1
|
Kozoriz K, Lee JS. Chemical proteomics for a comprehensive understanding of functional activity and the interactome. Chem Soc Rev 2025. [PMID: 40384449 DOI: 10.1039/d5cs00381d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Traditional mass spectrometry (MS)-based proteomics aims to detect and measure protein expression on a global scale and elucidate the link between protein function and phenotypic characteristics. Although advances in MS technology have significantly broadened the scope of detectable proteomes, these methodologies primarily provide data on protein abundance and offer limited insights into their functional activities. Phenotypic traits emerge from the interplay between protein abundance and functional activity, making the accurate measurement of activity a critical but challenging task, owing to the complexity of biological systems. Furthermore, the biological function of a protein is strongly linked to its interaction with other molecules within the cellular environment. Chemical proteomics offers a complementary approach that uses a toolkit developed in chemical biology to map the molecular interactome and provide initial insights into the activities of specific target proteins. However, the value of these techniques lies not in isolation, but as part of a broader experimental workflow that includes follow-up biological investigations to validate the findings and elucidate their functional relevance. This tutorial review highlights the design principles of chemical tools and examines their applications in two key areas: (i) functional activity profiling of biomolecules and (ii) molecular proximity profiling for interactome characterization. We also discuss the importance of the experimental context in shaping data interpretation and ensuring the practical adoption of these methods by biologists. Although chemical proteomics is not a standalone solution, it represents a promising step toward next-generation omics technologies and advances our understanding of biological functions at the molecular level.
Collapse
Affiliation(s)
- Kostiantyn Kozoriz
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Uozumi R, Mori K, Akamine S, Ikeda M. Protocols for identifying endogenous interactors of RNA-binding proteins in mammalian cells using the peroxidase APEX2 biotin-labeling method. STAR Protoc 2024; 5:103368. [PMID: 39392747 PMCID: PMC11736044 DOI: 10.1016/j.xpro.2024.103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
Engineered ascorbate peroxidase, APEX2, is widely applied for the identification of intracellular molecule-molecule interaction analyses. Here, we present a protocol for identifying interactors of RNA-binding proteins (RBPs) in living HeLa cells using the APEX2 fusion construct. We describe steps for generation of RBP-APEX2, proximity biotin labeling, and preparation of labeled molecules for mass spectrometry analysis. This protocol may be applicable to other cell cultures and RBPs of interest. For complete details on the use and execution of this protocol, please refer to Uozumi et al.1.
Collapse
Affiliation(s)
- Ryota Uozumi
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohji Mori
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Shoshin Akamine
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Wu JW, Wang CW, Hong WY, Jang ACC, Chang YC. Detecting Native Protein-Protein Interactions by APEX2 Proximity Labeling in Drosophila Tissues. Bio Protoc 2024; 14:e5090. [PMID: 39512889 PMCID: PMC11540050 DOI: 10.21769/bioprotoc.5090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 11/15/2024] Open
Abstract
Enzyme-catalyzed proximity labeling is a potent technique for the discernment of subtle molecular interactions and subcellular localization, furnishing contextual insights into the protein of interest within cells. Although ascorbate peroxidase2 (APEX2) has proven effective in this approach when overexpressed, its compatibility with endogenous proteins remains untested. We improved this technique for studying native protein-protein interactions in live Drosophila ovary tissue. Through CRISPR/Cas9 genome editing, APEX2 was fused with the endogenous dysfusion gene. By pre-treating the tissue with Triton X-100 to enhance biotin-phenol penetration, we successfully identified multiple proteins interacting with the native Dysfusion proteins that reside on the inner nuclear membrane. Our protocol offers a comprehensive workflow for delineating the interactome networks of ovarian components in Drosophila, aiding future studies on endogenous protein-protein interactions in various tissues of other animals. Key features • Elucidating Protein-protein interactions provides deeper insights into the regulation of gene expression in molecular network and complex signaling pathways, advancing protein engineering and drug design. • This protocol utilizes CRISPR/Cas9 knock-in technology to tag endogenous proteins with the APEX2 to label nearby proteins within a 20 nm radius in Drosophila melanogaster. • We optimize APEX2-proximity labeling by using Triton X-100 pre-treatment to enhance biotin-phenol penetration into Drosophila ovaries, enabling endogenous proteins enrichment under native conditions.
Collapse
Affiliation(s)
- Jhen-Wei Wu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chueh-Wen Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wei Yang Hong
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Anna C. C. Jang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chiuan Chang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Schnider ST, Vigano MA, Affolter M, Aguilar G. Functionalized Protein Binders in Developmental Biology. Annu Rev Cell Dev Biol 2024; 40:119-142. [PMID: 39038471 DOI: 10.1146/annurev-cellbio-112122-025214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Developmental biology has greatly profited from genetic and reverse genetic approaches to indirectly studying protein function. More recently, nanobodies and other protein binders derived from different synthetic scaffolds have been used to directly dissect protein function. Protein binders have been fused to functional domains, such as to lead to protein degradation, relocalization, visualization, or posttranslational modification of the target protein upon binding. The use of such functionalized protein binders has allowed the study of the proteome during development in an unprecedented manner. In the coming years, the advent of the computational design of protein binders, together with further advances in scaffold engineering and synthetic biology, will fuel the development of novel protein binder-based technologies. Studying the proteome with increased precision will contribute to a better understanding of the immense molecular complexities hidden in each step along the way to generate form and function during development.
Collapse
Affiliation(s)
| | | | | | - Gustavo Aguilar
- Current affiliation: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Biozentrum, Universität Basel, Basel, Switzerland;
| |
Collapse
|
5
|
Uozumi R, Mori K, Gotoh S, Miyamoto T, Kondo S, Yamashita T, Kawabe Y, Tagami S, Akamine S, Ikeda M. PABPC1 mediates degradation of C9orf72-FTLD/ALS GGGGCC repeat RNA. iScience 2024; 27:109303. [PMID: 38444607 PMCID: PMC10914486 DOI: 10.1016/j.isci.2024.109303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
GGGGCC hexanucleotide repeat expansion in C9orf72 causes frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Expanded GGGGCC repeat RNA accumulates within RNA foci and is translated into toxic dipeptide repeat proteins; thus, efficient repeat RNA degradation may alleviate diseases. hnRNPA3, one of the repeat RNA-binding proteins, has been implicated in the destabilization of repeat RNA. Using APEX2-mediated proximity biotinylation, here, we demonstrate PABPC1, a cytoplasmic poly (A)-binding protein, interacts with hnRNPA3. Knockdown of PABPC1 increased the accumulation of repeat RNA and RNA foci to the same extent as the knockdown of hnRNPA3. Proximity ligation assays indicated PABPC1-hnRNPA3 and PABPC1-RNA exosomes, a complex that degrades repeat RNA, preferentially co-localized when repeat RNA was present. Our results suggest that PABPC1 functions as a mediator of polyadenylated GGGGCC repeat RNA degradation through interactions with hnRNPA3 and RNA exosome complex.
Collapse
Affiliation(s)
- Ryota Uozumi
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohji Mori
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shiho Gotoh
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tesshin Miyamoto
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shizuko Kondo
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoko Yamashita
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuya Kawabe
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Psychiatry, Minoh Neuropsychiatric Hospital, Minoh, Osaka 562-0004, Japan
| | - Shinji Tagami
- Psychiatry, Minoh Neuropsychiatric Hospital, Minoh, Osaka 562-0004, Japan
- Health and Counseling Center, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shoshin Akamine
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Song S, Cho B, Weiner AT, Nissen SB, Ojeda Naharros I, Sanchez Bosch P, Suyama K, Hu Y, He L, Svinkina T, Udeshi ND, Carr SA, Perrimon N, Axelrod JD. Protein phosphatase 1 regulates core PCP signaling. EMBO Rep 2023; 24:e56997. [PMID: 37975164 PMCID: PMC10702827 DOI: 10.15252/embr.202356997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Planar cell polarity (PCP) signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components. Identification of such proteins is challenging due to pleiotropy. We used mass spectrometry-based proximity labeling proteomics to identify such regulators in the Drosophila wing. We identified the catalytic subunit of protein phosphatase1, Pp1-87B, and show that it regulates core protein polarization. Pp1-87B interacts with the core protein Van Gogh and at least one serine/threonine kinase, Dco/CKIε, that is known to regulate PCP. Pp1-87B modulates Van Gogh subcellular localization and directs its dephosphorylation in vivo. PNUTS, a Pp1 regulatory subunit, also modulates PCP. While the direct substrate(s) of Pp1-87B in control of PCP is not known, our data support the model that cycling between phosphorylated and unphosphorylated forms of one or more core PCP components may regulate acquisition of asymmetry. Finally, our screen serves as a resource for identifying additional regulators of PCP signaling.
Collapse
Affiliation(s)
- Song Song
- Department of PathologyStanford University School of MedicineStanfordCAUSA
- Present address:
GenScriptPiscatawayNJUSA
| | - Bomsoo Cho
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Alexis T Weiner
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Silas Boye Nissen
- Department of PathologyStanford University School of MedicineStanfordCAUSA
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)University of CopenhagenCopenhagenDenmark
| | - Irene Ojeda Naharros
- Department of OphthalmologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | | | - Kaye Suyama
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolHarvard UniversityBostonMAUSA
| | - Li He
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolHarvard UniversityBostonMAUSA
- Present address:
School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | | | | | | | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolHarvard UniversityBostonMAUSA
- Howard Hughes Medical InstituteBostonMAUSA
| | - Jeffrey D Axelrod
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| |
Collapse
|
7
|
Sunna S, Bowen CA, Ramelow CC, Santiago JV, Kumar P, Rangaraju S. Advances in proteomic phenotyping of microglia in neurodegeneration. Proteomics 2023; 23:e2200183. [PMID: 37060300 PMCID: PMC10528430 DOI: 10.1002/pmic.202200183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Microglia are dynamic resident immune cells of the central nervous system (CNS) that sense, survey, and respond to changes in their environment. In disease states, microglia transform from homeostatic to diverse molecular phenotypic states that play complex and causal roles in neurologic disease pathogenesis, as evidenced by the identification of microglial genes as genetic risk factors for neurodegenerative disease. While advances in transcriptomic profiling of microglia from the CNS of humans and animal models have provided transformative insights, the transcriptome is only modestly reflective of the proteome. Proteomic profiling of microglia is therefore more likely to provide functionally and therapeutically relevant targets. In this review, we discuss molecular insights gained from transcriptomic studies of microglia in the context of Alzheimer's disease as a prototypic neurodegenerative disease, and highlight existing and emerging approaches for proteomic profiling of microglia derived from in vivo model systems and human brain.
Collapse
Affiliation(s)
- Sydney Sunna
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Christine A. Bowen
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Christina C. Ramelow
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Juliet V. Santiago
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Prateek Kumar
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Yheskel M, Sidoli S, Secombe J. Proximity labeling reveals a new in vivo network of interactors for the histone demethylase KDM5. Epigenetics Chromatin 2023; 16:8. [PMID: 36803422 PMCID: PMC9938590 DOI: 10.1186/s13072-023-00481-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND KDM5 family proteins are multi-domain regulators of transcription that when dysregulated contribute to cancer and intellectual disability. KDM5 proteins can regulate transcription through their histone demethylase activity in addition to demethylase-independent gene regulatory functions that remain less characterized. To expand our understanding of the mechanisms that contribute to KDM5-mediated transcription regulation, we used TurboID proximity labeling to identify KDM5-interacting proteins. RESULTS Using Drosophila melanogaster, we enriched for biotinylated proteins from KDM5-TurboID-expressing adult heads using a newly generated control for DNA-adjacent background in the form of dCas9:TurboID. Mass spectrometry analyses of biotinylated proteins identified both known and novel candidate KDM5 interactors, including members of the SWI/SNF and NURF chromatin remodeling complexes, the NSL complex, Mediator, and several insulator proteins. CONCLUSIONS Combined, our data shed new light on potential demethylase-independent activities of KDM5. In the context of KDM5 dysregulation, these interactions may play key roles in the alteration of evolutionarily conserved transcriptional programs implicated in human disorders.
Collapse
Affiliation(s)
- Matanel Yheskel
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
9
|
Nguyen TTM, Munkhzul C, Kim J, Kyoung Y, Vianney M, Shin S, Ju S, Pham-Bui HA, Kim J, Kim JS, Lee M. In vivo profiling of the Zucchini proximal proteome in the Drosophila ovary. Development 2023; 150:286990. [PMID: 36762624 DOI: 10.1242/dev.201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are small RNAs that play a conserved role in genome defense. The piRNA processing pathway is dependent on the sequestration of RNA precursors and protein factors in specific subcellular compartments. Therefore, a highly resolved spatial proteomics approach can help identify the local interactions and elucidate the unknown aspects of piRNA biogenesis. Herein, we performed TurboID proximity labeling to investigate the interactome of Zucchini (Zuc), a key factor of piRNA biogenesis in germline cells and somatic follicle cells of the Drosophila ovary. Quantitative mass spectrometry analysis of biotinylated proteins defined the Zuc-proximal proteome, including the well-known partners of Zuc. Many of these were enriched in the outer mitochondrial membrane (OMM), where Zuc was specifically localized. The proximal proteome of Zuc showed a distinct set of proteins compared with that of Tom20, a representative OMM protein, indicating that chaperone function-related and endomembrane system/vesicle transport proteins are previously unreported interacting partners of Zuc. The functional relevance of several candidates in piRNA biogenesis was validated by derepression of transposable elements after knockdown. Our results present potential Zuc-interacting proteins, suggesting unrecognized biological processes.
Collapse
Affiliation(s)
- Thi Thanh My Nguyen
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Choijamts Munkhzul
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yeonju Kyoung
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Michele Vianney
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Seonmin Ju
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoang-Anh Pham-Bui
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Junhyung Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
10
|
Abstract
In this chapter, we highlight examples of the diverse array of developmental, cellular, and biochemical insights that can be gained by using Drosophila melanogaster oogenesis as a model tissue. We begin with an overview of ovary development and adult oogenesis. Then we summarize how the adult Drosophila ovary continues to advance our understanding of stem cells, cell cycle, cell migration, cytoplasmic streaming, nurse cell dumping, and cell death. We also review emerging areas of study, including the roles of lipid droplets, ribosomes, and nuclear actin in egg development. Finally, we conclude by discussing the growing conservation of processes and signaling pathways that regulate oogenesis and female reproduction from flies to humans.
Collapse
|
11
|
Ridwan SM, Antel M, Inaba M. Enrichment of Undifferentiated Germline and Somatic Cells from Drosophila Testes. Methods Mol Biol 2023; 2677:127-138. [PMID: 37464239 DOI: 10.1007/978-1-0716-3259-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The Drosophila male germline provides a strong model system to understand numerous developmental and cell-biological processes, owing to a well-defined anatomy and cell type markers in combination with various genetic tools available for the Drosophila system. A major weakness of this system has been the difficulty of approaches for obtaining material for biochemical assays, proteomics, and genomic or transcriptomic profiling due to small-size and complex tissues. However, the recent development of techniques has started allowing us the usage of a low amount of material for these analyses and now we can strategize many new experiments. The method for enrichment or isolation of rare populations of cells is still challenging and should meaningfully influence the reliability of the results. Here, we provide our semi-optimized protocol of enrichment of undifferentiated germ cells and somatic cells from non-tumorous Drosophila testis, which we have successfully improved after multiple trials.
Collapse
Affiliation(s)
- Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA
| | - Matthew Antel
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
12
|
Mallart C, Chalvet F, Netter S, Torres AY, Poidevin M, Montagne J, Pret AM, Malartre M. E-cadherin acts as a positive regulator of the JAK-STAT signaling pathway during Drosophila oogenesis. Front Cell Dev Biol 2022; 10:886312. [PMID: 36120588 PMCID: PMC9473917 DOI: 10.3389/fcell.2022.886312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022] Open
Abstract
The JAK-STAT pathway is evolutionary conserved. The simplicity of this signaling in Drosophila, due to the limited redundancy between pathway components, makes it an ideal model for investigation. In the Drosophila follicular epithelium, highly stereotyped functions of JAK-STAT signaling have been well characterized, but how signaling activity is regulated precisely to allow the different outcomes is not well understood. In this tissue, the ligand is secreted by the polar cells positioned at each follicle extremity, thus generating a gradient of JAK-STAT activity in adjacent cells. One way to control the delivered quantity of ligand is by regulating the number of polar cells, which is reduced by apoptosis to exactly two at each pole by mid-oogenesis. Hence, JAK-STAT activity is described as symmetrical between follicle anterior and posterior regions. Here, we show that JAK-STAT signaling activity is actually highly dynamic, resulting in asymmetry between poles by mid-oogenesis. Interestingly, we found similar temporal dynamics at follicle poles in the accumulation of the adherens junction E-cadherin protein. Remarkably, E-cadherin and JAK-STAT signaling not only display patterning overlaps but also share functions during oogenesis. In particular, we show that E-cadherin, like JAK-STAT signaling, regulates polar cell apoptosis non-cell-autonomously from follicle cells. Finally, our work reveals that E-cadherin is required for optimal JAK-STAT activity throughout oogenesis and that E-cadherin and Stat92E, the transcription factor of the pathway, form part of a physical complex in follicle cells. Taken together, our study establishes E-cadherin as a new positive regulator of JAK-STAT signaling during oogenesis.
Collapse
Affiliation(s)
- Charlotte Mallart
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Fabienne Chalvet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sophie Netter
- Institute for Integrative Biology of the Cell (I2BC), UVSQ, CEA, CNRS, Université Paris-Saclay, Gif- sur-Yvette, France
| | - Alba Yurani Torres
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mickael Poidevin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anne-Marie Pret
- Institute for Integrative Biology of the Cell (I2BC), UVSQ, CEA, CNRS, Université Paris-Saclay, Gif- sur-Yvette, France
| | - Marianne Malartre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
- *Correspondence: Marianne Malartre,
| |
Collapse
|
13
|
Wu JW, Wang CW, Chen RY, Hung LY, Tsai YC, Chan YT, Chang YC, Jang ACC. Spatiotemporal gating of Stat nuclear influx by Drosophila Npas4 in collective cell migration. SCIENCE ADVANCES 2022; 8:eabm2411. [PMID: 35867785 PMCID: PMC9307255 DOI: 10.1126/sciadv.abm2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Collective migration is important to embryonic development and cancer metastasis, but migratory and nonmigratory cell fate discrimination by differential activity of signal pathways remains elusive. In Drosophila oogenesis, Jak/Stat signaling patterns the epithelial cell fates in early egg chambers but later renders motility to clustered border cells. How Jak/Stat signal spatiotemporally switches static epithelia to motile cells is largely unknown. We report that a nuclear protein, Dysfusion, resides on the inner nuclear membrane and interacts with importin α/β and Nup153 to modulate Jak/Stat signal by attenuating Stat nuclear import. Dysfusion is ubiquitously expressed in oogenesis but specifically down-regulated in border cells when migrating. Increase of nuclear Stat by Dysfusion down-regulation triggers invasive cell behavior and maintains persistent motility. Mammalian homolog of Dysfusion (NPAS4) also negatively regulates the nuclear accumulation of STAT3 and cancer cell migration. Thus, our finding demonstrates that Dysfusion-dependent gating mechanism is conserved and may serve as a therapeutic target for Stat-mediated cancer metastasis.
Collapse
Affiliation(s)
- Jhen-Wei Wu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, 1 University Rd, Tainan City 70101, Taiwan
| | - Chueh-Wen Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, 1 University Rd, Tainan City 70101, Taiwan
| | - Ruo-Yu Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, 1 University Rd, Tainan City 70101, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, 1 University Rd, Tainan City 70101, Taiwan
| | - Yu-Chen Tsai
- Department of Life Science and Life Science Center, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Taichung City 407224, Taiwan
| | - Yu-Ting Chan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, 1 University Rd, Tainan City 70101, Taiwan
| | - Yu-Chiuan Chang
- Institute of Biomedical Sciences, National Sun Yat-sen University, 70 Lien-Hai Rd, Kaohsiung 80424, Taiwan
| | - Anna C.-C. Jang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, 1 University Rd, Tainan City 70101, Taiwan
| |
Collapse
|
14
|
Abstract
![]()
Proximity
labeling can be defined as an enzymatic “in-cell”
chemical reaction that catalyzes the proximity-dependent modification
of biomolecules in live cells. Since the modified proteins can be
isolated and identified via mass spectrometry, this method has been
successfully utilized for the characterization of local proteomes
such as the sub-mitochondrial proteome and the proteome at membrane
contact sites, or spatiotemporal interactome information in live cells,
which are not “accessible” via conventional methods.
Currently, proximity labeling techniques can be applied not only for
local proteome mapping but also for profiling local RNA and DNA, in
addition to showing great potential for elucidating spatial cell–cell
interaction networks in live animal models. We believe that proximity
labeling has emerged as an essential tool in “spatiomics,”
that is, for the extraction of spatially distributed biological information
in a cell or organism. Proximity labeling is a multidisciplinary
chemical technique. For
a decade, we and other groups have engineered it for multiple applications
based on the modulation of enzyme chemistry, chemical probe design,
and mass analysis techniques that enable superior mapping results.
The technique has been adopted in biology and chemistry. This “in-cell”
reaction has been widely adopted by biologists who modified it into
an in vivo reaction in animal models. In our laboratory, we conducted
in vivo proximity labeling reactions in mouse models and could successfully
obtain the liver-specific secretome and muscle-specific mitochondrial
matrix proteome. We expect that proximity reaction can further contribute
to revealing tissue-specific localized molecular information in live
animal models. Simultaneously, chemists have also adopted the
concept and employed
chemical “photocatalysts” as artificial enzymes to develop
new proximity labeling reactions. Under light activation, photocatalysts
can convert the precursor molecules to the reactive species via electron
transfer or energy transfer and the reactive molecules can react with
proximal biomolecules within a definite lifetime in an aqueous solution.
To identify the modified biomolecules by proximity labeling, the modified
biomolecules should be enriched after lysis and sequenced using sequencing
tools. In this analysis step, the direct detection of modified residue(s)
on the modified proteins or nucleic acids can be the proof of their
labeling event by proximal enzymes or catalysts in the cell. In this
Account, we introduce the basic concept of proximity labeling and
the multidirectional advances in the development of this method. We
believe that this Account may facilitate further utilization and modification
of the method in both biological and chemical research communities,
thereby revealing unknown spatially distributed molecular or cellular
information or spatiome.
Collapse
Affiliation(s)
- Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Buksh BF, Knutson SD, Oakley JV, Bissonnette NB, Oblinsky DG, Schwoerer MP, Seath CP, Geri JB, Rodriguez-Rivera FP, Parker DL, Scholes GD, Ploss A, MacMillan DWC. μMap-Red: Proximity Labeling by Red Light Photocatalysis. J Am Chem Soc 2022; 144:6154-6162. [PMID: 35363468 PMCID: PMC9843638 DOI: 10.1021/jacs.2c01384] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Modern proximity labeling techniques have enabled significant advances in understanding biomolecular interactions. However, current tools primarily utilize activation modes that are incompatible with complex biological environments, limiting our ability to interrogate cell- and tissue-level microenvironments in animal models. Here, we report μMap-Red, a proximity labeling platform that uses a red-light-excited SnIV chlorin e6 catalyst to activate a phenyl azide biotin probe. We validate μMap-Red by demonstrating photonically controlled protein labeling in vitro through several layers of tissue, and we then apply our platform in cellulo to label EGFR microenvironments and validate performance with STED microscopy and quantitative proteomics. Finally, to demonstrate labeling in a complex biological sample, we deploy μMap-Red in whole mouse blood to profile erythrocyte cell-surface proteins. This work represents a significant methodological advance toward light-based proximity labeling in complex tissue environments and animal models.
Collapse
Affiliation(s)
- Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Michael P Schwoerer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Jacob B Geri
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | | | - Dann L Parker
- Discovery Chemistry, Merck & Co., Kenilworth, New Jersey07033, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| |
Collapse
|
16
|
Sharp KA, Khoury MJ, Wirtz-Peitz F, Bilder D. Evidence for a nuclear role for Drosophila Dlg as a regulator of the NURF complex. Mol Biol Cell 2021; 32:ar23. [PMID: 34495684 PMCID: PMC8693970 DOI: 10.1091/mbc.e21-04-0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Scribble (Scrib), Discs-large (Dlg), and Lethal giant larvae (Lgl) are basolateral regulators of epithelial polarity and tumor suppressors whose molecular mechanisms of action remain unclear. We used proximity biotinylation to identify proteins localized near Dlg in the Drosophila wing imaginal disc epithelium. In addition to expected membrane- and cytoskeleton-associated protein classes, nuclear proteins were prevalent in the resulting mass spectrometry dataset, including all four members of the nucleosome remodeling factor (NURF) chromatin remodeling complex. Subcellular fractionation demonstrated a nuclear pool of Dlg and proximity ligation confirmed its position near the NURF complex. Genetic analysis showed that NURF activity is also required for the overgrowth of dlg tumors, and this growth suppression correlated with a reduction in Hippo pathway gene expression. Together, these data suggest a nuclear role for Dlg in regulating chromatin and transcription through a more direct mechanism than previously thought.
Collapse
Affiliation(s)
- Katherine A. Sharp
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| | - Mark J. Khoury
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| | | | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| |
Collapse
|
17
|
Rosenthal JS, Yuan Q. Constructing and Tuning Excitatory Cholinergic Synapses: The Multifaceted Functions of Nicotinic Acetylcholine Receptors in Drosophila Neural Development and Physiology. Front Cell Neurosci 2021; 15:720560. [PMID: 34650404 PMCID: PMC8505678 DOI: 10.3389/fncel.2021.720560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAchRs) are widely distributed within the nervous system across most animal species. Besides their well-established roles in mammalian neuromuscular junctions, studies using invertebrate models have also proven fruitful in revealing the function of nAchRs in the central nervous system. During the earlier years, both in vitro and animal studies had helped clarify the basic molecular features of the members of the Drosophila nAchR gene family and illustrated their utility as targets for insecticides. Later, increasingly sophisticated techniques have illuminated how nAchRs mediate excitatory neurotransmission in the Drosophila brain and play an integral part in neural development and synaptic plasticity, as well as cognitive processes such as learning and memory. This review is intended to provide an updated survey of Drosophila nAchR subunits, focusing on their molecular diversity and unique contributions to physiology and plasticity of the fly neural circuitry. We will also highlight promising new avenues for nAchR research that will likely contribute to better understanding of central cholinergic neurotransmission in both Drosophila and other organisms.
Collapse
Affiliation(s)
- Justin S Rosenthal
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Bernard F, Jouette J, Durieu C, Le Borgne R, Guichet A, Claret S. GFP-Tagged Protein Detection by Electron Microscopy Using a GBP-APEX Tool in Drosophila. Front Cell Dev Biol 2021; 9:719582. [PMID: 34476234 PMCID: PMC8406855 DOI: 10.3389/fcell.2021.719582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
In cell biology, detection of protein subcellular localizations is often achieved by optical microscopy techniques and more rarely by electron microscopy (EM) despite the greater resolution offered by EM. One of the possible reasons was that protein detection by EM required specific antibodies whereas this need could be circumvented by using fluorescently-tagged proteins in optical microscopy approaches. Recently, the description of a genetically encodable EM tag, the engineered ascorbate peroxidase (APEX), whose activity can be monitored by electron-dense DAB precipitates, has widened the possibilities of specific protein detection in EM. However, this technique still requires the generation of new molecular constructions. Thus, we decided to develop a versatile method that would take advantage of the numerous GFP-tagged proteins already existing and create a tool combining a nanobody anti-GFP (GBP) with APEX. This GBP-APEX tool allows a simple and efficient detection of any GFP fusion proteins without the needs of specific antibodies nor the generation of additional constructions. We have shown the feasibility and efficiency of this method to detect various proteins in Drosophila ovarian follicles such as nuclear proteins, proteins associated with endocytic vesicles, plasma membranes or nuclear envelopes. Lastly, we expressed this tool in Drosophila with the UAS/GAL4 system that enables spatiotemporal control of the protein detection.
Collapse
Affiliation(s)
- Fred Bernard
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Julie Jouette
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Catherine Durieu
- Imagoseine Platform, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Rémi Le Borgne
- Imagoseine Platform, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Antoine Guichet
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Sandra Claret
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| |
Collapse
|
19
|
Hegazy M, Cohen-Barak E, Koetsier JL, Najor NA, Arvanitis C, Sprecher E, Green KJ, Godsel LM. Proximity Ligation Assay for Detecting Protein-Protein Interactions and Protein Modifications in Cells and Tissues in Situ. ACTA ACUST UNITED AC 2021; 89:e115. [PMID: 33044803 DOI: 10.1002/cpcb.115] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biochemical methods can reveal stable protein-protein interactions occurring within cells, but the ability to observe transient events and to visualize the subcellular localization of protein-protein interactions in cells and tissues in situ provides important additional information. The Proximity Ligation Assay® (PLA) offers the opportunity to visualize the subcellular location of such interactions at endogenous protein levels, provided that the probes that recognize the target proteins are within 40 nm. This sensitive technique not only elucidates protein-protein interactions, but also can reveal post-translational protein modifications. The technique is useful even in cases where material is limited, such as when paraffin-embedded clinical specimens are the only available material, as well as after experimental intervention in 2D and 3D model systems. Here we describe the basic protocol for using the commercially available Proximity Ligation Assay™ materials (Sigma-Aldrich, St. Louis, MO), and incorporate details to aid the researcher in successfully performing the experiments. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Proximity ligation assay Support Protocol 1: Antigen retrieval method for formalin-fixed, paraffin-embedded tissues Support Protocol 2: Creation of custom PLA probes using the Duolink™ In Situ Probemaker Kit when commercially available probes are not suitable Basic Protocol 2: Imaging, quantification, and analysis of PLA signals.
Collapse
Affiliation(s)
- Marihan Hegazy
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Jennifer L Koetsier
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Nicole A Najor
- Department of Biology, University of Detroit Mercy, Detroit, Michigan
| | - Constadina Arvanitis
- Center for Advanced Microscopy/Nikon Imaging Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lisa M Godsel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
20
|
Pronobis MI, Zheng S, Singh SP, Goldman JA, Poss KD. In vivo proximity labeling identifies cardiomyocyte protein networks during zebrafish heart regeneration. eLife 2021; 10:e66079. [PMID: 33764296 PMCID: PMC8034980 DOI: 10.7554/elife.66079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
Strategies have not been available until recently to uncover interacting protein networks specific to key cell types, their subcellular compartments, and their major regulators during complex in vivo events. Here, we apply BioID2 proximity labeling to capture protein networks acting within cardiomyocytes during a key model of innate heart regeneration in zebrafish. Transgenic zebrafish expressing a promiscuous BirA2 localized to the entire myocardial cell or membrane compartment were generated, each identifying distinct proteomes in adult cardiomyocytes that became altered during regeneration. BioID2 profiling for interactors with ErbB2, a co-receptor for the cardiomyocyte mitogen Nrg1, implicated Rho A as a target of ErbB2 signaling in cardiomyocytes. Blockade of Rho A during heart regeneration, or during cardiogenic stimulation by the mitogenic influences Nrg1, Vegfaa, or vitamin D, disrupted muscle creation. Our findings reveal proximity labeling as a useful resource to interrogate cell proteomes and signaling networks during tissue regeneration in zebrafish.
Collapse
Affiliation(s)
- Mira I Pronobis
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Regeneration Next, Duke UniversityDurhamUnited States
| | - Susan Zheng
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | | | - Joseph A Goldman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical CenterColumbusUnited States
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Regeneration Next, Duke UniversityDurhamUnited States
| |
Collapse
|
21
|
Nakamura M, Verboon JM, Prentiss CL, Parkhurst SM. The kinesin-like protein Pavarotti functions noncanonically to regulate actin dynamics. J Cell Biol 2021; 219:151940. [PMID: 32673395 PMCID: PMC7480107 DOI: 10.1083/jcb.201912117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/07/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023] Open
Abstract
Pavarotti, the Drosophila MKLP1 orthologue, is a kinesin-like protein that works with Tumbleweed (MgcRacGAP) as the centralspindlin complex. This complex is essential for cytokinesis, where it helps to organize the contractile actomyosin ring at the equator of dividing cells by activating the RhoGEF Pebble. Actomyosin rings also function as the driving force during cell wound repair. We previously showed that Tumbleweed and Pebble are required for the cell wound repair process. Here, we show that Pavarotti also functions during wound repair and confirm that while Pavarotti, Tumbleweed, and Pebble are all used during this cellular repair, each has a unique localization pattern and knockdown phenotype, demonstrating centralspindlin-independent functions. Surprisingly, we find that the classically microtubule-associated Pavarotti binds directly to actin in vitro and in vivo and has a noncanonical role directly regulating actin dynamics. Finally, we demonstrate that this actin regulation by Pavarotti is not specific to cellular wound repair but is also used in normal development.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jeffrey M Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Clara L Prentiss
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
22
|
Qin W, Cho KF, Cavanagh PE, Ting AY. Deciphering molecular interactions by proximity labeling. Nat Methods 2021; 18:133-143. [PMID: 33432242 PMCID: PMC10548357 DOI: 10.1038/s41592-020-01010-5] [Citation(s) in RCA: 336] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein 'baits', via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing. Here we review the development of PL technologies and highlight studies that have applied PL to the discovery and analysis of molecular interactions. In particular, we focus on the use of PL for mapping protein-protein, protein-RNA and protein-DNA interactions in living cells and organisms.
Collapse
Affiliation(s)
- Wei Qin
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kelvin F Cho
- Department of Genetics, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Peter E Cavanagh
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
23
|
Xu Y, Fan X, Hu Y. In vivo interactome profiling by enzyme-catalyzed proximity labeling. Cell Biosci 2021; 11:27. [PMID: 33514425 PMCID: PMC7847152 DOI: 10.1186/s13578-021-00542-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/15/2021] [Indexed: 12/03/2022] Open
Abstract
Enzyme-catalyzed proximity labeling (PL) combined with mass spectrometry (MS) has emerged as a revolutionary approach to reveal the protein-protein interaction networks, dissect complex biological processes, and characterize the subcellular proteome in a more physiological setting than before. The enzymatic tags are being upgraded to improve temporal and spatial resolution and obtain faster catalytic dynamics and higher catalytic efficiency. In vivo application of PL integrated with other state of the art techniques has recently been adapted in live animals and plants, allowing questions to be addressed that were previously inaccessible. It is timely to summarize the current state of PL-dependent interactome studies and their potential applications. We will focus on in vivo uses of newer versions of PL and highlight critical considerations for successful in vivo PL experiments that will provide novel insights into the protein interactome in the context of human diseases.
Collapse
Affiliation(s)
- Yangfan Xu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.,Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
24
|
Chua XY, Aballo T, Elnemer W, Tran M, Salomon A. Quantitative Interactomics of Lck-TurboID in Living Human T Cells Unveils T Cell Receptor Stimulation-Induced Proximal Lck Interactors. J Proteome Res 2020; 20:715-726. [PMID: 33185455 DOI: 10.1021/acs.jproteome.0c00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While Lck has been widely recognized to play a pivotal role in the initiation of the T cell receptor (TCR) signaling pathway, an understanding of the precise regulation of Lck in T cells upon TCR activation remains elusive. Investigation of protein-protein interaction (PPI) using proximity labeling techniques such as TurboID has the potential to provide valuable molecular insights into Lck regulatory networks. By expressing Lck-TurboID in Jurkat T cells, we have uncovered a dynamic, short-range Lck protein interaction network upon 30 min of TCR stimulation. In this novel application of TurboID, we detected 27 early signaling-induced Lck-proximal interactors in living T cells, including known and novel Lck interactors, validating the discovery power of this tool. Our results revealed previously unappreciated Lck PPI which may be associated with cytoskeletal rearrangement, ubiquitination of TCR signaling proteins, activation of the mitogen-activated protein kinase cascade, coalescence of the LAT signalosome, and formation of the immunological synapse. In this study, we demonstrated for the first time in immune cells and for the kinase Lck that TurboID can be utilized to unveil PPI dynamics in living cells at a time scale consistent with early TCR signaling. Data are available via ProteomeXchange with identifier PXD020759.
Collapse
Affiliation(s)
- Xien Yu Chua
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States
| | - Timothy Aballo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - William Elnemer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Melanie Tran
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Arthur Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
25
|
Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat Protoc 2020; 15:3971-3999. [PMID: 33139955 DOI: 10.1038/s41596-020-0399-0] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
This protocol describes the use of TurboID and split-TurboID in proximity labeling applications for mapping protein-protein interactions and subcellular proteomes in live mammalian cells. TurboID is an engineered biotin ligase that uses ATP to convert biotin into biotin-AMP, a reactive intermediate that covalently labels proximal proteins. Optimized using directed evolution, TurboID has substantially higher activity than previously described biotin ligase-related proximity labeling methods, such as BioID, enabling higher temporal resolution and broader application in vivo. Split-TurboID consists of two inactive fragments of TurboID that can be reconstituted through protein-protein interactions or organelle-organelle interactions, which can facilitate greater targeting specificity than full-length enzymes alone. Proteins biotinylated by TurboID or split-TurboID are then enriched with streptavidin beads and identified by mass spectrometry. Here, we describe fusion construct design and characterization (variable timing), proteomic sample preparation (5-7 d), mass spectrometric data acquisition (2 d), and proteomic data analysis (1 week).
Collapse
|
26
|
Gerdes JA, Mannix KM, Hudson AM, Cooley L. HtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis. Genetics 2020; 216:717-734. [PMID: 32883702 PMCID: PMC7648574 DOI: 10.1534/genetics.120.303629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022] Open
Abstract
Ring canals in the female germline of Drosophila melanogaster are supported by a robust filamentous actin (F-actin) cytoskeleton, setting them apart from ring canals in other species and tissues. Previous work has identified components required for the expansion of the ring canal actin cytoskeleton, but has not identified the proteins responsible for F-actin recruitment or accumulation. Using a combination of CRISPR-Cas9 mediated mutagenesis and UAS-Gal4 overexpression, we show that HtsRC-a component specific to female germline ring canals-is both necessary and sufficient to drive F-actin accumulation. Absence of HtsRC in the germline resulted in ring canals lacking inner rim F-actin, while overexpression of HtsRC led to larger ring canals. HtsRC functions in combination with Filamin to recruit F-actin to ectopic actin structures in somatic follicle cells. Finally, we present findings that indicate that HtsRC expression and robust female germline ring canal expansion are important for high fecundity in fruit flies but dispensable for their fertility-a result that is consistent with our understanding of HtsRC as a newly evolved gene specific to female germline ring canals.
Collapse
Affiliation(s)
- Julianne A Gerdes
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Katelynn M Mannix
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Andrew M Hudson
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
- Department of Cell Biology, Yale University School of Medicine, New Haven, 06520 Connecticut
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511 Connecticut
| |
Collapse
|
27
|
Tan B, Peng S, Yatim SMJM, Gunaratne J, Hunziker W, Ludwig A. An Optimized Protocol for Proximity Biotinylation in Confluent Epithelial Cell Cultures Using the Peroxidase APEX2. STAR Protoc 2020; 1:100074. [PMID: 33111110 PMCID: PMC7580243 DOI: 10.1016/j.xpro.2020.100074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The peroxidase APEX2 has been used widely for proximity biotinylation and subsequent proteomics analyses. However, the poor membrane permeability of the biotin phenol substrate and the inhibitory effect of peroxide on the enzyme’s activity has hampered proximity labeling in certain cell culture systems and tissues. Here, we describe an APEX2 protocol that uses alternative peroxide and biotin phenol concentrations. The protocol permits robust proximity biotinylation in confluent epithelial cell cultures and may be applicable to other cell cultures and tissues. For complete details on the use and execution of this protocol, please refer to Tan et al. (2020). APEX2 permits proximity biotinylation in confluent cell cultures Biotin phenol and peroxide concentrations are critical Spatial controls are required to generate specific proximity proteomes
Collapse
Affiliation(s)
- Benedict Tan
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore 138673, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore
| | - Suat Peng
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore 138673, Singapore
| | - Siti Maryam J M Yatim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore 138673, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594, Singapore
| | - Walter Hunziker
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore 138673, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
28
|
Bosch JA, Chen CL, Perrimon N. Proximity-dependent labeling methods for proteomic profiling in living cells: An update. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e392. [PMID: 32909689 DOI: 10.1002/wdev.392] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Characterizing the proteome composition of organelles and subcellular regions of living cells can facilitate the understanding of cellular organization as well as protein interactome networks. Proximity labeling-based methods coupled with mass spectrometry (MS) offer a high-throughput approach for systematic analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes that generate reactive radicals to covalently tag neighboring proteins. The tagged endogenous proteins can then be isolated for further analysis by MS. To analyze protein-protein interactions or identify components that localize to discrete subcellular compartments, spatial expression is achieved by fusing the enzyme to specific proteins or signal peptides that target to particular subcellular regions. Although these technologies have only been introduced recently, they have already provided deep insights into a wide range of biological processes. Here, we provide an updated description and comparison of proximity labeling methods, as well as their applications and improvements. As each method has its own unique features, the goal of this review is to describe how different proximity labeling methods can be used to answer different biological questions. This article is categorized under: Technologies > Analysis of Proteins.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Chiao-Lin Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Nguyen TMT, Kim J, Doan TT, Lee MW, Lee M. APEX Proximity Labeling as a Versatile Tool for Biological Research. Biochemistry 2019; 59:260-269. [PMID: 31718172 DOI: 10.1021/acs.biochem.9b00791] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most proteins are specifically localized in membrane-encapsulated organelles or non-membrane-bound compartments. The subcellular localization of proteins facilitates their functions and integration into functional networks; therefore, protein localization is tightly regulated in diverse biological contexts. However, protein localization has been mainly analyzed through immunohistochemistry or the fractionation of subcellular compartments, each of which has major drawbacks. Immunohistochemistry can examine only a handful of proteins at a time, and fractionation inevitably relies on the lysis of cells, which disrupts native cellular conditions. Recently, an engineered ascorbate peroxidase (APEX)-based proximity labeling technique combined with mass spectrometry was developed, which allows for temporally and spatially resolved proteomic mapping. In the presence of H2O2, engineered APEX oxidizes biotin-phenols into biotin-phenoxyl radicals, and these short-lived radicals biotinylate electron-rich amino acids within a radius of several nanometers. Biotinylated proteins are subsequently enriched by streptavidin and identified by mass spectrometry. This permits the sensitive and efficient labeling of proximal proteins around locally expressed APEX. Through the targeted expression of APEX in the subcellular region of interest, proteomic profiling of submitochondrial spaces, the outer mitochondrial membrane, the endoplasmic reticulum (ER)-mitochondrial contact, and the ER membrane has been performed. Furthermore, this method has been modified to define interaction networks in the vicinity of target proteins and has also been applied to analyze the spatial transcriptome. In this Perspective, we provide an outline of this newly developed technique and discuss its potential applications to address diverse biological questions.
Collapse
Affiliation(s)
- Thanh My Thi Nguyen
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Junhyung Kim
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Thi Tram Doan
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Chungcheongnam-do 31151 , Republic of Korea
| |
Collapse
|
30
|
Mannix KM, Starble RM, Kaufman RS, Cooley L. Proximity labeling reveals novel interactomes in live Drosophila tissue. Development 2019; 146:dev.176644. [PMID: 31208963 DOI: 10.1242/dev.176644] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Gametogenesis is dependent on intercellular communication facilitated by stable intercellular bridges connecting developing germ cells. During Drosophila oogenesis, intercellular bridges (referred to as ring canals; RCs) have a dynamic actin cytoskeleton that drives their expansion to a diameter of 10 μm. Although multiple proteins have been identified as components of RCs, we lack a basic understanding of how RC proteins interact together to form and regulate the RC cytoskeleton. Thus, here, we optimized a procedure for proximity-dependent biotinylation in live tissue using the APEX enzyme to interrogate the RC interactome. APEX was fused to four different RC components (RC-APEX baits) and 55 unique high-confidence prey were identified. The RC-APEX baits produced almost entirely distinct interactomes that included both known RC proteins and uncharacterized proteins. A proximity ligation assay was used to validate close-proximity interactions between the RC-APEX baits and their respective prey. Furthermore, an RNA interference screen revealed functional roles for several high-confidence prey genes in RC biology. These findings highlight the utility of enzyme-catalyzed proximity labeling for protein interactome analysis in live tissue and expand our understanding of RC biology.
Collapse
Affiliation(s)
- Katelynn M Mannix
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rebecca M Starble
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ronit S Kaufman
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA .,Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|