1
|
Mouradian S, Cicciarello D, Lacoste N, Risson V, Berretta F, Le Grand F, Rose N, Simonet T, Schaeffer L, Scionti I. LSD1 controls a nuclear checkpoint in Wnt/β-Catenin signaling to regulate muscle stem cell self-renewal. Nucleic Acids Res 2024; 52:3667-3681. [PMID: 38321961 DOI: 10.1093/nar/gkae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The Wnt/β-Catenin pathway plays a key role in cell fate determination during development and in adult tissue regeneration by stem cells. These processes involve profound gene expression and epigenome remodeling and linking Wnt/β-Catenin signaling to chromatin modifications has been a challenge over the past decades. Functional studies of the lysine demethylase LSD1/KDM1A converge to indicate that this epigenetic regulator is a key regulator of cell fate, although the extracellular cues controlling LSD1 action remain largely unknown. Here we show that β-Catenin is a substrate of LSD1. Demethylation by LSD1 prevents β-Catenin degradation thereby maintaining its nuclear levels. Consistently, in absence of LSD1, β-Catenin transcriptional activity is reduced in both MuSCs and ESCs. Moreover, inactivation of LSD1 in mouse muscle stem cells and embryonic stem cells shows that LSD1 promotes mitotic spindle orientation via β-Catenin protein stabilization. Altogether, by inscribing LSD1 and β-Catenin in the same molecular cascade linking extracellular factors to gene expression, our results provide a mechanistic explanation to the similarity of action of canonical Wnt/β-Catenin signaling and LSD1 on stem cell fate.
Collapse
Affiliation(s)
- Sandrine Mouradian
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Delia Cicciarello
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Nicolas Lacoste
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Valérie Risson
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Francesca Berretta
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Fabien Le Grand
- Sorbonne Université, UPMC Université Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Nicolas Rose
- Sorbonne Université, UPMC Université Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Thomas Simonet
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Laurent Schaeffer
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, groupement Est, Bron, France
| | - Isabella Scionti
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| |
Collapse
|
2
|
Gao Y, Ma B, Li Y, Wu X, Zhao S, Guo H, Wang Y, Sun L, Xie J. Haspin balances the ratio of asymmetric cell division through Wnt5a and regulates cell fate decisions in mouse embryonic stem cells. Cell Death Discov 2023; 9:307. [PMID: 37612272 PMCID: PMC10447528 DOI: 10.1038/s41420-023-01604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Many different types of stem cells utilize asymmetric cell division (ACD) to produce two daughter cells with distinct fates. Haspin-catalyzed phosphorylation of histone H3 at Thr3 (H3T3ph) plays important roles during mitosis, including ACD in stem cells. However, whether and how Haspin functions in ACD regulation remains unclear. Here, we report that Haspin knockout (Haspin-KO) mouse embryonic stem cells (mESCs) had increased ratio of ACD, which cumulatively regulates cell fate decisions. Furthermore, Wnt5a is significantly downregulated due to decreased Pax2 in Haspin-KO mESCs. Wnt5a knockdown mESCs phenocopied Haspin-KO cells while overexpression of Wnt5a in Haspin-KO cells rescued disproportionated ACD. Collectively, Haspin is indispensable for mESCs to maintain a balanced ratio of ACD, which is essential for normal development and homeostasis.
Collapse
Affiliation(s)
- Yingying Gao
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bin Ma
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yifan Li
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiangyu Wu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shifeng Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Huiping Guo
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yiwei Wang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lihua Sun
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jing Xie
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Riva C, Hajduskova M, Gally C, Suman SK, Ahier A, Jarriault S. A natural transdifferentiation event involving mitosis is empowered by integrating signaling inputs with conserved plasticity factors. Cell Rep 2022; 40:111365. [PMID: 36130499 PMCID: PMC9513805 DOI: 10.1016/j.celrep.2022.111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/09/2022] [Accepted: 08/25/2022] [Indexed: 11/03/2022] Open
Abstract
Transdifferentiation, or direct cell reprogramming, is the conversion of one fully differentiated cell type into another. Whether core mechanisms are shared between natural transdifferentiation events when occurring with or without cell division is unclear. We have previously characterized the Y-to-PDA natural transdifferentiation in Caenorhabditis elegans, which occurs without cell division and requires orthologs of vertebrate reprogramming factors. Here, we identify a rectal-to-GABAergic transdifferentiation and show that cell division is required but not sufficient for conversion. We find shared mechanisms, including erasure of the initial identity, which requires the conserved reprogramming factors SEM-4/SALL, SOX-2, CEH-6/OCT, and EGL-5/HOX. We also find three additional and parallel roles of the Wnt signaling pathway: selection of a specific daughter, removal of the initial identity, and imposition of the precise final subtype identity. Our results support a model in which levels and antagonistic activities of SOX-2 and Wnt signaling provide a timer for the acquisition of final identity.
Collapse
Affiliation(s)
- Claudia Riva
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Martina Hajduskova
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Christelle Gally
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France.
| | - Shashi Kumar Suman
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Arnaud Ahier
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Sophie Jarriault
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
4
|
Bordet G, Couillault C, Soulavie F, Filippopoulou K, Bertrand V. PRC1 chromatin factors strengthen the consistency of neuronal cell fate specification and maintenance in C. elegans. PLoS Genet 2022; 18:e1010209. [PMID: 35604893 PMCID: PMC9126393 DOI: 10.1371/journal.pgen.1010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
In the nervous system, the specific identity of a neuron is established and maintained by terminal selector transcription factors that directly activate large batteries of terminal differentiation genes and positively regulate their own expression via feedback loops. However, how this is achieved in a reliable manner despite noise in gene expression, genetic variability or environmental perturbations remains poorly understood. We addressed this question using the AIY cholinergic interneurons of C. elegans, whose specification and differentiation network is well characterized. Via a genetic screen, we found that a loss of function of PRC1 chromatin factors induces a stochastic loss of AIY differentiated state in a small proportion of the population. PRC1 factors act directly in the AIY neuron and independently of PRC2 factors. By quantifying mRNA and protein levels of terminal selector transcription factors in single neurons, using smFISH and CRISPR tagging, we observed that, in PRC1 mutants, terminal selector expression is still initiated during embryonic development but the level is reduced, and expression is subsequently lost in a stochastic manner during maintenance phase in part of the population. We also observed variability in the level of expression of terminal selectors in wild type animals and, using correlation analysis, established that this noise comes from both intrinsic and extrinsic sources. Finally, we found that PRC1 factors increase the resistance of AIY neuron fate to environmental stress, and also secure the terminal differentiation of other neuron types. We propose that PRC1 factors contribute to the consistency of neuronal cell fate specification and maintenance by protecting neurons against noise and perturbations in their differentiation program.
Collapse
Affiliation(s)
- Guillaume Bordet
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Carole Couillault
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Fabien Soulavie
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | | | - Vincent Bertrand
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
5
|
Cell polarity control by Wnt morphogens. Dev Biol 2022; 487:34-41. [DOI: 10.1016/j.ydbio.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023]
|
6
|
Wnt signaling polarizes cortical actin polymerization to increase daughter cell asymmetry. Cell Discov 2022; 8:22. [PMID: 35228529 PMCID: PMC8885824 DOI: 10.1038/s41421-022-00376-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/06/2022] [Indexed: 01/02/2023] Open
Abstract
Asymmetric positioning of the mitotic spindle contributes to the generation of two daughter cells with distinct sizes and fates. Here, we investigated an asymmetric division in the Caenorhabditis elegans Q neuroblast lineage. In this division, beginning with an asymmetrically positioned spindle, the daughter-cell size differences continuously increased during cytokinesis, and the smaller daughter cell in the posterior eventually underwent apoptosis. We found that Arp2/3-dependent F-actin assembled in the anterior but not posterior cortex during division, suggesting that asymmetric expansion forces generated by actin polymerization may enlarge the anterior daughter cell. Consistent with this, inhibition of cortical actin polymerization or artificially equalizing actin assembly led to symmetric cell division. Furthermore, disruption of the Wnt gradient or its downstream components impaired asymmetric cortical actin assembly and caused symmetric division. Our results show that Wnt signaling establishes daughter cell asymmetry by polarizing cortical actin polymerization in a dividing cell.
Collapse
|
7
|
Junyent S, Reeves JC, Szczerkowski JLA, Garcin CL, Trieu TJ, Wilson M, Lundie-Brown J, Habib SJ. Wnt- and glutamate-receptors orchestrate stem cell dynamics and asymmetric cell division. eLife 2021; 10:59791. [PMID: 34028355 PMCID: PMC8177892 DOI: 10.7554/elife.59791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
The Wnt-pathway is part of a signalling network that regulates many aspects of cell biology. Recently, we discovered crosstalk between AMPA/Kainate-type ionotropic glutamate receptors (iGluRs) and the Wnt-pathway during the initial Wnt3a-interaction at the cytonemes of mouse embryonic stem cells (ESCs). Here, we demonstrate that this crosstalk persists throughout the Wnt3a-response in ESCs. Both AMPA and Kainate receptors regulate early Wnt3a-recruitment, dynamics on the cell membrane, and orientation of the spindle towards a Wnt3a-source at mitosis. AMPA receptors specifically are required for segregating cell fate components during Wnt3a-mediated asymmetric cell division (ACD). Using Wnt-pathway component knockout lines, we determine that Wnt co-receptor Lrp6 has particular functionality over Lrp5 in cytoneme formation, and in facilitating ACD. Both Lrp5 and 6, alongside pathway effector β-catenin act in concert to mediate the positioning of the dynamic interaction with, and spindle orientation to, a localised Wnt3a-source. Wnt-iGluR crosstalk may prove pervasive throughout embryonic and adult stem cell signalling.
Collapse
Affiliation(s)
- Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Joshua C Reeves
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - James LA Szczerkowski
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Clare L Garcin
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Tung-Jui Trieu
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Matthew Wilson
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Jethro Lundie-Brown
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College LondonLondonUnited Kingdom
| |
Collapse
|
8
|
Barrière A, Bertrand V. Neuronal specification in C. elegans: combining lineage inheritance with intercellular signaling. J Neurogenet 2020; 34:273-281. [PMID: 32603241 DOI: 10.1080/01677063.2020.1781850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nervous system is composed of a high diversity of neuronal types. How this diversity is generated during development is a key question in neurobiology. Addressing this question is one of the reasons that led Sydney Brenner to develop the nematode C. elegans as a model organism. While there was initially a debate on whether the neuronal specification follows a 'European' model (determined by ancestry) or an 'American' model (determined by intercellular communication), several decades of research have established that the truth lies somewhere in between. Neurons are specified by the combination of transcription factors inherited from the ancestor cells and signaling between neighboring cells (especially Wnt and Notch signaling). This converges to the activation in newly generated postmitotic neurons of a specific set of terminal selector transcription factors that initiate and maintain the differentiation of the neuron. In this review, we also discuss the evolution of these specification mechanisms in other nematodes and beyond.
Collapse
Affiliation(s)
- Antoine Barrière
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Vincent Bertrand
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|