisler V, Scheer E, Lata E, Morlet B, Plassard D, Helmlinger D, Devys D, Tora L, Vincent S. SUPT3H-less SAGA coactivator can assemble and function without significantly perturbing RNA polymerase II transcription in mammalian cells. Nucleic Acids Res 2022; 50:7972-7990. [PMID: 35871303 PMCID: PMC9371916 DOI: 10.1093/nar/gkac637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Coactivator complexes regulate chromatin accessibility and transcription. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is an evolutionary conserved coactivator complex. The core module scaffolds the entire SAGA complex and adopts a histone octamer-like structure, which consists of six histone-fold domain (HFD)-containing proteins forming three histone-fold (HF) pairs, to which the double HFD-containing SUPT3H adds one HF pair. Spt3, the yeast ortholog of SUPT3H, interacts genetically and biochemically with the TATA binding protein (TBP) and contributes to global RNA polymerase II (Pol II) transcription. Here we demonstrate that (i) SAGA purified from human U2OS or mouse embryonic stem cells (mESC) can assemble without SUPT3H, (ii) SUPT3H is not essential for mESC survival, but required for their growth and self-renewal, and (iii) the loss of SUPT3H from mammalian cells affects the transcription of only a specific subset of genes. Accordingly, in the absence of SUPT3H no major change in TBP accumulation at gene promoters was observed. Thus, SUPT3H is not required for the assembly of SAGA, TBP recruitment, or overall Pol II transcription, but plays a role in mESC growth and self-renewal. Our data further suggest that yeast and mammalian SAGA complexes contribute to transcription regulation by distinct mechanisms.
Collapse
Affiliation(s)
- Veronique Fischer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Vincent Hisler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Elisabeth Lata
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Damien Plassard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- Plateforme GenomEast, infrastructure France Génomique, 67404 Illkirch, France
| | | | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
16
|
El-Saafin F, Devys D, Johnsen SA, Vincent SD, Tora L. SAGA-Dependent Histone H2Bub1 Deubiquitination Is Essential for Cellular Ubiquitin Balance during Embryonic Development. Int J Mol Sci 2022; 23:ijms23137459. [PMID: 35806465 PMCID: PMC9267394 DOI: 10.3390/ijms23137459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin (ub) is a small, highly conserved protein widely expressed in eukaryotic cells. Ubiquitination is a post-translational modification catalyzed by enzymes that activate, conjugate, and ligate ub to proteins. Substrates can be modified either by addition of a single ubiquitin molecule (monoubiquitination), or by conjugation of several ubs (polyubiquitination). Monoubiquitination acts as a signaling mark to control diverse biological processes. The cellular and spatial distribution of ub is determined by the opposing activities of ub ligase enzymes, and deubiquitinases (DUBs), which remove ub from proteins to generate free ub. In mammalian cells, 1–2% of total histone H2B is monoubiquitinated. The SAGA (Spt Ada Gcn5 Acetyl-transferase) is a transcriptional coactivator and its DUB module removes ub from H2Bub1. The mammalian SAGA DUB module has four subunits, ATXN7, ATXN7L3, USP22, and ENY2. Atxn7l3−/− mouse embryos, lacking DUB activity, have a five-fold increase in H2Bub1 retention, and die at mid-gestation. Interestingly, embryos lacking the ub encoding gene, Ubc, have a similar phenotype. Here we provide a current overview of data suggesting that H2Bub1 retention on the chromatin in Atxn7l3−/− embryos may lead to an imbalance in free ub distribution. Thus, we speculate that ATXN7L3-containing DUBs impact the free cellular ub pool during development.
Collapse
Affiliation(s)
- Farrah El-Saafin
- Olivia Newton-John Cancer Research Institute, Melbourne 3095, Australia;
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | | | - Stéphane D. Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- Correspondence: (S.D.V.); (L.T.); Tel.: +33-3-88653425 (S.D.V.); +33-3-88653444 (L.T.)
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- Correspondence: (S.D.V.); (L.T.); Tel.: +33-3-88653425 (S.D.V.); +33-3-88653444 (L.T.)
| |
Collapse
|
17
|
Morgan M, Ikenoue T, Suga H, Wolberger C. Potent macrocycle inhibitors of the human SAGA deubiquitinating module. Cell Chem Biol 2022; 29:544-554.e4. [PMID: 34936860 PMCID: PMC9035043 DOI: 10.1016/j.chembiol.2021.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
The Spt-Ada-Gcn5 acetyltransferase (SAGA) transcriptional coactivator contains a four-protein subcomplex called the deubiquitinating enzyme (DUB) module that removes ubiquitin from histone H2B-K120. The human DUB module contains the catalytic subunit ubiquitin-specific protease 22 (USP22), which is overexpressed in a number of cancers that are resistant to available therapies. We screened a massive combinatorial library of cyclic peptides and identified potent inhibitors of USP22. The top hit was highly specific for USP22 compared with a panel of 44 other human DUBs. Cells treated with peptide had increased levels of H2B monoubiquitination, demonstrating the ability of the cyclic peptides to enter human cells and inhibit H2B deubiquitination. These macrocycle inhibitors are, to our knowledge, the first reported inhibitors of USP22/SAGA DUB module and show promise for development.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tatsuya Ikenoue
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
A novel insight into differential expression profiles of sporadic cerebral cavernous malformation patients with different symptoms. Sci Rep 2021; 11:19351. [PMID: 34588521 PMCID: PMC8481309 DOI: 10.1038/s41598-021-98647-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a vascular lesion of the central nervous system that may lead to distinct symptoms among patients including cerebral hemorrhages, epileptic seizures, focal neurologic deficits, and/or headaches. Disease-related mutations were identified previously in one of the three CCM genes: CCM1, CCM2, and CCM3. However, the rate of these mutations in sporadic cases is relatively low, and new studies report that mutations in CCM genes may not be sufficient to initiate the lesions. Despite the growing body of research on CCM, the underlying molecular mechanism has remained largely elusive. In order to provide a novel insight considering the specific manifested symptoms, CCM patients were classified into two groups (as Epilepsy and Hemorrhage). Since the studied patients experience various symptoms, we hypothesized that the underlying cause for the disease may also differ between those groups. To this end, the respective transcriptomes were compared to the transcriptomes of the control brain tissues and among each other. This resulted into the identification of the differentially expressed coding genes and the delineation of the corresponding differential expression profile for each comparison. Notably, some of those differentially expressed genes were previously implicated in epilepsy, cell structure formation, and cell metabolism. However, no CCM1-3 gene deregulation was detected. Interestingly, we observed that when compared to the normal controls, the expression of some identified genes was only significantly altered either in Epilepsy (EGLN1, ELAVL4, and NFE2l2) or Hemorrhage (USP22, EYA1, SIX1, OAS3, SRMS) groups. To the best of our knowledge, this is the first such effort focusing on CCM patients with epileptic and hemorrhagic symptoms with the purpose of uncovering the potential CCM-related genes. It is also the first report that presents a gene expression dataset on Turkish CCM patients. The results suggest that the new candidate genes should be explored to further elucidate the CCM pathology. Overall, this work constitutes a step towards the identification of novel potential genetic targets for the development of possible future therapies.
Collapse
|
19
|
Kuang X, McAndrew MJ, Mustachio LM, Chen YJC, Atanassov BS, Lin K, Lu Y, Shen J, Salinger A, Macatee T, Dent SYR, Koutelou E. Usp22 Overexpression Leads to Aberrant Signal Transduction of Cancer-Related Pathways but Is Not Sufficient to Drive Tumor Formation in Mice. Cancers (Basel) 2021; 13:4276. [PMID: 34503086 PMCID: PMC8428332 DOI: 10.3390/cancers13174276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Usp22 overexpression is observed in several human cancers and is correlated with poor patient outcomes. The molecular basis underlying this correlation is not clear. Usp22 is the catalytic subunit of the deubiquitylation module in the SAGA histone-modifying complex, which regulates gene transcription. Our previous work demonstrated that the loss of Usp22 in mice leads to decreased expression of several components of receptor tyrosine kinase and TGFβ signaling pathways. To determine whether these pathways are upregulated when Usp22 is overexpressed, we created a mouse model that expresses high levels of Usp22 in all tissues. Phenotypic characterization of these mice revealed over-branching of the mammary glands in females. Transcriptomic analyses indicate the upregulation of key pathways involved in mammary gland branching in mammary epithelial cells derived from the Usp22-overexpressing mice, including estrogen receptor, ERK/MAPK, and TGFβ signaling. However, Usp22 overexpression did not lead to increased tumorigenesis in any tissue. Our findings indicate that elevated levels of Usp22 are not sufficient to induce tumors, but it may enhance signaling abnormalities associated with oncogenesis.
Collapse
Affiliation(s)
- Xianghong Kuang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael J. McAndrew
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Luminex Corporation, 12212 Technology Blvd. Suite 130, Austin, TX 78721, USA
| | - Lisa Maria Mustachio
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ying-Jiun C. Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boyko S. Atanassov
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Salinger
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy Macatee
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sharon Y. R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (X.K.); (M.J.M.); (L.M.M.); (Y.-J.C.C.); (K.L.); (Y.L.); (J.S.); (A.S.); (T.M.)
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
20
|
Fischer V, Plassard D, Ye T, Reina-San-Martin B, Stierle M, Tora L, Devys D. The related coactivator complexes SAGA and ATAC control embryonic stem cell self-renewal through acetyltransferase-independent mechanisms. Cell Rep 2021; 36:109598. [PMID: 34433046 PMCID: PMC8430043 DOI: 10.1016/j.celrep.2021.109598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/17/2021] [Accepted: 08/03/2021] [Indexed: 01/10/2023] Open
Abstract
SAGA (Spt-Ada-Gcn5 acetyltransferase) and ATAC (Ada-two-A-containing) are two related coactivator complexes, sharing the same histone acetyltransferase (HAT) subunit. The HAT activities of SAGA and ATAC are required for metazoan development, but the role of these complexes in RNA polymerase II transcription is less understood. To determine whether SAGA and ATAC have redundant or specific functions, we compare the effects of HAT inactivation in each complex with that of inactivation of either SAGA or ATAC core subunits in mouse embryonic stem cells (ESCs). We show that core subunits of SAGA or ATAC are required for complex assembly and mouse ESC growth and self-renewal. Surprisingly, depletion of HAT module subunits causes a global decrease in histone H3K9 acetylation, but does not result in significant phenotypic or transcriptional defects. Thus, our results indicate that SAGA and ATAC are differentially required for self-renewal of mouse ESCs by regulating transcription through different pathways in a HAT-independent manner.
Collapse
Affiliation(s)
- Veronique Fischer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Damien Plassard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France; Plateforme GenomEast, infrastructure France Génomique, Illkirch, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France; Plateforme GenomEast, infrastructure France Génomique, Illkirch, France
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch Cedex, France; Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
21
|
Wang F, El-Saafin F, Ye T, Stierle M, Negroni L, Durik M, Fischer V, Devys D, Vincent SD, Tora L. Histone H2Bub1 deubiquitylation is essential for mouse development, but does not regulate global RNA polymerase II transcription. Cell Death Differ 2021; 28:2385-2403. [PMID: 33731875 PMCID: PMC8329007 DOI: 10.1038/s41418-021-00759-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Co-activator complexes dynamically deposit post-translational modifications (PTMs) on histones, or remove them, to regulate chromatin accessibility and/or to create/erase docking surfaces for proteins that recognize histone PTMs. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is an evolutionary conserved multisubunit co-activator complex with modular organization. The deubiquitylation module (DUB) of mammalian SAGA complex is composed of the ubiquitin-specific protease 22 (USP22) and three adaptor proteins, ATXN7, ATXN7L3 and ENY2, which are all needed for the full activity of the USP22 enzyme to remove monoubiquitin (ub1) from histone H2B. Two additional USP22-related ubiquitin hydrolases (called USP27X or USP51) have been described to form alternative DUBs with ATXN7L3 and ENY2, which can also deubiquitylate H2Bub1. Here we report that USP22 and ATXN7L3 are essential for normal embryonic development of mice, however their requirements are not identical during this process, as Atxn7l3-/- embryos show developmental delay already at embryonic day (E) 7.5, while Usp22-/- embryos are normal at this stage, but die at E14.5. Global histone H2Bub1 levels were only slightly affected in Usp22 null embryos, in contrast H2Bub1 levels were strongly increased in Atxn7l3 null embryos and derived cell lines. Our transcriptomic analyses carried out from wild type and Atxn7l3-/- mouse embryonic stem cells (mESCs), or primary mouse embryonic fibroblasts (MEFs) suggest that the ATXN7L3-related DUB activity regulates only a subset of genes in both cell types. However, the gene sets and the extent of their deregulation were different in mESCs and MEFs. Interestingly, the strong increase of H2Bub1 levels observed in the Atxn7l3-/- mESCs, or Atxn7l3-/- MEFs, does not correlate with the modest changes in RNA Polymerase II (Pol II) occupancy and lack of changes in Pol II elongation observed in the two Atxn7l3-/- cellular systems. These observations together indicate that deubiquitylation of histone H2Bub1 does not directly regulate global Pol II transcription elongation.
Collapse
Affiliation(s)
- Fang Wang
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Farrah El-Saafin
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France ,grid.482637.cPresent Address: Olivia Newton-John Cancer Research Institute, Melbourne, VIC Australia
| | - Tao Ye
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France ,Plateforme GenomEast, infrastructure France Génomique, 67404 Illkirch, France
| | - Matthieu Stierle
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Luc Negroni
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Matej Durik
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Veronique Fischer
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Didier Devys
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Stéphane D. Vincent
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - László Tora
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
22
|
Chen YJC, Dent SYR. Conservation and diversity of the eukaryotic SAGA coactivator complex across kingdoms. Epigenetics Chromatin 2021; 14:26. [PMID: 34112237 PMCID: PMC8194025 DOI: 10.1186/s13072-021-00402-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022] Open
Abstract
The SAGA complex is an evolutionarily conserved transcriptional coactivator that regulates gene expression through its histone acetyltransferase and deubiquitylase activities, recognition of specific histone modifications, and interactions with transcription factors. Multiple lines of evidence indicate the existence of distinct variants of SAGA among organisms as well as within a species, permitting diverse functions to dynamically regulate cellular pathways. Our co-expression analysis of genes encoding human SAGA components showed enrichment in reproductive organs, brain tissues and the skeletal muscle, which corresponds to their established roles in developmental programs, emerging roles in neurodegenerative diseases, and understudied functions in specific cell types. SAGA subunits modulate growth, development and response to various stresses from yeast to plants and metazoans. In metazoans, SAGA further participates in the regulation of differentiation and maturation of both innate and adaptive immune cells, and is associated with initiation and progression of diseases including a broad range of cancers. The evolutionary conservation of SAGA highlights its indispensable role in eukaryotic life, thus deciphering the mechanisms of action of SAGA is key to understanding fundamental biological processes throughout evolution. To illuminate the diversity and conservation of this essential complex, here we discuss variations in composition, essentiality and co-expression of component genes, and its prominent functions across Fungi, Plantae and Animalia kingdoms.
Collapse
Affiliation(s)
- Ying-Jiun C Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA.
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
23
|
Cai Z, Zhang MX, Tang Z, Zhang Q, Ye J, Xiong TC, Zhang ZD, Zhong B. USP22 promotes IRF3 nuclear translocation and antiviral responses by deubiquitinating the importin protein KPNA2. J Exp Med 2020; 217:133859. [PMID: 32130408 PMCID: PMC7201923 DOI: 10.1084/jem.20191174] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 06/29/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
USP22 is a cytoplasmic and nuclear deubiquitinating enzyme, and the functions of cytoplasmic USP22 are unclear. Here, we discovered that cytoplasmic USP22 promoted nuclear translocation of IRF3 by deubiquitianting and stabilizing KPNA2 after viral infection. Viral infection induced USP22-IRF3 association in the cytoplasm in a KPNA2-depedent manner, and knockdown or knockout of USP22 or KPNA2 impaired IRF3 nuclear translocation and expression of downstream genes after viral infection. Consistently, Cre-ER Usp22fl/fl or Lyz2-Cre Usp22fl/fl mice produced decreased levels of type I IFNs after viral infection and exhibited increased susceptibility to lethal viral infection compared with the respective control littermates. Mechanistically, USP22 deubiquitinated and stabilized KPNA2 after viral infection to facilitate efficient nuclear translocation of IRF3. Reconstitution of KPNA2 into USP22 knockout cells restored virus-triggered nuclear translocation of IRF3 and cellular antiviral responses. These findings define a previously unknown function of cytoplasmic USP22 and establish a mechanistic link between USP22 and IRF3 nuclear translocation that expands potential therapeutic strategies for infectious diseases.
Collapse
Affiliation(s)
- Zeng Cai
- Department of Virology, College of Life Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Immunology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Meng-Xin Zhang
- Department of Virology, College of Life Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Immunology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhen Tang
- Department of Virology, College of Life Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Immunology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Qiang Zhang
- Department of Virology, College of Life Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Immunology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jing Ye
- Department of Virology, College of Life Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Immunology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Tian-Chen Xiong
- Department of Virology, College of Life Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Immunology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhi-Dong Zhang
- Department of Virology, College of Life Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Immunology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Bo Zhong
- Department of Virology, College of Life Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Immunology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Cornelio-Parra DV, Goswami R, Costanzo K, Morales-Sosa P, Mohan RD. Function and regulation of the Spt-Ada-Gcn5-Acetyltransferase (SAGA) deubiquitinase module. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194630. [PMID: 32911111 DOI: 10.1016/j.bbagrm.2020.194630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022]
Abstract
The Spt-Ada-Gcn5 Acetyltransferase (SAGA) chromatin modifying complex is a critical regulator of gene expression and is highly conserved across species. Subunits of SAGA arrange into discrete modules with lysine aceyltransferase and deubiquitinase activities housed separately. Mutation of the SAGA deubiquitinase module can lead to substantial biological misfunction and diseases such as cancer, neurodegeneration, and blindness. Here, we review the structure and functions of the SAGA deubiquitinase module and regulatory mechanisms acting to control these.
Collapse
|
25
|
Regulation of Histone Ubiquitination in Response to DNA Double Strand Breaks. Cells 2020; 9:cells9071699. [PMID: 32708614 PMCID: PMC7407225 DOI: 10.3390/cells9071699] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic cells are constantly exposed to both endogenous and exogenous stressors that promote the induction of DNA damage. Of this damage, double strand breaks (DSBs) are the most lethal and must be efficiently repaired in order to maintain genomic integrity. Repair of DSBs occurs primarily through one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). The choice between these pathways is in part regulated by histone post-translational modifications (PTMs) including ubiquitination. Ubiquitinated histones not only influence transcription and chromatin architecture at sites neighboring DSBs but serve as critical recruitment platforms for repair machinery as well. The reversal of these modifications by deubiquitinating enzymes (DUBs) is increasingly being recognized in a number of cellular processes including DSB repair. In this context, DUBs ensure proper levels of ubiquitin, regulate recruitment of downstream effectors, dictate repair pathway choice, and facilitate appropriate termination of the repair response. This review outlines the current understanding of histone ubiquitination in response to DSBs, followed by a comprehensive overview of the DUBs that catalyze the removal of these marks.
Collapse
|
26
|
Wang HQ, Li Y, Ding SS, Li YX, Wang AC, Shi HY. Biological effects of ubiquitin-specific peptidase 22 on thyroid papillary cancer cells and its mechanism of action. Transl Cancer Res 2020; 9:3703-3711. [PMID: 35117732 PMCID: PMC8798600 DOI: 10.21037/tcr-20-2102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/21/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND In this study, ubiquitin-specific peptidase 22 (USP22) was detected in both thyroid papillary cancer-1 (TPC-1) and normal thyroid epithelial cell lines (HT-ori3), and its biological function was analyzed. METHOD Cell culture, resuscitation, and passage, Western blot, and real-time polymerase chain reaction were used. RESULTS The expression of USP22 was found to be significantly higher in TPC-1 cancer cells than in normal cells. After silencing of the USP22 gene in TPC-1 cells, the levels of USP22 gene and protein expression were significantly decreased. After 6 h with silencing of the USP22 gene, the migration rate was lower and the cells had become smaller than in the control group (P<0.05). At 24 h, the number of invasive cells was significantly lower than in the control group (P<0.05). A cell viability test showed that the differences between the groups increased on days 4 and 5 (P<0.05). The number of colony-forming cells had also decreased significantly after 10 days (P<0.05) in the USP22-siRNA1 group. Compared with the control group, the protein levels of USP22, cyclin D2, and Bmi-1 were significantly decreased (P<0.05). The decrease of USP22 was positively correlated with the decrease of Bmi-1 and cyclin D2. After silencing of the USP22 gene in normal HT-ori3 cells, the USP22 gene and protein expressions decreased significantly (P<0.05). A cell viability test showed that the difference had increased (P<0.01), and the number of cloned cells had significantly decreased than that in negative group (P<0.01). CONCLUSIONS In conclusion, the USP22 gene plays a key role in the growth, proliferation, invasion, and migration of papillary thyroid cancer cells. USP22 possibly exerts its effect in TPC through the Bmi-1 and cyclin D2 pathways. USP22 also plays a crucial role in the growth of normal thyroid cells.
Collapse
Affiliation(s)
- Hong-Qun Wang
- Medical college of Chinese People’s Liberation Army, Beijing, 100853, China
- Department of Pathology, the First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Ying Li
- Medical college of Chinese People’s Liberation Army, Beijing, 100853, China
- Department of Pathology, First Affiliated Hospital of Jiamusi University, Jiamusi 100039, China
| | - Shan-Shan Ding
- Medical college of Chinese People’s Liberation Army, Beijing, 100853, China
- Department of Pathology, The General Hospital of the PLA Rocket Force, Beijing 100088, China
| | - Ying-Xue Li
- Medical college of Chinese People’s Liberation Army, Beijing, 100853, China
- Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000, China
| | - Ai-Chun Wang
- Medical college of Chinese People’s Liberation Army, Beijing, 100853, China
- Department of Pathology, Haidian Maternal & Children Health Hospital, Beijing 100080, China
| | - Huai-Yin Shi
- Medical college of Chinese People’s Liberation Army, Beijing, 100853, China
- Department of Pathology, the First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing 100853, China
| |
Collapse
|
27
|
Mustachio LM, Roszik J, Farria A, Dent SYR. Targeting the SAGA and ATAC Transcriptional Coactivator Complexes in MYC-Driven Cancers. Cancer Res 2020; 80:1905-1911. [PMID: 32094302 DOI: 10.1158/0008-5472.can-19-3652] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022]
Abstract
Targeting epigenetic regulators, such as histone-modifying enzymes, provides novel strategies for cancer therapy. The GCN5 lysine acetyltransferase (KAT) functions together with MYC both during normal development and in oncogenesis. As transcription factors, MYC family members are difficult to target with small-molecule inhibitors, but the acetyltransferase domain and the bromodomain in GCN5 might provide alternative targets for disruption of MYC-driven functions. GCN5 is part of two distinct multiprotein histone-modifying complexes, SAGA and ATAC. This review summarizes key findings on the roles of SAGA and ATAC in embryo development and in cancer to better understand the functional relationships of these complexes with MYC family members, as well as their future potential as therapeutic targets.
Collapse
Affiliation(s)
- Lisa Maria Mustachio
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aimee Farria
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sharon Y R Dent
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
28
|
Zhang K, Yang L, Wang J, Sun T, Guo Y, Nelson R, Tong TR, Pangeni R, Salgia R, Raz DJ. Ubiquitin-specific protease 22 is critical to in vivo angiogenesis, growth and metastasis of non-small cell lung cancer. Cell Commun Signal 2019; 17:167. [PMID: 31842906 PMCID: PMC6916027 DOI: 10.1186/s12964-019-0480-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Loss of monoubiquitination of histone H2B (H2Bub1) was found to be associated with poor differentiation, cancer stemness, and enhanced malignancy of non-small cell lung cancer (NSCLC). Herein, we investigated the biological significance and therapeutic implications of ubiquitin-specific protease 22 (USP22), an H2Bub1 deubiquitinase, in non-small cell lung cancer (NSCLC). METHODS USP22 expression and its clinical relevance were assessed in NSCLC patients. The effects of USP22 knockout on sensitivity to cisplatin and irradiation, and growth, metastasis of NSCLC xenografts, and survival of cancer-bearing mice were investigated. The underlying mechanisms of targeting USP22 were explored. RESULTS Overexpression of USP22 was observed in 49.0% (99/202) of NSCLC tissues; higher USP22 immunostaining was found to be associated with enhanced angiogenesis and recurrence of NSCLC. Notably, USP22 knockout dramatically suppressed in vitro proliferation, colony formation; and angiogenesis, growth, metastasis of A549 and H1299 in mouse xenograft model, and significantly prolonged survival of metastatic cancer-bearing mice. Furthermore, USP22 knockout significantly impaired non-homologous DNA damage repair capacity, enhanced cisplatin and irradiation-induced apoptosis in these cells. In terms of underlying mechanisms, RNA sequencing and gene ontology enrichment analysis demonstrated that USP22 knockout significantly suppressed angiogenesis, proliferation, EMT, RAS, c-Myc pathways, concurrently enhanced oxidative phosphorylation and tight junction pathways in A549 and H1299 NSCLC cells. Immunoblot analysis confirmed that USP22 knockout upregulated E-cadherin, p16; reduced ALDH1A3, Cyclin E1, c-Myc, and attenuated activation of AKT and ERK pathways in these cells. CONCLUSIONS Our findings suggest USP22 plays critical roles in the malignancy and progression of NSCLC and provide rationales for targeting USP22, which induces broad anti-cancer activities, as a novel therapeutic strategy for NSCLC patient.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Proliferation/drug effects
- Cisplatin/pharmacology
- DNA Repair
- DNA, Neoplasm/analysis
- Disease Models, Animal
- Female
- Humans
- Interleukin Receptor Common gamma Subunit/deficiency
- Interleukin Receptor Common gamma Subunit/metabolism
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/secondary
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Middle Aged
- Neoplasm Metastasis
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/therapy
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- Ubiquitin Thiolesterase/antagonists & inhibitors
- Ubiquitin Thiolesterase/deficiency
- Ubiquitin Thiolesterase/metabolism
Collapse
Affiliation(s)
- Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California USA
| | - Lu Yang
- Department of System Biology, City of Hope National Medical Center, Duarte, California USA
| | - Jinhui Wang
- The Integrative Genomics Core Laboratory of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California USA
| | - Ting Sun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California USA
- Department of Surgery, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuming Guo
- Division of Comparative Medicine, City of Hope National Medical Center, Duarte, CA USA
| | - Rebecca Nelson
- Department of Pathology, City of Hope National Medical Center, Duarte, California USA
| | - Tommy R. Tong
- Division of Biostatistics, City of Hope National Medical Center, Duarte, California USA
| | - Rajendra Pangeni
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, California USA
| | - Dan J. Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California USA
| |
Collapse
|
29
|
Wang B, Cai W, Ai D, Zhang X, Yao L. The Role of Deubiquitinases in Vascular Diseases. J Cardiovasc Transl Res 2019; 13:131-141. [DOI: 10.1007/s12265-019-09909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
|
30
|
Kosinsky RL, Zerche M, Saul D, Wang X, Wohn L, Wegwitz F, Begus-Nahrmann Y, Johnsen SA. USP22 exerts tumor-suppressive functions in colorectal cancer by decreasing mTOR activity. Cell Death Differ 2019; 27:1328-1340. [PMID: 31527800 DOI: 10.1038/s41418-019-0420-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/01/2019] [Accepted: 09/02/2019] [Indexed: 11/09/2022] Open
Abstract
USP22, the deubiquitinating subunit of the SAGA transcriptional cofactor complex, is a member of an 11-gene "death-from-cancer" signature. USP22 has been considered an attractive therapeutic target since high levels of its expression were associated with distant metastasis, poor survival, and high recurrence rates in a wide variety of solid tumors, including colorectal cancer (CRC). We sought to investigate the role of Usp22 during tumorigenesis in vivo using a mouse model for intestinal carcinogenesis with a tissue-specific Usp22 ablation. In addition, we assessed the effects of USP22 depletion in human CRC cells on tumorigenic potential and identified underlying molecular mechanisms. For the first time, we report that USP22 has an unexpected tumor-suppressive function in vivo. Intriguingly, intestine-specific Usp22 deletion exacerbated the tumor phenotype caused by Apc mutation, resulting in significantly decreased survival and higher intestinal tumor incidence. Accordingly, human CRC cells showed increased tumorigenic properties upon USP22 reduction in vitro and in vivo and induced gene expression signatures associated with an unfavorable outcome in CRC patients. Notably, USP22 loss resulted in increased mTOR activity with the tumorigenic properties elicited by the loss of USP22 being reversible by mTOR inhibitor treatment in vitro and in vivo. Here, we demonstrate that USP22 can exert tumor-suppressive functions in CRC where its loss increases CRC burden by modulating mTOR activity. Importantly, our data uncover a tumor- and context-specific role of USP22, suggesting that USP22 expression could serve as a marker for therapeutic stratification of cancer patients.
Collapse
Affiliation(s)
- Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany.
| | - Maria Zerche
- Department of General, Visceral and Pediatric Surgery, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Dominik Saul
- Department of Trauma, Orthopedics and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Xin Wang
- Department of General, Visceral and Pediatric Surgery, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Luisa Wohn
- Department of General, Visceral and Pediatric Surgery, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Yvonne Begus-Nahrmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany. .,Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|