1
|
Mulqueeney JM, Ezard THG, Goswami A. Assessing the application of landmark-free morphometrics to macroevolutionary analyses. BMC Ecol Evol 2025; 25:38. [PMID: 40289084 PMCID: PMC12034209 DOI: 10.1186/s12862-025-02377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
The study of phenotypic evolution has been transformed in recent decades by methods allowing precise quantification of anatomical shape, in particular 3D geometric morphometrics. While this effectiveness of geometric morphometrics has been demonstrated by thousands of studies, it generally requires manual or semi-automated landmarking, which is time-consuming, susceptible to operator bias, and limits comparisons across morphologically disparate taxa. Emerging automated methods, particularly landmark-free techniques, offer potential solutions, but these approaches have thus far been primarily applied to closely related forms. In this study, we explore the utility of automated, landmark-free approaches for macroevolutionary analyses. We compare an application of Large Deformation Diffeomorphic Metric Mapping (LDDMM) known as Deterministic Atlas Analysis (DAA) with a high-density geometric morphometric approach, using a dataset of 322 mammals spanning 180 families. Initially, challenges arose from using mixed modalities (computed tomography (CT) and surface scans), which we addressed by standardising the data by using Poisson surface reconstruction that creates watertight, closed surfaces for all specimens. After standardisation, we observed a significant improvement in the correspondence between patterns of shape variation measured using manual landmarking and DAA, although differences emerged, especially for Primates and Cetacea. We further evaluated the downstream effects of these differences on macroevolutionary analyses, finding that both methods produced comparable but varying estimates of phylogenetic signal, morphological disparity and evolutionary rates. Our findings highlight the potential of landmark-free approaches like DAA for large scale studies across disparate taxa, owing to their enhanced efficiency. However, they also reveal several challenges that should be addressed before these methods can be widely adopted. In this context, we outline these issues, propose solutions based on existing literature, and identify potential avenues for further research. We argue that by incorporating these improvements, the application of landmark-free analyses could be expanded, thereby enhancing the scope of morphometric studies and enabling the analysis of larger and more diverse datasets.
Collapse
Affiliation(s)
- James M Mulqueeney
- School for Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, UK.
- Department of Life Sciences, Natural History Museum, London, UK.
| | - Thomas H G Ezard
- School for Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, UK
| | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
2
|
Remus SL, Brugetti K, Zimmer VA, Hesse N, Reidler PL, Giunta R, Schnabel JA, Demmer W. Personalized Joint Replacement: Landmark-Free Morphometric Analysis of Distal Radii. J Funct Morphol Kinesiol 2025; 10:71. [PMID: 40137323 PMCID: PMC11943171 DOI: 10.3390/jfmk10010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Fractures of the distal radius are common, particularly among young men and elderly women, often leading to painful wrist arthritis, especially if the joint surface has been affected. Traditional treatments of the wrist, such as full or partial wrist fusion, limit movement, and common wrist prostheses have high complication rates. Regenerative medicine and 3D bioprinting offer the potential for personalized joint replacements. Methods: This study evaluates using the contralateral radius as a template for creating customized distal radius prostheses. Bilateral CT scans of healthy wrists were analyzed to assess the shape and symmetry of the distal radius using a landmark-free morphometric method. Instead of comparing defined landmarks, the entire surface of the radius is analyzed employing dense point- and deformation-based morphometry to detect subtle morphological differences, providing an unbiased and more accurate comparison of the overall deformations in the distal radii. Results: results show strong intraindividual symmetry in joint surfaces. Interindividual comparisons revealed significant morphological variations, particularly gender-specific differences. Conclusions: These findings support the use of the contralateral radius as a template for the replaced side. At the same time, the interindividual results endorse the approach of pursuing personalized prostheses as the optimal replacement for distal joint surfaces. The increasing improvement of 3D-printed prostheses promises new methods for better outcomes in distal radius arthrosis after intraarticular fractures. Further research into clinical applications and biocompatible 3D printing materials is recommended.
Collapse
Affiliation(s)
- Sarah L. Remus
- School of Computation, Information and Technology, Technical University of Munich, 80333 Munich, Germany
| | - Kevin Brugetti
- Department of Hand, Plastic and Aesthetic Surgery, LMU Klinikum, Ziemssenstraße 5, 80336 Munich, Germany
| | - Veronika A. Zimmer
- School of Medicine and Health, Technical University of Munich, 80333 Munich, Germany
| | - Nina Hesse
- Department of Radiology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paul L. Reidler
- Department of Radiology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Riccardo Giunta
- Department of Hand, Plastic and Aesthetic Surgery, LMU Klinikum, Ziemssenstraße 5, 80336 Munich, Germany
| | - Julia A. Schnabel
- School of Computation, Information and Technology, Technical University of Munich, 80333 Munich, Germany
- Institute of Machine Learning in Biomedical Imaging, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Wolfram Demmer
- Department of Hand, Plastic and Aesthetic Surgery, LMU Klinikum, Ziemssenstraße 5, 80336 Munich, Germany
| |
Collapse
|
3
|
He Y, Mulqueeney JM, Watt EC, Salili-James A, Barber NS, Camaiti M, Hunt ESE, Kippax-Chui O, Knapp A, Lanzetti A, Rangel-de Lázaro G, McMinn JK, Minus J, Mohan AV, Roberts LE, Adhami D, Grisan E, Gu Q, Herridge V, Poon STS, West T, Goswami A. Opportunities and Challenges in Applying AI to Evolutionary Morphology. Integr Org Biol 2024; 6:obae036. [PMID: 40433986 PMCID: PMC12082097 DOI: 10.1093/iob/obae036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/07/2024] [Accepted: 09/20/2024] [Indexed: 05/29/2025] Open
Abstract
Artificial intelligence (AI) is poised to revolutionize many aspects of science, including the study of evolutionary morphology. While classical AI methods such as principal component analysis and cluster analysis have been commonplace in the study of evolutionary morphology for decades, recent years have seen increasing application of deep learning to ecology and evolutionary biology. As digitized specimen databases become increasingly prevalent and openly available, AI is offering vast new potential to circumvent long-standing barriers to rapid, big data analysis of phenotypes. Here, we review the current state of AI methods available for the study of evolutionary morphology, which are most developed in the area of data acquisition and processing. We introduce the main available AI techniques, categorizing them into 3 stages based on their order of appearance: (1) machine learning, (2) deep learning, and (3) the most recent advancements in large-scale models and multimodal learning. Next, we present case studies of existing approaches using AI for evolutionary morphology, including image capture and segmentation, feature recognition, morphometrics, and phylogenetics. We then discuss the prospectus for near-term advances in specific areas of inquiry within this field, including the potential of new AI methods that have not yet been applied to the study of morphological evolution. In particular, we note key areas where AI remains underutilized and could be used to enhance studies of evolutionary morphology. This combination of current methods and potential developments has the capacity to transform the evolutionary analysis of the organismal phenotype into evolutionary phenomics, leading to an era of "big data" that aligns the study of phenotypes with genomics and other areas of bioinformatics.
Collapse
Affiliation(s)
- Y He
- Life Sciences, Natural History Museum, London, UK
| | - J M Mulqueeney
- Life Sciences, Natural History Museum, London, UK
- Department of Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - E C Watt
- Life Sciences, Natural History Museum, London, UK
- Division of Biosciences, University College London, London, UK
| | - A Salili-James
- AI and Innovation, Natural History Museum, London, UK
- Digital, Data and Informatics, Natural History Museum, London, UK
| | - N S Barber
- Life Sciences, Natural History Museum, London, UK
- Department of Anthropology, University College London, London, UK
| | - M Camaiti
- Life Sciences, Natural History Museum, London, UK
| | - E S E Hunt
- Life Sciences, Natural History Museum, London, UK
- Department of Life Sciences, Imperial College London, London, UK
- Grantham Institute, Imperial College London, London, UK
| | - O Kippax-Chui
- Life Sciences, Natural History Museum, London, UK
- Grantham Institute, Imperial College London, London, UK
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - A Knapp
- Life Sciences, Natural History Museum, London, UK
- Centre for Integrative Anatomy, University College London, London, UK
| | - A Lanzetti
- Life Sciences, Natural History Museum, London, UK
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - G Rangel-de Lázaro
- Life Sciences, Natural History Museum, London, UK
- School of Oriental and African Studies, London, UK
| | - J K McMinn
- Life Sciences, Natural History Museum, London, UK
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - J Minus
- Life Sciences, Natural History Museum, London, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - A V Mohan
- Life Sciences, Natural History Museum, London, UK
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - L E Roberts
- Life Sciences, Natural History Museum, London, UK
| | - D Adhami
- Life Sciences, Natural History Museum, London, UK
- Department of Life Sciences, Imperial College London, London, UK
- Imaging and Analysis Centre, Natural History Museum, London, UK
| | - E Grisan
- School of Engineering, London South Bank University, London, UK
| | - Q Gu
- AI and Innovation, Natural History Museum, London, UK
- Digital, Data and Informatics, Natural History Museum, London, UK
| | - V Herridge
- Life Sciences, Natural History Museum, London, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - S T S Poon
- AI and Innovation, Natural History Museum, London, UK
- Digital, Data and Informatics, Natural History Museum, London, UK
| | - T West
- Centre for Integrative Anatomy, University College London, London, UK
- Imaging and Analysis Centre, Natural History Museum, London, UK
| | - A Goswami
- Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
4
|
Mulqueeney JM, Searle-Barnes A, Brombacher A, Sweeney M, Goswami A, Ezard THG. How many specimens make a sufficient training set for automated three-dimensional feature extraction? ROYAL SOCIETY OPEN SCIENCE 2024; 11:rsos.240113. [PMID: 39100182 PMCID: PMC11296157 DOI: 10.1098/rsos.240113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 08/06/2024]
Abstract
Deep learning has emerged as a robust tool for automating feature extraction from three-dimensional images, offering an efficient alternative to labour-intensive and potentially biased manual image segmentation methods. However, there has been limited exploration into the optimal training set sizes, including assessing whether artficial expansion by data augmentation can achieve consistent results in less time and how consistent these benefits are across different types of traits. In this study, we manually segmented 50 planktonic foraminifera specimens from the genus Menardella to determine the minimum number of training images required to produce accurate volumetric and shape data from internal and external structures. The results reveal unsurprisingly that deep learning models improve with a larger number of training images with eight specimens being required to achieve 95% accuracy. Furthermore, data augmentation can enhance network accuracy by up to 8.0%. Notably, predicting both volumetric and shape measurements for the internal structure poses a greater challenge compared with the external structure, owing to low contrast differences between different materials and increased geometric complexity. These results provide novel insight into optimal training set sizes for precise image segmentation of diverse traits and highlight the potential of data augmentation for enhancing multivariate feature extraction from three-dimensional images.
Collapse
Affiliation(s)
- James M. Mulqueeney
- School of Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, UK
- Department of Life Sciences, Natural History Museum, London, UK
| | - Alex Searle-Barnes
- School of Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, UK
| | - Anieke Brombacher
- School of Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, UK
| | - Marisa Sweeney
- School of Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, UK
| | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, London, UK
| | - Thomas H. G. Ezard
- School of Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton, UK
| |
Collapse
|
5
|
Imirzian N, Püffel F, Roces F, Labonte D. Large deformation diffeomorphic mapping of 3D shape variation reveals two distinct mandible and head capsule morphs in Atta vollenweideri leaf-cutter worker ants. Ecol Evol 2024; 14:e11236. [PMID: 38633523 PMCID: PMC11021802 DOI: 10.1002/ece3.11236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Ants are crucial ecosystem engineers, and their ecological success is facilitated by a division of labour among sterile "workers". In some ant lineages, workers have undergone further morphological differentiation, resulting in differences in body size, shape, or both. Distinguishing between changes in size and shape is not trivial. Traditional approaches based on allometry reduce complex 3D shapes into simple linear, areal, or volume metrics; modern approaches using geometric morphometrics typically rely on landmarks, introducing observer bias and a trade-off between effort and accuracy. Here, we use a landmark-free method based on large deformation diffeomorphic metric mapping (LDDMM) to assess the co-variation of size and 3D shape in the mandibles and head capsules of Atta vollenweideri leaf-cutter ants, a species exhibiting extreme worker size-variation. Body mass varied by more than two orders of magnitude, but a shape atlas created via LDDMM on μ-CT-derived 3D mesh files revealed only two distinct head capsule and mandibles shapes-one for the minims (body mass < 1 mg) and one for all other workers. We discuss the functional significance of the identified 3D shape variation, and its implications for the evolution of extreme polymorphism in Atta.
Collapse
Affiliation(s)
| | | | - Flavio Roces
- Department of Behavioural Physiology and SociobiologyBiocenter, University of WürzburgWürzburgGermany
| | - David Labonte
- Department of BioengineeringImperial College LondonLondonUK
| |
Collapse
|
6
|
Serrano ME, Kim E, Siow B, Ma D, Rojo L, Simmons C, Hayward D, Gibbins D, Singh N, Strydom A, Fisher EM, Tybulewicz VL, Cash D. Investigating brain alterations in the Dp1Tyb mouse model of Down syndrome. Neurobiol Dis 2023; 188:106336. [PMID: 38317803 PMCID: PMC7615598 DOI: 10.1016/j.nbd.2023.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Down syndrome (DS) is one of the most common birth defects and the most prevalent genetic form of intellectual disability. DS arises from trisomy of chromosome 21, but its molecular and pathological consequences are not fully understood. In this study, we compared Dp1Tyb mice, a DS model, against their wild-type (WT) littermates of both sexes to investigate the impact of DS-related genetic abnormalities on the brain phenotype. We performed in vivo whole brain magnetic resonance imaging (MRI) and hippocampal 1H magnetic resonance spectroscopy (MRS) on the animals at 3 months of age. Subsequently, ex vivo MRI scans and histological analyses were conducted post-mortem. Our findings unveiled the following neuroanatomical and biochemical alterations in the Dp1Tyb brains: a smaller surface area and a rounder shape compared to WT brains, with DS males also presenting smaller global brain volume compared with the counterpart WT. Regional volumetric analysis revealed significant changes in 26 out of 72 examined brain regions, including the medial prefrontal cortex and dorsal hippocampus. These alterations were consistently observed in both in vivo and ex vivo imaging data. Additionally, high-resolution ex vivo imaging enabled us to investigate cerebellar layers and hippocampal sub-regions, revealing selective areas of decrease and remodelling in these structures. An analysis of hippocampal metabolites revealed an elevation in glutamine and the glutamine/glutamate ratio in the Dp1Tyb mice compared to controls, suggesting a possible imbalance in the excitation/inhibition ratio. This was accompanied by the decreased levels of taurine. Histological analysis revealed fewer neurons in the hippocampal CA3 and DG layers, along with an increase in astrocytes and microglia. These findings recapitulate multiple neuroanatomical and biochemical features associated with DS, enriching our understanding of the potential connection between chromosome 21 trisomy and the resultant phenotype.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Bernard Siow
- The Francis Crick Institute, London, United Kingdom
| | - Da Ma
- Department of Internal Medicine Section of Gerontology and Geriatric Science, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Loreto Rojo
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | | | | - Nisha Singh
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Spanke T, Gabelaia M, Flury JM, Hilgers L, Wantania LL, Misof B, Wipfler B, Wowor D, Mokodongan DF, Herder F, Schwarzer J. A landmark-free analysis of the pelvic girdle in Sulawesi ricefishes (Adrianichthyidae): How 2D and 3D geometric morphometrics can complement each other in the analysis of a complex structure. Ecol Evol 2023; 13:e10613. [PMID: 37859830 PMCID: PMC10582673 DOI: 10.1002/ece3.10613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Geometric morphometrics (GM) enable the quantification of morphological variation on various scales. Recent technical advances allow analyzing complex three-dimensional shapes also in cases where landmark-based approaches are not appropriate. Pelvic girdle bones (basipterygia) of Sulawesi ricefishes are 3D structures that challenge traditional morphometrics. We hypothesize that the pelvic girdle of ricefishes experienced sex-biased selection pressures in species where females provide brood care by carrying fertilized eggs supported by elongated pelvic fins ("pelvic brooding"). We test this by comparing pelvic bone shapes of both sexes in species exhibiting pelvic brooding and the more common reproductive strategy "transfer brooding," by using landmark-free 2D and 3D GM, as well as qualitative shape descriptions. Both landmark-free approaches revealed significant interspecific pelvic bone variation in the lateral process, medial facing side of the pelvic bone, and overall external and internal wing shape. Within pelvic brooders, the three analyzed species are clearly distinct, while pelvic bones of the genus Adrianichthys are more similar to transfer brooding Oryzias. Female pelvic brooding Oryzias exhibit prominent, medially pointing tips extending from the internal wing and basipterygial plate that are reduced or absent in conspecific males, Adrianichthys and transfer brooding Oryzias, supporting our hypothesis that selection pressures affecting pelvic girdle shape are sex-biased in Sulawesi ricefishes. Furthermore, both sexes of pelvic brooding Oryzias have overall larger pelvic bones than other investigated ricefishes. Based on these differences, we characterized two reproductive strategy- and sex-dependent pelvic girdle types for Sulawesi ricefishes. Morphological differences between the investigated pelvic brooding genera Adrianichthys and Oryzias provide additional evidence for two independent origins of pelvic brooding. Overall, our findings add to a better understanding on traits related to pelvic brooding in ricefishes and provide a basis for upcoming studies on pelvic girdle function and morphology.
Collapse
Affiliation(s)
- Tobias Spanke
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Mariam Gabelaia
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Jana M. Flury
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Leon Hilgers
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
- LOEWE‐Zentrum für Translationale BiodiversitätsgenomikFrankfurtGermany
| | - Letha Louisiana Wantania
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
- Faculty of Fisheries and Marine ScienceSam Ratulangi UniversityManadoIndonesia
| | - Bernhard Misof
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Benjamin Wipfler
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and EvolutionNational Research and Innovation Agency (BRIN)CibinongIndonesia
| | - Daniel F. Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and EvolutionNational Research and Innovation Agency (BRIN)CibinongIndonesia
| | - Fabian Herder
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| | - Julia Schwarzer
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum Koenig BonnBonnGermany
| |
Collapse
|
8
|
Mosleh S, Choi GPT, Musser GM, James HF, Abzhanov A, Mahadevan L. Beak morphometry and morphogenesis across avian radiations. Proc Biol Sci 2023; 290:20230420. [PMID: 37752837 PMCID: PMC10523063 DOI: 10.1098/rspb.2023.0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Adaptive avian radiations associated with the diversification of bird beaks into a multitude of forms enabling different functions are exemplified by Darwin's finches and Hawaiian honeycreepers. To elucidate the nature of these radiations, we quantified beak shape and skull shape using a variety of geometric measures that allowed us to collapse the variability of beak shape into a minimal set of geometric parameters. Furthermore, we find that just two measures of beak shape-the ratio of the width to length and the normalized sharpening rate (increase in the transverse beak curvature near the tip relative to that at the base of the beak)-are strongly correlated with diet. Finally, by considering how transverse sections to the beak centreline evolve with distance from the tip, we show that a simple geometry-driven growth law termed 'modified mean curvature flow' captures the beak shapes of Darwin's finches and Hawaiian honeycreepers. A surprising consequence of the simple growth law is that beak shapes that are not allowed based on the developmental programme of the beak are also not observed in nature, suggesting a link between evolutionary morphology and development in terms of growth-driven developmental constraints.
Collapse
Affiliation(s)
- Salem Mosleh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Gary P. T. Choi
- Department of Mathematics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Grace M. Musser
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Helen F. James
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Ascot SL5 7PY, UK
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - L. Mahadevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Magnet R, Bloch K, Taverne M, Melzi S, Geoffroy M, Khonsari RH, Ovsjanikov M. Assessing craniofacial growth and form without landmarks: A new automatic approach based on spectral methods. J Morphol 2023; 284:e21609. [PMID: 37458086 DOI: 10.1002/jmor.21609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
We present a novel method for the morphometric analysis of series of 3D shapes, and demonstrate its relevance for the detection and quantification of two craniofacial anomalies: trigonocephaly and metopic ridges, using CT-scans of young children. Our approach is fully automatic, and does not rely on manual landmark placement and annotations. Our approach furthermore allows to differentiate shape classes, enabling successful differential diagnosis between trigonocephaly and metopic ridges, two related conditions characterized by triangular foreheads. These results were obtained using recent developments in automatic nonrigid 3D shape correspondence methods and specifically spectral approaches based on the functional map framework. Our method can capture local changes in geometric structure, in contrast to methods based, for instance, on global shape descriptors. As such, our approach allows to perform automatic shape classification and provides visual feedback on shape regions associated with different classes of deformations. The flexibility and generality of our approach paves the way for the application of spectral methods in quantitative medicine.
Collapse
Affiliation(s)
- Robin Magnet
- LIX, École Polytechnique, IP Paris, Palaiseau, France
| | - Kevin Bloch
- Laboratoire "Forme et Croissance du Crâne", Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, Paris, France
| | - Maxime Taverne
- Laboratoire "Forme et Croissance du Crâne", Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, Paris, France
| | - Simone Melzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Maya Geoffroy
- Laboratoire "Forme et Croissance du Crâne", Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, Paris, France
| | - Roman H Khonsari
- Laboratoire "Forme et Croissance du Crâne", Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, Paris, France
| | | |
Collapse
|
10
|
Donovan APA, Rosko L, Ellegood J, Redhead Y, Green JBA, Lerch JP, Huang JK, Basson MA. Pervasive cortical and white matter anomalies in a mouse model for CHARGE syndrome. J Anat 2023; 243:51-65. [PMID: 36914558 PMCID: PMC10273342 DOI: 10.1111/joa.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
CHARGE (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth, Genital anomalies and Ear abnormalities) syndrome is a disorder caused by mutations in the gene encoding CHD7, an ATP dependent chromatin remodelling factor, and is characterised by a diverse array of congenital anomalies. These include a range of neuroanatomical comorbidities which likely underlie the varied neurodevelopmental disorders associated with CHARGE syndrome, which include intellectual disability, motor coordination deficits, executive dysfunction, and autism spectrum disorder. Cranial imaging studies are challenging in CHARGE syndrome patients, but high-throughput magnetic resonance imaging (MRI) techniques in mouse models allow for the unbiased identification of neuroanatomical defects. Here, we present a comprehensive neuroanatomical survey of a Chd7 haploinsufficient mouse model of CHARGE syndrome. Our study uncovered widespread brain hypoplasia and reductions in white matter volume across the brain. The severity of hypoplasia appeared more pronounced in posterior areas of the neocortex compared to anterior regions. We also perform the first assessment of white matter tract integrity in this model through diffusion tensor imaging (DTI) to assess the potential functional consequences of widespread reductions in myelin, which suggested the presence of white matter integrity defects. To determine if white matter alterations correspond to cellular changes, we quantified oligodendrocyte lineage cells in the postnatal corpus callosum, uncovering reduced numbers of mature oligodendrocytes. Together, these results present a range of promising avenues of focus for future cranial imaging studies in CHARGE syndrome patients.
Collapse
Affiliation(s)
- Alex P. A. Donovan
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| | - Lauren Rosko
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDCUSA
| | - Jacob Ellegood
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Yushi Redhead
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| | - Jeremy B. A. Green
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| | - Jason P. Lerch
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsThe University of TorontoTorontoOntarioCanada
- Department of Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Preclinical Imaging, Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Jeffrey K. Huang
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDCUSA
- Centre for Cell ReprogrammingGeorgetown UniversityWashingtonDCUSA
| | - M. Albert Basson
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
11
|
Loisay L, Komla-Ebri D, Morice A, Heuzé Y, Viaut C, de La Seiglière A, Kaci N, Chan D, Lamouroux A, Baujat G, Bassett JD, Williams GR, Legeai-Mallet L. Hypochondroplasia gain-of-function mutation in FGFR3 causes defective bone mineralization in mice. JCI Insight 2023; 8:e168796. [PMID: 37345656 PMCID: PMC10371252 DOI: 10.1172/jci.insight.168796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Hypochondroplasia (HCH) is a mild dwarfism caused by missense mutations in fibroblast growth factor receptor 3 (FGFR3), with the majority of cases resulting from a heterozygous p.Asn540Lys gain-of-function mutation. Here, we report the generation and characterization of the first mouse model (Fgfr3Asn534Lys/+) of HCH to our knowledge. Fgfr3Asn534Lys/+ mice exhibited progressive dwarfism and impairment of the synchondroses of the cranial base, resulting in defective formation of the foramen magnum. The appendicular and axial skeletons were both severely affected and we demonstrated an important role of FGFR3 in regulation of cortical and trabecular bone structure. Trabecular bone mineral density (BMD) of long bones and vertebral bodies was decreased, but cortical BMD increased with age in both tibiae and femurs. These results demonstrate that bones in Fgfr3Asn534Lys/+ mice, due to FGFR3 activation, exhibit some characteristics of osteoporosis. The present findings emphasize the detrimental effect of gain-of-function mutations in the Fgfr3 gene on long bone modeling during both developmental and aging processes, with potential implications for the management of elderly patients with hypochondroplasia and osteoporosis.
Collapse
Affiliation(s)
- Léa Loisay
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism Digestion and Reproduction, Imperial College London, London, United Kingdom
- UCB Pharma, Slough, United Kingdom
| | - Anne Morice
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Yann Heuzé
- UMR5199 PACEA, CNRS, MC, Université de Bordeaux, Pessac, France
| | - Camille Viaut
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Amélie de La Seiglière
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Nabil Kaci
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Audrey Lamouroux
- Department of Medical Genetics, CHU Arnaud De Villeneuve, Montpellier, France
| | - Geneviève Baujat
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
- Department of Medical Genetics, French Reference Center for Skeletal Dysplasia, AP-HP, Necker Enfants Malades Hospital, Paris, France
| | - J.H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Laurence Legeai-Mallet
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, Paris, France
| |
Collapse
|
12
|
Fournier G, Maret D, Telmon N, Savall F. An automated landmark method to describe geometric changes in the human mandible during growth. Arch Oral Biol 2023; 149:105663. [PMID: 36893681 DOI: 10.1016/j.archoralbio.2023.105663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
OBJECTIVE The principal aim of this study was to assess an automatic landmarking approach to human mandibles based on the atlas method. The secondary aim was to identify the areas of greatest variation in the mandibles of middle-aged to older adults. DESIGN Our sample consisted of 160 mandibles from computed tomography scans of 80 men and 80 women aged between 40 and 79 years. Eleven anatomical landmarks were placed manually on mandibles. The automated landmarking through point cloud alignment and correspondence (ALPACA) method implemented in 3D Slicer was used to automatically place landmarks to all meshes. Euclidean distances, normalized centroid size, and Procrustes ANOVA were calculated for both methods. A pseudo-landmarks approach was followed using ALPACA to identify areas of changes among our sample. RESULTS The ALPACA method showed significant differences in Euclidean distances for all landmarks compared to the manual method. A mean Euclidean distance of 1.7 mm was found for the ALPACA method and 0.99 mm for the manual method. Both methods found that sex, age, and size had a significant effect on mandibular shape. The greatest variations were observed in the condyle, ramus, and symphysis regions. CONCLUSION The results obtained using the ALPACA method are acceptable and promising. This approach can automatically place landmarks with an average accuracy of less than 2 mm, which may be sufficient in most anthropometric analyses. In the light of our results, however, odontological application such as occlusal analysis is not recommended.
Collapse
Affiliation(s)
- G Fournier
- Faculté de Chirurgie Dentaire, Université Paul Sabatier, Centre Hospitalier Universitaire, Toulouse, France; Laboratory Centre for Anthropology and Genomics of Toulouse, Université Paul Sabatier, Toulouse, France.
| | - D Maret
- Faculté de Chirurgie Dentaire, Université Paul Sabatier, Centre Hospitalier Universitaire, Toulouse, France; Laboratory Centre for Anthropology and Genomics of Toulouse, Université Paul Sabatier, Toulouse, France
| | - N Telmon
- Laboratory Centre for Anthropology and Genomics of Toulouse, Université Paul Sabatier, Toulouse, France; Service de Médecine Légale, Hôpital de Rangueil, Toulouse, France
| | - F Savall
- Laboratory Centre for Anthropology and Genomics of Toulouse, Université Paul Sabatier, Toulouse, France; Service de Médecine Légale, Hôpital de Rangueil, Toulouse, France
| |
Collapse
|
13
|
Redhead Y, Gibbins D, Lana-Elola E, Watson-Scales S, Dobson L, Krause M, Liu KJ, Fisher EMC, Green JBA, Tybulewicz VLJ. Craniofacial dysmorphology in Down syndrome is caused by increased dosage of Dyrk1a and at least three other genes. Development 2023; 150:dev201077. [PMID: 37102702 PMCID: PMC10163349 DOI: 10.1242/dev.201077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023]
Abstract
Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), occurs in 1 in 800 live births and is the most common human aneuploidy. DS results in multiple phenotypes, including craniofacial dysmorphology, which is characterised by midfacial hypoplasia, brachycephaly and micrognathia. The genetic and developmental causes of this are poorly understood. Using morphometric analysis of the Dp1Tyb mouse model of DS and an associated mouse genetic mapping panel, we demonstrate that four Hsa21-orthologous regions of mouse chromosome 16 contain dosage-sensitive genes that cause the DS craniofacial phenotype, and identify one of these causative genes as Dyrk1a. We show that the earliest and most severe defects in Dp1Tyb skulls are in bones of neural crest (NC) origin, and that mineralisation of the Dp1Tyb skull base synchondroses is aberrant. Furthermore, we show that increased dosage of Dyrk1a results in decreased NC cell proliferation and a decrease in size and cellularity of the NC-derived frontal bone primordia. Thus, DS craniofacial dysmorphology is caused by an increased dosage of Dyrk1a and at least three other genes.
Collapse
Affiliation(s)
- Yushi Redhead
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | | | | | | | - Lisa Dobson
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Karen J. Liu
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
| | | | - Jeremy B. A. Green
- Centre for Craniofacial Biology and Regenerative Biology, King's College London, London SE1 9RT, UK
| | | |
Collapse
|
14
|
Shui W, Profico A, O’Higgins P. A Comparison of Semilandmarking Approaches in the Analysis of Size and Shape. Animals (Basel) 2023; 13:ani13071179. [PMID: 37048435 PMCID: PMC10093231 DOI: 10.3390/ani13071179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Often, few landmarks can be reliably identified in analyses of form variation and covariation. Thus, ‘semilandmarking’ algorithms have increasingly been applied to surfaces and curves. However, the locations of semilandmarks depend on the investigator’s choice of algorithm and their density. In consequence, to the extent that different semilandmarking approaches and densities result in different locations of semilandmarks, they can be expected to yield different results concerning patterns of variation and co-variation. The extent of such differences due to methodology is, as yet, unclear and often ignored. In this study, the performance of three landmark-driven semilandmarking approaches is assessed, using two different surface mesh datasets (ape crania and human heads) with different degrees of variation and complexity, by comparing the results of morphometric analyses. These approaches produce different semilandmark locations, which, in turn, lead to differences in statistical results, although the non-rigid semilandmarking approaches are consistent. Morphometric analyses using semilandmarks must be interpreted with due caution, recognising that error is inevitable and that results are approximations. Further work is needed to investigate the effects of using different landmark and semilandmark templates and to understand the limitations and advantages of different semilandmarking approaches.
Collapse
Affiliation(s)
- Wuyang Shui
- Department of Archaeology, University of York, King’s Manor, York YO1 7EP, UK
- Correspondence:
| | - Antonio Profico
- Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Paul O’Higgins
- Department of Archaeology, University of York, King’s Manor, York YO1 7EP, UK
- Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
15
|
Liang Y, Song C, Li J, Li T, Zhang C, Zou Y. Morphometric analysis of the size-adjusted linear dimensions of the skull landmarks revealed craniofacial dysmorphology in Mid1-cKO mice. BMC Genomics 2023; 24:68. [PMID: 36759768 PMCID: PMC9912615 DOI: 10.1186/s12864-023-09162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The early craniofacial development is a highly coordinated process involving neural crest cell migration, proliferation, epithelial apoptosis, and epithelial-mesenchymal transition (EMT). Both genetic defects and environmental factors can affect these processes and result in orofacial clefts. Mutations in MID1 gene cause X-linked Opitz Syndrome (OS), which is a congenital malformation characterized by craniofacial defects including cleft lip/palate (CLP). Previous studies demonstrated impaired neurological structure and function in Mid1 knockout mice, while no CLP was observed. However, given the highly variable severities of the facial manifestations observed in OS patients within the same family carrying identical genetic defects, subtle craniofacial malformations in Mid1 knockout mice could be overlooked in these studies. Therefore, we propose that a detailed morphometric analysis should be necessary to reveal mild craniofacial dysmorphologies that reflect the similar developmental defects seen in OS patients. RESULTS In this research, morphometric study of the P0 male Mid1-cKO mice were performed using Procrustes superimposition as well as EMDA analysis of the size-adjusted three-dimensional coordinates of 105 skull landmarks, which were collected on the bone surface reconstructed using microcomputed tomographic images. Our results revealed the craniofacial deformation such as the increased dimension of the frontal and nasal bone in Mid1-cKO mice, in line with the most prominent facial features such as hypertelorism, prominent forehead, broad and/or high nasal bridge seen in OS patients. CONCLUSION While been extensively used in evolutionary biology and anthropology in the last decades, geometric morphometric analysis was much less used in developmental biology. Given the high interspecies variances in facial anatomy, the work presented in this research suggested the advantages of morphometric analysis in characterizing animal models of craniofacial developmental defects to reveal phenotypic variations and the underlining pathogenesis.
Collapse
Affiliation(s)
- Yaohui Liang
- grid.258164.c0000 0004 1790 3548The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Chao Song
- grid.258164.c0000 0004 1790 3548The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Jieli Li
- grid.258164.c0000 0004 1790 3548The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Ting Li
- grid.258164.c0000 0004 1790 3548The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Chunlei Zhang
- grid.258164.c0000 0004 1790 3548First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| | - Yi Zou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China. .,Department of Biology, School of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
16
|
Automated morphological phenotyping using learned shape descriptors and functional maps: A novel approach to geometric morphometrics. PLoS Comput Biol 2023; 19:e1009061. [PMID: 36656910 PMCID: PMC9970057 DOI: 10.1371/journal.pcbi.1009061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/27/2023] [Accepted: 11/13/2022] [Indexed: 01/20/2023] Open
Abstract
The methods of geometric morphometrics are commonly used to quantify morphology in a broad range of biological sciences. The application of these methods to large datasets is constrained by manual landmark placement limiting the number of landmarks and introducing observer bias. To move the field forward, we need to automate morphological phenotyping in ways that capture comprehensive representations of morphological variation with minimal observer bias. Here, we present Morphological Variation Quantifier (morphVQ), a shape analysis pipeline for quantifying, analyzing, and exploring shape variation in the functional domain. morphVQ uses descriptor learning to estimate the functional correspondence between whole triangular meshes in lieu of landmark configurations. With functional maps between pairs of specimens in a dataset we can analyze and explore shape variation. morphVQ uses Consistent ZoomOut refinement to improve these functional maps and produce a new representation of shape variation, area-based and conformal (angular) latent shape space differences (LSSDs). We compare this new representation of shape variation to shape variables obtained via manual digitization and auto3DGM, an existing approach to automated morphological phenotyping. We find that LSSDs compare favorably to modern 3DGM and auto3DGM while being more computationally efficient. By characterizing whole surfaces, our method incorporates more morphological detail in shape analysis. We can classify known biological groupings, such as Genus affiliation with comparable accuracy. The shape spaces produced by our method are similar to those produced by modern 3DGM and to auto3DGM, and distinctiveness functions derived from LSSDs show us how shape variation differs between groups. morphVQ can capture shape in an automated fashion while avoiding the limitations of manually digitized landmarks, and thus represents a novel and computationally efficient addition to the geometric morphometrics toolkit.
Collapse
|
17
|
Llambrich S, González-Colom R, Wouters J, Roldán J, Salassa S, Wouters K, Van Bulck V, Sharpe J, Callaerts-Vegh Z, Vande Velde G, Martínez-Abadías N. Green Tea Catechins Modulate Skeletal Development with Effects Dependent on Dose, Time, and Structure in a down Syndrome Mouse Model. Nutrients 2022; 14:nu14194167. [PMID: 36235819 PMCID: PMC9572077 DOI: 10.3390/nu14194167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Altered skeletal development in Down syndrome (DS) results in a brachycephalic skull, flattened face, shorter mandibular ramus, shorter limbs, and reduced bone mineral density (BMD). Our previous study showed that low doses of green tea extract enriched in epigallocatechin-3-gallate (GTE-EGCG), administered continuously from embryonic day 9 to postnatal day 29, reduced facial dysmorphologies in the Ts65Dn (TS) mouse model of DS, but high doses could exacerbate them. Here, we extended the analyses to other skeletal structures and systematically evaluated the effects of high and low doses of GTE-EGCG treatment over postnatal development in wild-type (WT) and TS mice using in vivo µCT and geometric morphometrics. TS mice developed shorter and wider faces, skulls, and mandibles, together with shorter and narrower humerus and scapula, and reduced BMD dynamically over time. Besides facial morphology, GTE-EGCG did not rescue any other skeletal phenotype in TS treated mice. In WT mice, GTE-EGCG significantly altered the shape of the skull and mandible, reduced the length and width of the long bones, and lowered the BMD. The disparate effects of GTE-EGCG depended on the dose, developmental timepoint, and anatomical structure analyzed, emphasizing the complex nature of DS and the need to further investigate the simultaneous effects of GTE-EGCG supplementation.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Rubèn González-Colom
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Jens Wouters
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Jorge Roldán
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sara Salassa
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Kaat Wouters
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Vicky Van Bulck
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - James Sharpe
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08003 Barcelona, Spain
- EMBL Barcelona, European Molecular Biology Laboratory, 08003 Barcelona, Spain
| | | | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
- Correspondence: (G.V.V.); (N.M.-A.); Tel.: +32-16330924 (G.V.V.); +34-934034564 (N.M.-A.)
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Correspondence: (G.V.V.); (N.M.-A.); Tel.: +32-16330924 (G.V.V.); +34-934034564 (N.M.-A.)
| |
Collapse
|
18
|
Mitteroecker P, Schaefer K. Thirty years of geometric morphometrics: Achievements, challenges, and the ongoing quest for biological meaningfulness. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178 Suppl 74:181-210. [PMID: 36790612 PMCID: PMC9545184 DOI: 10.1002/ajpa.24531] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 12/30/2022]
Abstract
The foundations of geometric morphometrics were worked out about 30 years ago and have continually been refined and extended. What has remained as a central thrust and source of debate in the morphometrics community is the shared goal of meaningful biological inference through a tight connection between biological theory, measurement, multivariate biostatistics, and geometry. Here we review the building blocks of modern geometric morphometrics: the representation of organismal geometry by landmarks and semilandmarks, the computation of shape or form variables via superimposition, the visualization of statistical results as actual shapes or forms, the decomposition of shape variation into symmetric and asymmetric components and into different spatial scales, the interpretation of various geometries in shape or form space, and models of the association between shape or form and other variables, such as environmental, genetic, or behavioral data. We focus on recent developments and current methodological challenges, especially those arising from the increasing number of landmarks and semilandmarks, and emphasize the importance of thorough exploratory multivariate analyses rather than single scalar summary statistics. We outline promising directions for further research and for the evaluation of new developments, such as "landmark-free" approaches. To illustrate these methods, we analyze three-dimensional human face shape based on data from the Avon Longitudinal Study of Parents and Children (ALSPAC).
Collapse
Affiliation(s)
- Philipp Mitteroecker
- Department of Evolutionary Biology, Unit for Theoretical BiologyUniversity of ViennaViennaAustria
| | - Katrin Schaefer
- Department of Evolutionary AnthropologyUniversity of ViennaViennaAustria
- Human Evolution and Archaeological Sciences (HEAS)University of ViennaViennaAustria
| |
Collapse
|
19
|
Devine J, Vidal-García M, Liu W, Neves A, Lo Vercio LD, Green RM, Richbourg HA, Marchini M, Unger CM, Nickle AC, Radford B, Young NM, Gonzalez PN, Schuler RE, Bugacov A, Rolian C, Percival CJ, Williams T, Niswander L, Calof AL, Lander AD, Visel A, Jirik FR, Cheverud JM, Klein OD, Birnbaum RY, Merrill AE, Ackermann RR, Graf D, Hemberger M, Dean W, Forkert ND, Murray SA, Westerberg H, Marcucio RS, Hallgrímsson B. MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses. Sci Data 2022; 9:230. [PMID: 35614082 PMCID: PMC9133120 DOI: 10.1038/s41597-022-01338-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022] Open
Abstract
Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase ( www.facebase.org , https://doi.org/10.25550/3-HXMC ) and GitHub ( https://github.com/jaydevine/MusMorph ).
Collapse
Affiliation(s)
- Jay Devine
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Marta Vidal-García
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Wei Liu
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Amanda Neves
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Lucas D Lo Vercio
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Rebecca M Green
- School of Dental Medicine, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA, 15213, USA
| | - Heather A Richbourg
- Orthopaedic Trauma Institute, ZSFG, UCSF, 2550 23rd St, San Francisco, CA, 94110, USA
| | - Marta Marchini
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Colton M Unger
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada
| | - Audrey C Nickle
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, 2250 Alcazar St, Los Angeles, CA, 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, 1975 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Bethany Radford
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Nathan M Young
- Orthopaedic Trauma Institute, ZSFG, UCSF, 2550 23rd St, San Francisco, CA, 94110, USA
| | - Paula N Gonzalez
- Institute for Studies in Neuroscience and Complex Systems (ENyS) CONICET, Av. Calchaquí, 5402, Florencio Varela, Buenos Aires, Argentina
| | - Robert E Schuler
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA, 90292, USA
| | - Alejandro Bugacov
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA, 90292, USA
| | - Campbell Rolian
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Christopher J Percival
- Department of Anthropology, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave, Aurora, CO, 80045, USA
| | - Lee Niswander
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Anne L Calof
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
| | - Arthur D Lander
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, 5200 Lake Rd, Merced, CA, 95343, USA
| | - Frank R Jirik
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - James M Cheverud
- Department of Biology, Loyola University Chicago, 1032 W Sheridan Rd, Chicago, IL, 60660, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA
- Department of Pediatrics, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Ramon Y Birnbaum
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, David Ben Gurion Blvd 1, Be'er Sheva, Israel
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, 2250 Alcazar St, Los Angeles, CA, 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, 1975 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Rebecca R Ackermann
- Department of Archaeology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave, Edmonton, AB, T6G 2R3, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Myriam Hemberger
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Wendy Dean
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Nils D Forkert
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | | | - Henrik Westerberg
- Department of Bioimaging Informatics, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Ralph S Marcucio
- Orthopaedic Trauma Institute, ZSFG, UCSF, 2550 23rd St, San Francisco, CA, 94110, USA
| | - Benedikt Hallgrímsson
- Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada.
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
20
|
Diamond KM, Rolfe SM, Kwon RY, Maga AM. Computational anatomy and geometric shape analysis enables analysis of complex craniofacial phenotypes in zebrafish. Biol Open 2022; 11:bio058948. [PMID: 35072203 PMCID: PMC8864294 DOI: 10.1242/bio.058948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Due to the complexity of fish skulls, previous attempts to classify craniofacial phenotypes have relied on qualitative features or sparce 2D landmarks. In this work we aim to identify previously unknown 3D craniofacial phenotypes with a semiautomated pipeline in adult zebrafish mutants. We first estimate a synthetic 'normative' zebrafish template using MicroCT scans from a sample pool of wild-type animals using the Advanced Normalization Tools (ANTs). We apply a computational anatomy (CA) approach to quantify the phenotype of zebrafish with disruptions in bmp1a, a gene implicated in later skeletal development and whose human ortholog when disrupted is associated with Osteogenesis Imperfecta. Compared to controls, the bmp1a fish have larger otoliths, larger normalized centroid sizes, and exhibit shape differences concentrated around the operculum, anterior frontal, and posterior parietal bones. Moreover, bmp1a fish differ in the degree of asymmetry. Our CA approach offers a potential pipeline for high-throughput screening of complex fish craniofacial shape to discover novel phenotypes for which traditional landmarks are too sparce to detect. The current pipeline successfully identifies areas of variation in zebrafish mutants, which are an important model system for testing genome to phenome relationships in the study of development, evolution, and human diseases. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kelly M. Diamond
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sara M. Rolfe
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Friday Harbor Marine Laboratories, University of Washington, San Juan, WA 98250, USA
| | - Ronald Y. Kwon
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - A. Murat Maga
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
21
|
Klatzow J, Dalmasso G, Martínez-Abadías N, Sharpe J, Uhlmann V. μMatch: 3D Shape Correspondence for Biological Image Data. FRONTIERS IN COMPUTER SCIENCE 2022. [DOI: 10.3389/fcomp.2022.777615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Modern microscopy technologies allow imaging biological objects in 3D over a wide range of spatial and temporal scales, opening the way for a quantitative assessment of morphology. However, establishing a correspondence between objects to be compared, a first necessary step of most shape analysis workflows, remains challenging for soft-tissue objects without striking features allowing them to be landmarked. To address this issue, we introduce the μMatch 3D shape correspondence pipeline. μMatch implements a state-of-the-art correspondence algorithm initially developed for computer graphics and packages it in a streamlined pipeline including tools to carry out all steps from input data pre-processing to classical shape analysis routines. Importantly, μMatch does not require any landmarks on the object surface and establishes correspondence in a fully automated manner. Our open-source method is implemented in Python and can be used to process collections of objects described as triangular meshes. We quantitatively assess the validity of μMatch relying on a well-known benchmark dataset and further demonstrate its reliability by reproducing published results previously obtained through manual landmarking.
Collapse
|
22
|
Chern T, Achilleos A, Tong X, Hill MC, Saltzman AB, Reineke LC, Chaudhury A, Dasgupta SK, Redhead Y, Watkins D, Neilson JR, Thiagarajan P, Green JBA, Malovannaya A, Martin JF, Rosenblatt DS, Poché RA. Mutations in Hcfc1 and Ronin result in an inborn error of cobalamin metabolism and ribosomopathy. Nat Commun 2022; 13:134. [PMID: 35013307 PMCID: PMC8748873 DOI: 10.1038/s41467-021-27759-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Combined methylmalonic acidemia and homocystinuria (cblC) is the most common inborn error of intracellular cobalamin metabolism and due to mutations in Methylmalonic Aciduria type C and Homocystinuria (MMACHC). Recently, mutations in the transcriptional regulators HCFC1 and RONIN (THAP11) were shown to result in cellular phenocopies of cblC. Since HCFC1/RONIN jointly regulate MMACHC, patients with mutations in these factors suffer from reduced MMACHC expression and exhibit a cblC-like disease. However, additional de-regulated genes and the resulting pathophysiology is unknown. Therefore, we have generated mouse models of this disease. In addition to exhibiting loss of Mmachc, metabolic perturbations, and developmental defects previously observed in cblC, we uncovered reduced expression of target genes that encode ribosome protein subunits. We also identified specific phenotypes that we ascribe to deregulation of ribosome biogenesis impacting normal translation during development. These findings identify HCFC1/RONIN as transcriptional regulators of ribosome biogenesis during development and their mutation results in complex syndromes exhibiting aspects of both cblC and ribosomopathies. Combined methylmalonic acidemia (MMA) and hyperhomocysteinemias are inborn errors of vitamin B12 metabolism, and mutations in the transcriptional regulators HCFC1 and RONIN (THAP11) underlie some forms of these disorders. Here the authors generated mouse models of a human syndrome due to mutations in RONIN (THAP11) and HCFC1, and show that this syndrome is both an inborn error of vitamin B12 metabolism and displays some features of ribosomopathy.
Collapse
Affiliation(s)
- Tiffany Chern
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Annita Achilleos
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus.
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew C Hill
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alexander B Saltzman
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lucas C Reineke
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arindam Chaudhury
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Swapan K Dasgupta
- Department of Pathology, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA
| | - Yushi Redhead
- The Francis Crick Institute, London, NW1 1AT, UK.,Centre for Craniofacial Biology and Regeneration, King's College London, London, SE1 9RT, UK
| | - David Watkins
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada.,Division of Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Perumal Thiagarajan
- Department of Pathology, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeremy B A Green
- Centre for Craniofacial Biology and Regeneration, King's College London, London, SE1 9RT, UK
| | - Anna Malovannaya
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Heart Institute, Houston, TX, 77030, USA
| | - David S Rosenblatt
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada.,Division of Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Lana-Elola E, Cater H, Watson-Scales S, Greenaway S, Müller-Winkler J, Gibbins D, Nemes M, Slender A, Hough T, Keskivali-Bond P, Scudamore CL, Herbert E, Banks GT, Mobbs H, Canonica T, Tosh J, Noy S, Llorian M, Nolan PM, Griffin JL, Good M, Simon M, Mallon AM, Wells S, Fisher EMC, Tybulewicz VLJ. Comprehensive phenotypic analysis of the Dp1Tyb mouse strain reveals a broad range of Down syndrome-related phenotypes. Dis Model Mech 2021; 14:dmm049157. [PMID: 34477842 PMCID: PMC8543064 DOI: 10.1242/dmm.049157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
Down syndrome (DS), trisomy 21, results in many complex phenotypes including cognitive deficits, heart defects and craniofacial alterations. Phenotypes arise from an extra copy of human chromosome 21 (Hsa21) genes. However, these dosage-sensitive causative genes remain unknown. Animal models enable identification of genes and pathological mechanisms. The Dp1Tyb mouse model of DS has an extra copy of 63% of Hsa21-orthologous mouse genes. In order to establish whether this model recapitulates DS phenotypes, we comprehensively phenotyped Dp1Tyb mice using 28 tests of different physiological systems and found that 468 out of 1800 parameters were significantly altered. We show that Dp1Tyb mice have wide-ranging DS-like phenotypes, including aberrant erythropoiesis and megakaryopoiesis, reduced bone density, craniofacial changes, altered cardiac function, a pre-diabetic state, and deficits in memory, locomotion, hearing and sleep. Thus, Dp1Tyb mice are an excellent model for investigating complex DS phenotype-genotype relationships for this common disorder.
Collapse
Affiliation(s)
| | - Heather Cater
- MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | | | | | | | | | | | - Amy Slender
- The Francis Crick Institute, London NW1 1AT, UK
| | - Tertius Hough
- MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | | | | | | | | | - Helene Mobbs
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QW, UK
| | - Tara Canonica
- School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | - Justin Tosh
- The Francis Crick Institute, London NW1 1AT, UK
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Suzanna Noy
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | | | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1QW, UK
- Imperial College Dementia Research Institute, Imperial College London, London W12 7TA, UK
| | - Mark Good
- School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | - Michelle Simon
- MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | | | - Sara Wells
- MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | | | - Victor L. J. Tybulewicz
- The Francis Crick Institute, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| |
Collapse
|
24
|
White HE, Goswami A, Tucker AS. The Intertwined Evolution and Development of Sutures and Cranial Morphology. Front Cell Dev Biol 2021; 9:653579. [PMID: 33842480 PMCID: PMC8033035 DOI: 10.3389/fcell.2021.653579] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Phenotypic variation across mammals is extensive and reflects their ecological diversification into a remarkable range of habitats on every continent and in every ocean. The skull performs many functions to enable each species to thrive within its unique ecological niche, from prey acquisition, feeding, sensory capture (supporting vision and hearing) to brain protection. Diversity of skull function is reflected by its complex and highly variable morphology. Cranial morphology can be quantified using geometric morphometric techniques to offer invaluable insights into evolutionary patterns, ecomorphology, development, taxonomy, and phylogenetics. Therefore, the skull is one of the best suited skeletal elements for developmental and evolutionary analyses. In contrast, less attention is dedicated to the fibrous sutural joints separating the cranial bones. Throughout postnatal craniofacial development, sutures function as sites of bone growth, accommodating expansion of a growing brain. As growth frontiers, cranial sutures are actively responsible for the size and shape of the cranial bones, with overall skull shape being altered by changes to both the level and time period of activity of a given cranial suture. In keeping with this, pathological premature closure of sutures postnatally causes profound misshaping of the skull (craniosynostosis). Beyond this crucial role, sutures also function postnatally to provide locomotive shock absorption, allow joint mobility during feeding, and, in later postnatal stages, suture fusion acts to protect the developed brain. All these sutural functions have a clear impact on overall cranial function, development and morphology, and highlight the importance that patterns of suture development have in shaping the diversity of cranial morphology across taxa. Here we focus on the mammalian cranial system and review the intrinsic relationship between suture development and morphology and cranial shape from an evolutionary developmental biology perspective, with a view to understanding the influence of sutures on evolutionary diversity. Future work integrating suture development into a comparative evolutionary framework will be instrumental to understanding how developmental mechanisms shaping sutures ultimately influence evolutionary diversity.
Collapse
Affiliation(s)
- Heather E White
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom.,Division of Biosciences, University College London, London, United Kingdom
| | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Division of Biosciences, University College London, London, United Kingdom
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|