1
|
Xu W, Zhang S, Qin H, Yao K. From bench to bedside: cutting-edge applications of base editing and prime editing in precision medicine. J Transl Med 2024; 22:1133. [PMID: 39707395 DOI: 10.1186/s12967-024-05957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
CRISPR-based gene editing technology theoretically allows for precise manipulation of any genetic target within living cells, achieving the desired sequence modifications. This revolutionary advancement has fundamentally transformed the field of biomedicine, offering immense clinical potential for treating and correcting genetic disorders. In the treatment of most genetic diseases, precise genome editing that avoids the generation of mixed editing byproducts is considered the ideal approach. This article reviews the current progress of base editors and prime editors, elaborating on specific examples of their applications in the therapeutic field, and highlights opportunities for improvement. Furthermore, we discuss the specific performance of these technologies in terms of safety and efficacy in clinical applications, and analyze the latest advancements and potential directions that could influence the future development of genome editing technologies. Our goal is to outline the clinical relevance of this rapidly evolving scientific field and preview a roadmap for successful DNA base editing therapies for the treatment of hereditary or idiopathic diseases.
Collapse
Affiliation(s)
- Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
2
|
Siniscalco AM, Perera RP, Greenslade JE, Veeravenkatasubramanian H, Masters A, Doll HM, Raj B. Barcoding Notch signaling in the developing brain. Development 2024; 151:dev203102. [PMID: 39575683 DOI: 10.1242/dev.203102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Developmental signaling inputs are fundamental for shaping cell fates and behavior. However, traditional fluorescent-based signaling reporters have limitations in scalability and molecular resolution of cell types. We present SABER-seq, a CRISPR-Cas molecular recorder that stores transient developmental signaling cues as permanent mutations in cellular genomes for deconstruction at later stages via single-cell transcriptomics. We applied SABER-seq to record Notch signaling in developing zebrafish brains. SABER-seq has two components: a signaling sensor and a barcode recorder. The sensor activates Cas9 in a Notch-dependent manner with inducible control, while the recorder obtains mutations in ancestral cells where Notch is active. We combine SABER-seq with an expanded juvenile brain atlas to identify cell types derived from Notch-active founders. Our data reveal rare examples where differential Notch activities in ancestral progenitors are detected in terminally differentiated neuronal subtypes. SABER-seq is a novel platform for rapid, scalable and high-resolution mapping of signaling activity during development.
Collapse
Affiliation(s)
- Abigail M Siniscalco
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Roshan Priyarangana Perera
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jessie E Greenslade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Aiden Masters
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hannah M Doll
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bushra Raj
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Liu F, Zhang X, Yang Y. Simulation of CRISPR-Cas9 editing on evolving barcode and accuracy of lineage tracing. Sci Rep 2024; 14:19213. [PMID: 39160220 PMCID: PMC11333585 DOI: 10.1038/s41598-024-70154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
We designed a simulation program that mimics the CRISPR-Cas9 editing on evolving barcode and double strand break repair procedure along with cell divisions. Emerging barcode mutations tend to build upon previously existing mutations, occurring sequentially with each generation. This process results in a unique mutation profile in each cell. We sample the barcodes in leaf cells and reconstruct the lineage, comparing it to the original lineage tree to test algorithm accuracy under different parameter settings. Our computational simulations validate the reasonable assumptions deduced from experimental observations, emphasizing that factors such as sampling size, barcode length, multiple barcodes, indel probabilities, and Cas9 activity are critical for accurate and successful lineage tracing. Among the many factors we found that sampling size and indel probabilities are two major ones that affect lineage tracing accuracy. Large segment deletions in early generations could greatly impact lineage accuracy. These simulation results offer insightful recommendations for enhancing the design and analysis of Cas9-mediated molecular barcodes in actual experiments.
Collapse
Affiliation(s)
- Fengshuo Liu
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Xiang Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yipeng Yang
- Department of Mathematics and Statistics, University of Houston - Clear Lake, 2700 Bay Area Blvd, Houston, TX, 77058, USA.
| |
Collapse
|
4
|
Siniscalco A, Perera RP, Greenslade JE, Masters A, Doll H, Raj B. Barcoding Notch signaling in the developing brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593533. [PMID: 38766256 PMCID: PMC11100830 DOI: 10.1101/2024.05.10.593533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Developmental signaling inputs are fundamental for shaping cell fates and behavior. However, traditional fluorescent-based signaling reporters have limitations in scalability and molecular resolution of cell types. We present SABER-seq, a CRISPR-Cas molecular recorder that stores transient developmental signaling cues as permanent mutations in cellular genomes for deconstruction at later stages via single-cell transcriptomics. We applied SABER-seq to record Notch signaling in developing zebrafish brains. SABER-seq has two components: a signaling sensor and a barcode recorder. The sensor activates Cas9 in a Notch-dependent manner with inducible control while the recorder accumulates mutations that represent Notch activity in founder cells. We combine SABER-seq with an expanded juvenile brain atlas to define cell types whose fates are determined downstream of Notch signaling. We identified examples wherein Notch signaling may have differential impact on terminal cell fates. SABER-seq is a novel platform for rapid, scalable and high-resolution mapping of signaling activity during development.
Collapse
Affiliation(s)
- Abigail Siniscalco
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Roshan Priyarangana Perera
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jessie E. Greenslade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Aiden Masters
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hannah Doll
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Bushra Raj
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Kim IS. DNA Barcoding Technology for Lineage Recording and Tracing to Resolve Cell Fate Determination. Cells 2023; 13:27. [PMID: 38201231 PMCID: PMC10778210 DOI: 10.3390/cells13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
In various biological contexts, cells receive signals and stimuli that prompt them to change their current state, leading to transitions into a future state. This change underlies the processes of development, tissue maintenance, immune response, and the pathogenesis of various diseases. Following the path of cells from their initial identity to their current state reveals how cells adapt to their surroundings and undergo transformations to attain adjusted cellular states. DNA-based molecular barcoding technology enables the documentation of a phylogenetic tree and the deterministic events of cell lineages, providing the mechanisms and timing of cell lineage commitment that can either promote homeostasis or lead to cellular dysregulation. This review comprehensively presents recently emerging molecular recording technologies that utilize CRISPR/Cas systems, base editing, recombination, and innate variable sequences in the genome. Detailing their underlying principles, applications, and constraints paves the way for the lineage tracing of every cell within complex biological systems, encompassing the hidden steps and intermediate states of organism development and disease progression.
Collapse
Affiliation(s)
- Ik Soo Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| |
Collapse
|
6
|
Liang Y, Chen F, Wang K, Lai L. Base editors: development and applications in biomedicine. Front Med 2023; 17:359-387. [PMID: 37434066 DOI: 10.1007/s11684-023-1013-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/19/2023] [Indexed: 07/13/2023]
Abstract
Base editor (BE) is a gene-editing tool developed by combining the CRISPR/Cas system with an individual deaminase, enabling precise single-base substitution in DNA or RNA without generating a DNA double-strand break (DSB) or requiring donor DNA templates in living cells. Base editors offer more precise and secure genome-editing effects than other conventional artificial nuclease systems, such as CRISPR/Cas9, as the DSB induced by Cas9 will cause severe damage to the genome. Thus, base editors have important applications in the field of biomedicine, including gene function investigation, directed protein evolution, genetic lineage tracing, disease modeling, and gene therapy. Since the development of the two main base editors, cytosine base editors (CBEs) and adenine base editors (ABEs), scientists have developed more than 100 optimized base editors with improved editing efficiency, precision, specificity, targeting scope, and capacity to be delivered in vivo, greatly enhancing their application potential in biomedicine. Here, we review the recent development of base editors, summarize their applications in the biomedical field, and discuss future perspectives and challenges for therapeutic applications.
Collapse
Affiliation(s)
- Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
7
|
Espinosa-Medina I, Feliciano D, Belmonte-Mateos C, Linda Miyares R, Garcia-Marques J, Foster B, Lindo S, Pujades C, Koyama M, Lee T. TEMPO enables sequential genetic labeling and manipulation of vertebrate cell lineages. Neuron 2023; 111:345-361.e10. [PMID: 36417906 DOI: 10.1016/j.neuron.2022.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/15/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
During development, regulatory factors appear in a precise order to determine cell fates over time. Consequently, to investigate complex tissue development, it is necessary to visualize and manipulate cell lineages with temporal control. Current strategies for tracing vertebrate cell lineages lack genetic access to sequentially produced cells. Here, we present TEMPO (Temporal Encoding and Manipulation in a Predefined Order), an imaging-readable genetic tool allowing differential labeling and manipulation of consecutive cell generations in vertebrates. TEMPO is based on CRISPR and powered by a cascade of gRNAs that drive orderly activation and inactivation of reporters and/or effectors. Using TEMPO to visualize zebrafish and mouse neurogenesis, we recapitulated birth-order-dependent neuronal fates. Temporally manipulating cell-cycle regulators in mouse cortex progenitors altered the proportion and distribution of neurons and glia, revealing the effects of temporal gene perturbation on serial cell fates. Thus, TEMPO enables sequential manipulation of molecular factors, crucial to study cell-type specification.
Collapse
Affiliation(s)
| | - Daniel Feliciano
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Carla Belmonte-Mateos
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona 08003, Spain
| | - Rosa Linda Miyares
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jorge Garcia-Marques
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid 28049, Spain
| | - Benjamin Foster
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sarah Lindo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona 08003, Spain
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Tzumin Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
8
|
Chen C, Liao Y, Peng G. Connecting past and present: single-cell lineage tracing. Protein Cell 2022; 13:790-807. [PMID: 35441356 PMCID: PMC9237189 DOI: 10.1007/s13238-022-00913-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/06/2022] [Indexed: 01/16/2023] Open
Abstract
Central to the core principle of cell theory, depicting cells' history, state and fate is a fundamental goal in modern biology. By leveraging clonal analysis and single-cell RNA-seq technologies, single-cell lineage tracing provides new opportunities to interrogate both cell states and lineage histories. During the past few years, many strategies to achieve lineage tracing at single-cell resolution have been developed, and three of them (integration barcodes, polylox barcodes, and CRISPR barcodes) are noteworthy as they are amenable in experimentally tractable systems. Although the above strategies have been demonstrated in animal development and stem cell research, much care and effort are still required to implement these methods. Here we review the development of single-cell lineage tracing, major characteristics of the cell barcoding strategies, applications, as well as technical considerations and limitations, providing a guide to choose or improve the single-cell barcoding lineage tracing.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuanxin Liao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangdun Peng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Yao M, Ren T, Pan Y, Xue X, Li R, Zhang L, Li Y, Huang K. A New Generation of Lineage Tracing Dynamically Records Cell Fate Choices. Int J Mol Sci 2022; 23:ijms23095021. [PMID: 35563412 PMCID: PMC9105840 DOI: 10.3390/ijms23095021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Reconstructing the development of lineage relationships and cell fate mapping has been a fundamental problem in biology. Using advanced molecular biology and single-cell RNA sequencing, we have profiled transcriptomes at the single-cell level and mapped cell fates during development. Recently, CRISPR/Cas9 barcode editing for large-scale lineage tracing has been used to reconstruct the pseudotime trajectory of cells and improve lineage tracing accuracy. This review presents the progress of the latest CbLT (CRISPR-based Lineage Tracing) and discusses the current limitations and potential technical pitfalls in their application and other emerging concepts.
Collapse
|
10
|
Leigh ND, Currie JD. Re-building limbs, one cell at a time. Dev Dyn 2022; 251:1389-1403. [PMID: 35170828 PMCID: PMC9545806 DOI: 10.1002/dvdy.463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
New techniques for visualizing and interrogating single cells hold the key to unlocking the underlying mechanisms of salamander limb regeneration.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, Sweden
| | - Joshua D Currie
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, USA
| |
Collapse
|
11
|
Belmonte-Mateos C, Pujades C. From Cell States to Cell Fates: How Cell Proliferation and Neuronal Differentiation Are Coordinated During Embryonic Development. Front Neurosci 2022; 15:781160. [PMID: 35046768 PMCID: PMC8761814 DOI: 10.3389/fnins.2021.781160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The central nervous system (CNS) exhibits an extraordinary diversity of neurons, with the right cell types and proportions at the appropriate sites. Thus, to produce brains with specific size and cell composition, the rates of proliferation and differentiation must be tightly coordinated and balanced during development. Early on, proliferation dominates; later on, the growth rate almost ceases as more cells differentiate and exit the cell cycle. Generation of cell diversity and morphogenesis takes place concomitantly. In the vertebrate brain, this results in dramatic changes in the position of progenitor cells and their neuronal derivatives, whereas in the spinal cord morphogenetic changes are not so important because the structure mainly grows by increasing its volume. Morphogenesis is under control of specific genetic programs that coordinately unfold over time; however, little is known about how they operate and impact in the pools of progenitor cells in the CNS. Thus, the spatiotemporal coordination of these processes is fundamental for generating functional neuronal networks. Some key aims in developmental neurobiology are to determine how cell diversity arises from pluripotent progenitor cells, and how the progenitor potential changes upon time. In this review, we will share our view on how the advance of new technologies provides novel data that challenge some of the current hypothesis. We will cover some of the latest studies on cell lineage tracing and clonal analyses addressing the role of distinct progenitor cell division modes in balancing the rate of proliferation and differentiation during brain morphogenesis. We will discuss different hypothesis proposed to explain how progenitor cell diversity is generated and how they challenged prevailing concepts and raised new questions.
Collapse
Affiliation(s)
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
12
|
Little MH, Howden SE, Lawlor KT, Vanslambrouck JM. Determining lineage relationships in kidney development and disease. Nat Rev Nephrol 2021; 18:8-21. [PMID: 34594045 DOI: 10.1038/s41581-021-00485-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/17/2022]
Abstract
The lineage relationships of cells provide information about the origins of component cell types during development and repair as well as the source of aberrant cells during disease. Genetic approaches to lineage tracing applied in the mouse have revealed much about how the mammalian kidney forms, including the identification of key progenitors for the nephrons and stromal compartments. Inducible Cre systems have also facilitated lineage tracing studies in the postnatal animal that illustrate the changes in cellular fate that can occur during kidney injury. With the advent of single-cell transcriptional profiling and trajectory analyses, predictions of cellular relationships across development are now being made in model systems, such as the mouse, as well as in human fetal kidney. Importantly, these approaches provide predictions of lineage relationships rather than definitive evidence. Although genetic approaches to the study of lineage have not previously been possible in a human setting, the application of CRISPR-Cas9 gene editing of pluripotent stem cells is beginning to teach us about human lineage relationships.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Parkville, VIC, Australia. .,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia.
| | - Sara E Howden
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Kynan T Lawlor
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | | |
Collapse
|
13
|
Refahi Y, Zardilis A, Michelin G, Wightman R, Leggio B, Legrand J, Faure E, Vachez L, Armezzani A, Risson AE, Zhao F, Das P, Prunet N, Meyerowitz EM, Godin C, Malandain G, Jönsson H, Traas J. A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control. Dev Cell 2021; 56:540-556.e8. [PMID: 33621494 PMCID: PMC8519405 DOI: 10.1016/j.devcel.2021.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 12/31/2022]
Abstract
We have analyzed the link between the gene regulation and growth during the early stages of flower development in Arabidopsis. Starting from time-lapse images, we generated a 4D atlas of early flower development, including cell lineage, cellular growth rates, and the expression patterns of regulatory genes. This information was introduced in MorphoNet, a web-based platform. Using computational models, we found that the literature-based molecular network only explained a minority of the gene expression patterns. This was substantially improved by adding regulatory hypotheses for individual genes. Correlating growth with the combinatorial expression of multiple regulators led to a set of hypotheses for the action of individual genes in morphogenesis. This identified the central factor LEAFY as a potential regulator of heterogeneous growth, which was supported by quantifying growth patterns in a leafy mutant. By providing an integrated view, this atlas should represent a fundamental step toward mechanistic models of flower development.
Collapse
Affiliation(s)
- Yassin Refahi
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France; Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51097 Reims, France.
| | - Argyris Zardilis
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Gaël Michelin
- Université Côte d'Azur, Inria, Sophia Antipolis, CNRS, I3S, France
| | - Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Bruno Leggio
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Jonathan Legrand
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | | | - Laetitia Vachez
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Alessia Armezzani
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Anne-Evodie Risson
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Feng Zhao
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Pradeep Das
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Nathanaël Prunet
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elliot M Meyerowitz
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christophe Godin
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | | | - Henrik Jönsson
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Computational Biology and Biological Physics, Lund University, Sölvegatan 14A, 223 62 Lund, Sweden; Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Cambridge, UK.
| | - Jan Traas
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France.
| |
Collapse
|
14
|
The art of lineage tracing: From worm to human. Prog Neurobiol 2020; 199:101966. [PMID: 33249090 DOI: 10.1016/j.pneurobio.2020.101966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Reconstructing the genealogy of every cell that makes up an organism remains a long-standing challenge in developmental biology. Besides its relevance for understanding the mechanisms underlying normal and pathological development, resolving the lineage origin of cell types will be crucial to create these types on-demand. Multiple strategies have been deployed towards the problem of lineage tracing, ranging from direct observation to sophisticated genetic approaches. Here we discuss the achievements and limitations of past and current technology. Finally, we speculate about the future of lineage tracing and how to reach the next milestones in the field.
Collapse
|
15
|
Tang W, Bronner ME. Neural crest lineage analysis: from past to future trajectory. Development 2020; 147:147/20/dev193193. [PMID: 33097550 DOI: 10.1242/dev.193193] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since its discovery 150 years ago, the neural crest has intrigued investigators owing to its remarkable developmental potential and extensive migratory ability. Cell lineage analysis has been an essential tool for exploring neural crest cell fate and migration routes. By marking progenitor cells, one can observe their subsequent locations and the cell types into which they differentiate. Here, we review major discoveries in neural crest lineage tracing from a historical perspective. We discuss how advancing technologies have refined lineage-tracing studies, and how clonal analysis can be applied to questions regarding multipotency. We also highlight how effective progenitor cell tracing, when combined with recently developed molecular and imaging tools, such as single-cell transcriptomics, single-molecule fluorescence in situ hybridization and high-resolution imaging, can extend the scope of neural crest lineage studies beyond development to regeneration and cancer initiation.
Collapse
Affiliation(s)
- Weiyi Tang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|