1
|
Zhou G, Liu A, Bai J, Zhu Y, Zou X, Luo Y, Reyimjan Y, Ma Y, Huang S, Hou Y, Li J, Fu X. Identification of the hub genes involved in ATF5 mediated stress response in vitrified mouse oocytes based on WGCNA. Cryobiology 2025; 119:105258. [PMID: 40409046 DOI: 10.1016/j.cryobiol.2025.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 05/02/2025] [Accepted: 05/09/2025] [Indexed: 05/25/2025]
Abstract
Activating transcription factor 5 (ATF5) is a key regulator in the stress response and plays a crucial role in cellular adaptation to the nonphysical environment. Our previous study indicated that a homeostatic state of ATF5 level could improve mitochondrial function in vitrified oocytes. However, the molecular mechanisms underlying the ATF5-mediated gene network in response to oocyte vitrification remain largely unknown. In this study, specific ATF5 siRNA was microinjected into oocytes to suppress ATF5 expression, and oocytes with ATF5 deficiency under normal and vitrification stress conditions were collected for Smart RNA-seq analysis. Weighted gene co-expression network analysis (WGCNA) was used to characterize oocyte co-expression modules involved in the ATF5 mediated response. Our results identified three key gene modules related to ATF5 knockdownRed, Green and, Yellow-using the screening criteria of |R| ≥0.5 and P ≤ 0.05 with WGCNA. Functional enrichment analysis of key gene modules showed that genes in the modules were mainly enriched in apoptosis, ubiquitin mediated proteolysis, the PI3K-Akt signaling pathway, and protein digestion and absorption. STEM and KEGG functional enrichment analysis showed that most genes were involved in protein digestion and absorption, the AMPK signaling pathway, the JAK-STAT signaling pathway, and the apoptosis signaling pathway. Importantly, Diablo, Map3k1, Spta1, and Ubqln4, obtained by sequential scanning of WGCNA and combined functional enrichment analysis, were identified as candidate genes under ATF5 regulation in response to vitrification. These findings demonstrate that the ATF5 mediated gene network exerts regulatory roles in various cellular events and provide novel insights for a deeper understanding of stress response associated impairments in vitrified oocytes.
Collapse
Affiliation(s)
- Guizhen Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiachen Bai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yixiao Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinhua Zou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuwen Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yizaitiguli Reyimjan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuaixiang Huang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Liao Z, Steenwinkel TE, Moscoso B, Salas E, Patton BK, Rodriguez A, Malovannaya A, Pangas SA. Disruption of oocyte SUMOylation impacts critical regulatory processes during folliculogenesis in mice†. Biol Reprod 2025; 112:932-941. [PMID: 39982420 DOI: 10.1093/biolre/ioaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/30/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025] Open
Abstract
The conjugation of small ubiquitin-like modifiers (SUMO) to target proteins, known as SUMOylation, plays a crucial role in regulating protein homeostasis, activity, interaction with other proteins, and subcellular localization. Loss of SUMOylation in nongrowing oocytes by conditional deletion of the E2 SUMO conjugating enzyme, Ube2i, at the primordial follicle stage leads to female sterility due to complex changes in oocyte development, including altered folliculogenesis, defective meiotic progression, and premature loss of the ovarian reserve. In this study, proteomics was used to compare control and Ube2i conditional knockout ovaries during the first wave of folliculogenesis to identify key differences that may drive the premature follicle loss phenotype. Label-free mass spectrometry results showed that 238 proteins were significantly altered more than 2-fold (p < 0.05). Proteins upregulated in the Ube2i conditional knockout ovaries included those involved in mRNA splicing and WNT signaling, while those downregulated were related to metabolism, mitochondria, and the maternal effect proteins NLRP2 and NLRP9B. The majority of differentially expressed proteins showed no change by transcriptome analysis, indicating protein level regulation and revealing potential SUMOylation targets with necessary roles in oocyte and follicle development.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Graduate School of Biomedical Sciences, Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Tessa E Steenwinkel
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Graduate School of Biomedical Sciences, Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Bruno Moscoso
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Ernesto Salas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Bethany K Patton
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Graduate School of Biomedical Sciences, Molecular & Cellular Biology Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Amanda Rodriguez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Graduate School of Biomedical Sciences, Molecular & Cellular Biology Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Anna Malovannaya
- Department of Biochemistry and Molecular Pharmacology, Houston, TX, United States
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States
| | - Stephanie A Pangas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Graduate School of Biomedical Sciences, Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Graduate School of Biomedical Sciences, Molecular & Cellular Biology Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Sciorio R, Cantatore C, D'Amato G, Smith GD. Cryopreservation, cryoprotectants, and potential risk of epigenetic alteration. J Assist Reprod Genet 2024; 41:2953-2967. [PMID: 39436484 PMCID: PMC11621268 DOI: 10.1007/s10815-024-03287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
The cryopreservation of gametes and embryos has increased notably over the past 20 years and is now an essential part of assisted reproductive technologies (ARTs). However, because the cryopreservation process is un-physiological for human cells, gametes, and embryos, cryobiologists have suggested diverse methods to successfully cryopreserve human gametes and embryos in order to maintain their viability and assure successful pregnancy. During the first period of early development, major waves of epigenetic reprogramming-crucial for the fate of the embryo-occur. Recently, concerns relating to the increased incidence of epigenetic anomalies and genomic-imprinting disorders have been reported after ARTs and cryopreservation. Epigenetic reprogramming is particularly susceptible to environmental and un-physiological conditions such as ovarian stimulation, embryo culture, and cryopreservation that might collectively affect epigenetics dysregulation. Additionally, recent literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by vitrification, osmotic shock, oxidative stress, rapid temperature and pH changes, and cryoprotectants; it is therefore critical to have a more comprehensive understanding of the potential induced perturbations of epigenetic modifications that may be associated with vitrification. The aim of this paper is to present a critical evaluation of the association of gamete and embryo cryopreservation, use of cryoprotectants, and epigenetic dysregulations with potential long-term consequences for offspring health.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | - Clementina Cantatore
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, BA, Italy
| | - Giuseppe D'Amato
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, BA, Italy
| | - Gary D Smith
- Departments of Obstetrics and Gynecology, Physiology, and Urology and Reproductive Sciences Program, University of Michigan, 4742F Medical Sciences II, 1301 E. Catherine Street, Ann Arbor, MI, 48109-056171500, USA.
| |
Collapse
|
4
|
Dhori X, Gioiosa S, Gonfloni S. An integrated analysis of multiple datasets reveals novel gene signatures in human granulosa cells. Sci Data 2024; 11:972. [PMID: 39242561 PMCID: PMC11379948 DOI: 10.1038/s41597-024-03715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024] Open
Abstract
Granulosa cells (GCs) play crucial roles in oocyte maturation. Through gap junctions and extracellular vesicles, they mediate the exchange of molecules such as microRNAs and messenger RNAs. Different ovarian cell types exhibit unique gene expression profiles, reflecting their specialized functions and stages. By combining RNA-seq data from various cell types forming the follicle, we aimed at capturing a wide range of expression patterns, offering insights into the functional diversity and complexity of the transcriptome regulation across GCs. Herein, we performed an integrated bioinformatics analysis of RNA sequencing datasets present in public databases, with a unique and standardized workflow., By combining the data from different studies, we successfully increased the robustness and reliability of our findings and discovered novel genes, miRNAs, and signaling pathways associated with GCs function and oocyte maturation. Moreover, our results provide a valuable resource for further wet-lab research on GCs biology and their impact on oocyte development and competence.
Collapse
Affiliation(s)
- Xhulio Dhori
- CINECA, Super Computing Applications and Innovation Department, Via dei Tizii 6B, 000185, Roma, Italy
- Department of Biology, University of Roma, via della Ricerca Scientifica 00133, Roma, Italy
| | - Silvia Gioiosa
- CINECA, Super Computing Applications and Innovation Department, Via dei Tizii 6B, 000185, Roma, Italy.
| | - Stefania Gonfloni
- Department of Biology, University of Roma, via della Ricerca Scientifica 00133, Roma, Italy.
| |
Collapse
|
5
|
Lv P, Liu J, Liu X. The role of ubiquitin-conjugating enzyme in the process of spermatogenesis. Reprod Biol Endocrinol 2024; 22:110. [PMID: 39198846 PMCID: PMC11351103 DOI: 10.1186/s12958-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The ubiquitination is crucial for controlling cellular homeostasis and protein modification, in which ubiquitin-conjugating enzyme (E2) acts as the central player in the ubiquitination system. Ubiquitin-conjugating enzymes, which have special domains that catalyse substrates, have sequence discrepancies and modulate various pathophysiological processes in different cells of multiple organisms. E2s take part in the mitosis of primordial germ cells, meiosis of spermatocytes and the formation of mature haploid spermatids to maintain normal male fertility. In this review, we summarize the various types of E2s and their functions during distinct stages of spermatogenesis.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Zhao T, He M, Zhu Z, Zhang T, Zheng W, Qin S, Gao M, Wang W, Chen Z, Han J, Liu L, Zhou B, Wang H, Zhang H, Xia G, Wang J, Wang F, Wang C. P62 promotes FSH-induced antral follicle formation by directing degradation of ubiquitinated WT1. Cell Mol Life Sci 2024; 81:221. [PMID: 38763964 PMCID: PMC11102895 DOI: 10.1007/s00018-024-05251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
In females, the pathophysiological mechanism of poor ovarian response (POR) is not fully understood. Considering the expression level of p62 was significantly reduced in the granulosa cells (GCs) of POR patients, this study focused on identifying the role of the selective autophagy receptor p62 in conducting the effect of follicle-stimulating hormone (FSH) on antral follicles (AFs) formation in female mice. The results showed that p62 in GCs was FSH responsive and that its level increased to a peak and then decreased time-dependently either in ovaries or in GCs after gonadotropin induction in vivo. GC-specific deletion of p62 resulted in subfertility, a significantly reduced number of AFs and irregular estrous cycles, which were same as pathophysiological symptom of POR. By conducting mass spectrum analysis, we found the ubiquitination of proteins was decreased, and autophagic flux was blocked in GCs. Specifically, the level of nonubiquitinated Wilms tumor 1 homolog (WT1), a transcription factor and negative controller of GC differentiation, increased steadily. Co-IP results showed that p62 deletion increased the level of ubiquitin-specific peptidase 5 (USP5), which blocked the ubiquitination of WT1. Furthermore, a joint analysis of RNA-seq and the spatial transcriptome sequencing data showed the expression of steroid metabolic genes and FSH receptors pivotal for GCs differentiation decreased unanimously. Accordingly, the accumulation of WT1 in GCs deficient of p62 decreased steroid hormone levels and reduced FSH responsiveness, while the availability of p62 in GCs simultaneously ensured the degradation of WT1 through the ubiquitin‒proteasome system and autophagolysosomal system. Therefore, p62 in GCs participates in GC differentiation and AF formation in FSH induction by dynamically controlling the degradation of WT1. The findings of the study contributes to further study the pathology of POR.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meina He
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Zijian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tuo Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Wenying Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shaogang Qin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenji Wang
- School of Life Science, Taizhou University, Taizhou, 318000, China
| | - Ziqi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Longping Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bo Zhou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian Province, 361005, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fengchao Wang
- Transgenic Animal Center, National Institute of Biological Sciences, Beijing, 102206, China
| | - Chao Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- China Agricultural University, No.2 Yuan Ming Yuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
7
|
Sciorio R, Campos G, Tramontano L, Bulletti FM, Baldini GM, Vinciguerra M. Exploring the effect of cryopreservation in assisted reproductive technology and potential epigenetic risk. ZYGOTE 2023; 31:420-432. [PMID: 37409505 DOI: 10.1017/s0967199423000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Since the birth of the first baby by in vitro fertilization in 1978, more than 9 million children have been born worldwide using medically assisted reproductive treatments. Fertilization naturally takes place in the maternal oviduct where unique physiological conditions enable the early healthy development of the embryo. During this dynamic period of early development major waves of epigenetic reprogramming, crucial for the normal fate of the embryo, take place. Increasingly, over the past 20 years concerns relating to the increased incidence of epigenetic anomalies in general, and genomic-imprinting disorders in particular, have been raised following assisted reproduction technology (ART) treatments. Epigenetic reprogramming is particularly susceptible to environmental conditions during the periconceptional period and non-physiological conditions such as ovarian stimulation, in vitro fertilization and embryo culture, as well as cryopreservation procedure, might have the potential to independently or collectively contribute to epigenetic dysregulation. Therefore, this narrative review offers a critical reappraisal of the evidence relating to the association between embryo cryopreservation and potential epigenetic regulation and the consequences on gene expression together with long-term consequences for offspring health and wellbeing. Current literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by vitrification, in terms of osmotic shock, temperature and pH changes, and toxicity of cryoprotectants, it is therefore, critical to have a more comprehensive understanding and recognition of potential unanticipated iatrogenic-induced perturbations of epigenetic modifications that may or may not be a consequence of vitrification.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, EFREC, Royal Infirmary of Edinburgh, UK
| | | | - Luca Tramontano
- Department of Women, Infants and Adolescents, Division of Obstetrics, Geneve University Hospitals, Boulevard de la Cluse 30, Geneve 14, Switzerland
| | - Francesco M Bulletti
- Department Obstetrics and Gynecology, University Hospital of Vaud, Lausanne, Switzerland
| | | | - Marina Vinciguerra
- Department of Biomedical Sciences and Human Oncology, Obstetrics and Gynaecology Section, University of Bari, Italy
- Clinic of Obstetrics and Gynecology 'Santa Caterina Novella', Galatina Hospital, Italy
| |
Collapse
|
8
|
Briley SM, Ahmed AA, Steenwinkel TE, Jiang P, Hartig SM, Schindler K, Pangas SA. Global SUMOylation in mouse oocytes maintains oocyte identity and regulates chromatin remodeling and transcriptional silencing at the end of folliculogenesis. Development 2023; 150:dev201535. [PMID: 37676777 PMCID: PMC10499029 DOI: 10.1242/dev.201535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/31/2023] [Indexed: 09/09/2023]
Abstract
Meiotically competent oocytes in mammals undergo cyclic development during folliculogenesis. Oocytes within ovarian follicles are transcriptionally active, producing and storing transcripts required for oocyte growth, somatic cell communication and early embryogenesis. Transcription ceases as oocytes transition from growth to maturation and does not resume until zygotic genome activation. Although SUMOylation, a post-translational modification, plays multifaceted roles in transcriptional regulation, its involvement during oocyte development remains poorly understood. In this study, we generated an oocyte-specific knockout of Ube2i, encoding the SUMO E2 enzyme UBE2I, using Zp3-cre+ to determine how loss of oocyte SUMOylation during folliculogenesis affects oocyte development. Ube2i Zp3-cre+ female knockout mice were sterile, with oocyte defects in meiotic competence, spindle architecture and chromosome alignment, and a premature arrest in metaphase I. Additionally, fully grown Ube2i Zp3-cre+ oocytes exhibited sustained transcriptional activity but downregulated maternal effect genes and prematurely activated genes and retrotransposons typically associated with zygotic genome activation. These findings demonstrate that UBE2I is required for the acquisition of key hallmarks of oocyte development during folliculogenesis, and highlight UBE2I as a previously unreported orchestrator of transcriptional regulation in mouse oocytes.
Collapse
Affiliation(s)
- Shawn M. Briley
- Graduate Program in Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Avery A. Ahmed
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tessa E. Steenwinkel
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peixin Jiang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M. Hartig
- Division of Diabetes, Endocrinology, & Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stephanie A. Pangas
- Graduate Program in Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Sciorio R, Manna C, Fauque P, Rinaudo P. Can Cryopreservation in Assisted Reproductive Technology (ART) Induce Epigenetic Changes to Gametes and Embryos? J Clin Med 2023; 12:4444. [PMID: 37445479 DOI: 10.3390/jcm12134444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Since the birth of Louise Brown in 1978, more than nine million children have been conceived using assisted reproductive technologies (ARTs). While the great majority of children are healthy, there are concerns about the potential epigenetic consequences of gametes and embryo manipulation. In fact, during the preimplantation period, major waves of epigenetic reprogramming occur. Epigenetic reprogramming is susceptible to environmental changes induced by ovarian stimulation, in-vitro fertilization, and embryo culture, as well as cryopreservation procedures. This review summarizes the evidence relating to oocytes and embryo cryopreservation and potential epigenetic regulation. Overall, it appears that the stress induced by vitrification, including osmotic shock, temperature and pH changes, and toxicity of cryoprotectants, might induce epigenetic and transcriptomic changes in oocytes and embryos. It is currently unclear if these changes will have potential consequences for the health of future offspring.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Claudio Manna
- Biofertility IVF and Infertility Center, 00198 Rome, Italy
| | - Patricia Fauque
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Development (GAD) INSERM UMR1231, F-21000 Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, F-21000 Dijon, France
| | - Paolo Rinaudo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 92037, USA
| |
Collapse
|
10
|
Chen Y, Zhou J, Wu S, Wang L, Chen G, Chen D, Peng X, Miao YL, Mei S, Li F. ISG15 suppresses ovulation and female fertility by ISGylating ADAMTS1. Cell Biosci 2023; 13:84. [PMID: 37170317 PMCID: PMC10176748 DOI: 10.1186/s13578-023-01024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND ISGylation is a post-translational protein modification that regulates many life activities, including immunomodulation, antiviral responses, and embryo implantation. The exact contribution of ISGylation to folliculogenesis remains largely undefined. RESULTS Here, Isg15 knockout in mice causes hyperfertility along with sensitive ovarian responses to gonadotropin, such as increases in cumulus expansion and ovulation rate. Moreover, ISG15 represses the expression of ovulation-related genes in an ISGylation-dependent manner. Mechanistically, ISG15 binds to ADAMTS1 via the ISG15-conjugating system (UBA7, UBE2L6, and HERC6), ISGylating ADAMTS1 at the binding sites Lys309, Lys593, Lys597, and Lys602, resulting in ADAMTS1 degradation via a 20S proteasome-dependent pathway. CONCLUSION Taken together, the present study demonstrates that covalent ISG15 conjugation produces a novel regulatory axis of ISG15-ADAMTS1 that enhances the degradation of ADAMTS1, thereby compromising ovulation and female fertility.
Collapse
Affiliation(s)
- Yaru Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawei Zhou
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Shang Wu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Wang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gaogui Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dake Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianwen Peng
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yi-Liang Miao
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuqi Mei
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Fenge Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
11
|
Xue T, Zhao S, Zhang H, Tang T, Zheng L, Jing J, Ge X, Ma R, Ma J, Ren X, Jueraitetibaike K, Guo Z, Chen L, Yao B. PPT1 regulation of HSP90α depalmitoylation participates in the pathogenesis of hyperandrogenism. iScience 2023; 26:106131. [PMID: 36879822 PMCID: PMC9984558 DOI: 10.1016/j.isci.2023.106131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ovarian granulosa cells (GCs) in the follicle are the important mediator of steroidogenesis and foster oocyte maturation. Evidences suggested that the function of GCs could be regulated by S-palmitoylation. However, the role of S-palmitoylation of GCs in ovarian hyperandrogenism remains elusive. Here, we demonstrated that the protein from GCs in ovarian hyperandrogenism phenotype mouse group exhibits lower palmitoylation level compared with that in the control group. Using S-palmitoylation-enriched quantitative proteomics, we identified heat shock protein isoform α (HSP90α) with lower S-palmitoylation levels in ovarian hyperandrogenism phenotype group. Mechanistically, S-palmitoylation of HSP90α modulates the conversion of androgen to estrogens via the androgen receptor (AR) signalling pathway, and its level is regulated by PPT1. Targeting AR signaling by using dipyridamole attenuated ovarian hyperandrogenism symptoms. Our data help elucidate ovarian hyperandrogenism from perspective of protein modification and provide new evidence showing that HSP90α S-palmitoylation modification might be a potential pharmacological target for ovarian hyperandrogenism treatment.
Collapse
Affiliation(s)
- Tongmin Xue
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, Jiangsu 210002, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211116, China.,Reproductive Medical Center, Clinical Medical College (Northern Jiangsu People's Hospital), Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Shanmeizi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Hong Zhang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Ting Tang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Lu Zheng
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Jun Jing
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, Jiangsu 210002, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211116, China
| | - Xie Ge
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Rujun Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Xiaoyan Ren
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Kadiliya Jueraitetibaike
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Li Chen
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, Jiangsu 210002, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211116, China
| | - Bing Yao
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, Jiangsu 210002, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China.,Center of Reproductive Medicine, Nanjing Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211116, China
| |
Collapse
|
12
|
Patton BK, Madadi S, Briley SM, Ahmed AA, Pangas SA. Sumoylation regulates functional properties of the oocyte transcription factors SOHLH1 and NOBOX. FASEB J 2023; 37:e22747. [PMID: 36607631 PMCID: PMC10129296 DOI: 10.1096/fj.202201481r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
SOHLH1 and NOBOX are oocyte-expressed transcription factors with critical roles in ovary development and fertility. In mice, Sohlh1 and Nobox are essential for fertility through their regulation of the oocyte transcriptional network and cross-talk to somatic cells. Sumoylation is a posttranslational modification that regulates transcription factor function, and we previously showed that mouse oocytes deficient for sumoylation had an altered transcriptional landscape that included significant changes in NOBOX target genes. Here, we show that mouse SOHLH1 is modified by SUMO2/3 at lysine 345 and mutation of this residue alters SOHLH1 nuclear to cytoplasmic localization. In NOBOX, we identify a non-consensus SUMO site, K97, that eliminates NOBOX mono-SUMO2/3 conjugation, while a point mutation at K125 had no effect on NOBOX sumoylation. However, NOBOXK97R/K125R double mutants showed loss of mono-SUMO2/3 and altered higher molecular weight modifications, suggesting cooperation between these lysine's. NOBOXK97R and NOBOXK97R/K125R differentially regulated NOBOX promoter targets, with increased activity on the Gdf9 promoter, but no effect on the Pou5f1 promoter. These data implicate sumoylation as a novel regulatory mechanism for SOHLH1 and NOBOX, which may prove useful in refining their roles during oogenesis as well as their function during reprogramming to generate de novo germ cells.
Collapse
Affiliation(s)
- Bethany K. Patton
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Surabhi Madadi
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
- Rice University, Houston, TX 77005
| | - Shawn M. Briley
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Avery A. Ahmed
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030
| | - Stephanie A. Pangas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
13
|
Udagawa O, Kato-Udagawa A, Hirano S. Promyelocytic leukemia nuclear body-like structures can assemble in mouse oocytes. Biol Open 2022; 11:275379. [PMID: 35579421 PMCID: PMC9194678 DOI: 10.1242/bio.059130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Promyelocytic leukemia (PML) nuclear bodies (PML-NBs), a class of membrane-less cellular organelles, participate in various biological activities. PML-NBs are known as the core-shell-type nuclear body, harboring ‘client’ proteins in their core. Although multiple membrane-less organelles work in the oocyte nucleus, PML-NBs have been predicted to be absent from oocytes. Here, we show that some well-known PML clients (but not endogenous PML) co-localized with small ubiquitin-related modifier (SUMO) protein in the nucleolus and peri-centromeric heterochromatin of maturing oocytes. In oocytes devoid of PML-NBs, endogenous PML protein localized in the vicinity of chromatin. During and after meiotic resumption, PML co-localized with SUMO gathering around chromosomes. To examine the benefit of the PML-NB-free intranuclear milieu in oocytes, we deliberately assembled PML-NBs by microinjecting human PML-encoding plasmids into oocytes. Under conditions of limited SUMO availability, assembled PML-NBs tended to cluster. Upon proteotoxic stress, SUMO delocalized from peri-centromeric heterochromatin and co-localized with SC35 (a marker of nuclear speckles)-positive large compartments, which was disturbed by pre-assembled PML-NBs. These observations suggest that the PML-NB-free intranuclear environment helps reserve SUMO for emergent responses by redirecting the flux of SUMO otherwise needed to maintain PML-NB dynamics. Summary: PML-NB-free intranuclear environment in the oocyte helps reserve SUMO for emergent responses by redirecting the flux of SUMO otherwise needed to maintain PML-NB dynamics.
Collapse
Affiliation(s)
- Osamu Udagawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan
| | - Ayaka Kato-Udagawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan
| | - Seishiro Hirano
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan
| |
Collapse
|
14
|
Progesterone Receptor Signaling in the Uterus Is Essential for Pregnancy Success. Cells 2022; 11:cells11091474. [PMID: 35563781 PMCID: PMC9104461 DOI: 10.3390/cells11091474] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
The uterus plays an essential role in the reproductive health of women and controls critical processes such as embryo implantation, placental development, parturition, and menstruation. Progesterone receptor (PR) regulates key aspects of the reproductive function of several mammalian species by directing the transcriptional program in response to progesterone (P4). P4/PR signaling controls endometrial receptivity and decidualization during early pregnancy and is critical for the establishment and outcome of a successful pregnancy. PR is also essential throughout gestation and during labor, and it exerts critical roles in the myometrium, mainly by the specialized function of its two isoforms, progesterone receptor A (PR-A) and progesterone receptor B (PR-B), which display distinct and separate roles as regulators of transcription. This review summarizes recent studies related to the roles of PR function in the decidua and myometrial tissues. We discuss how PR acquired key features in placental mammals that resulted in a highly specialized and dynamic role in the decidua. We also summarize recent literature that evaluates the myometrial PR-A/PR-B ratio at parturition and discuss the efficacy of current treatment options for preterm birth.
Collapse
|
15
|
Kiyozumi D, Ikawa M. Proteolysis in Reproduction: Lessons From Gene-Modified Organism Studies. Front Endocrinol (Lausanne) 2022; 13:876370. [PMID: 35600599 PMCID: PMC9114714 DOI: 10.3389/fendo.2022.876370] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
The physiological roles of proteolysis are not limited to degrading unnecessary proteins. Proteolysis plays pivotal roles in various biological processes through cleaving peptide bonds to activate and inactivate proteins including enzymes, transcription factors, and receptors. As a wide range of cellular processes is regulated by proteolysis, abnormalities or dysregulation of such proteolytic processes therefore often cause diseases. Recent genetic studies have clarified the inclusion of proteases and protease inhibitors in various reproductive processes such as development of gonads, generation and activation of gametes, and physical interaction between gametes in various species including yeast, animals, and plants. Such studies not only clarify proteolysis-related factors but the biological processes regulated by proteolysis for successful reproduction. Here the physiological roles of proteases and proteolysis in reproduction will be reviewed based on findings using gene-modified organisms.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
16
|
Diaz FA, Gutierrez-Castillo EJ, Foster BA, Hardin PT, Bondioli KR, Jiang Z. Evaluation of Seasonal Heat Stress on Transcriptomic Profiles and Global DNA Methylation of Bovine Oocytes. Front Genet 2021; 12:699920. [PMID: 34777457 PMCID: PMC8585773 DOI: 10.3389/fgene.2021.699920] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022] Open
Abstract
Heat stress affects oocyte developmental competence and is a major cause of reduced fertility in heat stressed cattle. Negative effects of heat stress on the oocyte have been observed at morphological, biochemical and developmental levels. However, the mechanisms by which heat stress affects the oocyte at the transcriptional and epigenetic levels remain to be further elucidated. Here we aimed to investigate the effect of heat stress on oocyte quality, transcriptomic profiles and DNA methylation of oocytes collected through the transition from spring to summer under Louisiana conditions. Summer season resulted in a lower number of high quality oocytes obtained compared to the spring season. There was no difference in in vitro maturation rates of oocytes collected during spring as compared to summer. RNA sequencing analysis showed that a total of 211 and 92 genes were differentially expressed as a result of heat stress in GV and MII oocytes, respectively. Five common genes (E2F8, GATAD2B, BHLHE41, FBXO44, and RAB39B) were significantly affected by heat in both GV and MII oocytes. A number of pathways were also influenced by heat stress including glucocorticoid biosynthesis, apoptosis signaling, and HIPPO signaling in GV oocytes, and Oct4 pluripotency, Wnt/beta-catenin signaling, and melatonin degradation I in MII oocytes. In addition, fluorescent immunocytochemistry analysis showed no difference in global levels of DNA methylation and DNA hydroxymethylation at either the GV or MII stage between spring and summer oocytes. The results of this study contribute to a better understanding of the effect of heat stress on the molecular mechanisms altered in bovine oocytes.
Collapse
Affiliation(s)
- Fabian A Diaz
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, United States
| | | | | | | | | | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
17
|
Cafe SL, Nixon B, Ecroyd H, Martin JH, Skerrett-Byrne DA, Bromfield EG. Proteostasis in the Male and Female Germline: A New Outlook on the Maintenance of Reproductive Health. Front Cell Dev Biol 2021; 9:660626. [PMID: 33937261 PMCID: PMC8085359 DOI: 10.3389/fcell.2021.660626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 01/07/2023] Open
Abstract
For fully differentiated, long lived cells the maintenance of protein homeostasis (proteostasis) becomes a crucial determinant of cellular function and viability. Neurons are the most well-known example of this phenomenon where the majority of these cells must survive the entire course of life. However, male and female germ cells are also uniquely dependent on the maintenance of proteostasis to achieve successful fertilization. Oocytes, also long-lived cells, are subjected to prolonged periods of arrest and are largely reliant on the translation of stored mRNAs, accumulated during the growth period, to support meiotic maturation and subsequent embryogenesis. Conversely, sperm cells, while relatively ephemeral, are completely reliant on proteostasis due to the absence of both transcription and translation. Despite these remarkable, cell-specific features there has been little focus on understanding protein homeostasis in reproductive cells and how/whether proteostasis is "reset" during embryogenesis. Here, we seek to capture the momentum of this growing field by highlighting novel findings regarding germline proteostasis and how this knowledge can be used to promote reproductive health. In this review we capture proteostasis in the context of both somatic cell and germline aging and discuss the influence of oxidative stress on protein function. In particular, we highlight the contributions of proteostasis changes to oocyte aging and encourage a focus in this area that may complement the extensive analyses of DNA damage and aneuploidy that have long occupied the oocyte aging field. Moreover, we discuss the influence of common non-enzymatic protein modifications on the stability of proteins in the male germline, how these changes affect sperm function, and how they may be prevented to preserve fertility. Through this review we aim to bring to light a new trajectory for our field and highlight the potential to harness the germ cell's natural proteostasis mechanisms to improve reproductive health. This manuscript will be of interest to those in the fields of proteostasis, aging, male and female gamete reproductive biology, embryogenesis, and life course health.
Collapse
Affiliation(s)
- Shenae L. Cafe
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Heath Ecroyd
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Jacinta H. Martin
- Department of Human Genetics, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
He M, Zhang T, Yang Y, Wang C. Mechanisms of Oocyte Maturation and Related Epigenetic Regulation. Front Cell Dev Biol 2021; 9:654028. [PMID: 33842483 PMCID: PMC8025927 DOI: 10.3389/fcell.2021.654028] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Meiosis is the basis of sexual reproduction. In female mammals, meiosis of oocytes starts before birth and sustains at the dictyate stage of meiotic prophase I before gonadotropins-induced ovulation happens. Once meiosis gets started, the oocytes undergo the leptotene, zygotene, and pachytene stages, and then arrest at the dictyate stage. During each estrus cycle in mammals, or menstrual cycle in humans, a small portion of oocytes within preovulatory follicles may resume meiosis. It is crucial for females to supply high quality mature oocytes for sustaining fertility, which is generally achieved by fine-tuning oocyte meiotic arrest and resumption progression. Anything that disturbs the process may result in failure of oogenesis and seriously affect both the fertility and the health of females. Therefore, uncovering the regulatory network of oocyte meiosis progression illuminates not only how the foundations of mammalian reproduction are laid, but how mis-regulation of these steps result in infertility. In order to provide an overview of the recently uncovered cellular and molecular mechanism during oocyte maturation, especially epigenetic modification, the progress of the regulatory network of oocyte meiosis progression including meiosis arrest and meiosis resumption induced by gonadotropins is summarized. Then, advances in the epigenetic aspects, such as histone acetylation, phosphorylation, methylation, glycosylation, ubiquitination, and SUMOylation related to the quality of oocyte maturation are reviewed.
Collapse
Affiliation(s)
- Meina He
- Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Tuo Zhang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
19
|
The role of SUMOylation during development. Biochem Soc Trans 2021; 48:463-478. [PMID: 32311032 PMCID: PMC7200636 DOI: 10.1042/bst20190390] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
During the development of multicellular organisms, transcriptional regulation plays an important role in the control of cell growth, differentiation and morphogenesis. SUMOylation is a reversible post-translational process involved in transcriptional regulation through the modification of transcription factors and through chromatin remodelling (either modifying chromatin remodelers or acting as a ‘molecular glue’ by promoting recruitment of chromatin regulators). SUMO modification results in changes in the activity, stability, interactions or localization of its substrates, which affects cellular processes such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic transport. This review focuses on the role of SUMO machinery and the modification of target proteins during embryonic development and organogenesis of animals, from invertebrates to mammals.
Collapse
|
20
|
Li H, You L, Tian Y, Guo J, Fang X, Zhou C, Shi L, Su Y. DPAGT1-Mediated Protein N-Glycosylation Is Indispensable for Oocyte and Follicle Development in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000531. [PMID: 32714760 PMCID: PMC7375233 DOI: 10.1002/advs.202000531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/29/2020] [Indexed: 05/11/2023]
Abstract
Post-translational modification of proteins by N-linked glycosylation is crucial for many life processes. However, the exact contribution of N-glycosylation to mammalian female reproduction remains largely undefined. Here, DPAGT1, the enzyme that catalyzes the first step of protein N-glycosylation, is identified to be indispensable for oocyte development in mice. Dpagt1 missense mutation (c. 497A>G; p. Asp166Gly) causes female subfertility without grossly affecting other functions. Mutant females ovulate fewer eggs owing to defective development of growing follicles. Mutant oocytes have a thin and fragile zona pellucida (ZP) due to the reduction in glycosylation of ZP proteins, and display poor developmental competence after fertilization in vitro. Moreover, completion of the first meiosis is accelerated in mutant oocytes, which is coincident with the elevation of aneuploidy. Mechanistically, transcriptomic analysis reveals the downregulation of a number of transcripts essential for oocyte meiotic progression and preimplantation development (e.g., Pttgt1, Esco2, Orc6, and Npm2) in mutant oocytes, which could account for the defects observed. Furthermore, conditional knockout of Dpagt1 in oocytes recapitulates the phenotypes observed in Dpagt1 mutant females, and causes complete infertility. Taken together, these data indicate that protein N-glycosylation in oocytes is essential for female fertility in mammals by specific control of oocyte development.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Liji You
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Yufeng Tian
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Jing Guo
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Xianbao Fang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Chenmin Zhou
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Lanying Shi
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - You‐Qiang Su
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
- Women's Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health HospitalNanjing Medical UniversityNanjing211166P. R. China
- Collaborative Innovation Center of Genetics and DevelopmentFudan UniversityShanghai200433P. R. China
- Key Laboratory of Model Animal ResearchNanjing Medical UniversityNanjing211166P. R. China
| |
Collapse
|
21
|
Newly Identified Regulators of Ovarian Folliculogenesis and Ovulation. Int J Mol Sci 2020; 21:ijms21124565. [PMID: 32604954 PMCID: PMC7349727 DOI: 10.3390/ijms21124565] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Each follicle represents the basic functional unit of the ovary. From its very initial stage of development, the follicle consists of an oocyte surrounded by somatic cells. The oocyte grows and matures to become fertilizable and the somatic cells proliferate and differentiate into the major suppliers of steroid sex hormones as well as generators of other local regulators. The process by which a follicle forms, proceeds through several growing stages, develops to eventually release the mature oocyte, and turns into a corpus luteum (CL) is known as “folliculogenesis”. The task of this review is to define the different stages of folliculogenesis culminating at ovulation and CL formation, and to summarize the most recent information regarding the newly identified factors that regulate the specific stages of this highly intricated process. This information comprises of either novel regulators involved in ovarian biology, such as Ube2i, Phoenixin/GPR73, C1QTNF, and α-SNAP, or recently identified members of signaling pathways previously reported in this context, namely PKB/Akt, HIPPO, and Notch.
Collapse
|