1
|
Greulich P. Emergent order in epithelial sheets by interplay of cell divisions and cell fate regulation. PLoS Comput Biol 2024; 20:e1012465. [PMID: 39401252 PMCID: PMC11501039 DOI: 10.1371/journal.pcbi.1012465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024] Open
Abstract
The fate choices of stem cells between self-renewal and differentiation are often tightly regulated by juxtacrine (cell-cell contact) signalling. Here, we assess how the interplay between cell division, cell fate choices, and juxtacrine signalling can affect the macroscopic ordering of cell types in self-renewing epithelial sheets, by studying a simple spatial cell fate model with cells being arranged on a 2D lattice. We show in this model that if cells commit to their fate directly upon cell division, macroscopic patches of cells of the same type emerge, if at least a small proportion of divisions are symmetric, except if signalling interactions are laterally inhibiting. In contrast, if cells are first 'licensed' to differentiate, yet retaining the possibility to return to their naive state, macroscopic order only emerges if the signalling strength exceeds a critical threshold: if then the signalling interactions are laterally inducing, macroscopic patches emerge as well. Lateral inhibition, on the other hand, can in that case generate periodic patterns of alternating cell types (checkerboard pattern), yet only if the proportion of symmetric divisions is sufficiently low. These results can be understood theoretically by an analogy to phase transitions in spin systems known from statistical physics.
Collapse
Affiliation(s)
- Philip Greulich
- School of Mathematical Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
Mukhamadiarov RI, Ciarchi M, Olmeda F, Rulands S. Clonal dynamics of surface-driven growing tissues. Phys Rev E 2024; 109:064407. [PMID: 39021023 DOI: 10.1103/physreve.109.064407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
The self-organization of cells into complex tissues relies on a tight coordination of cell behavior. Identifying the cellular processes driving tissue growth is key to understanding the emergence of tissue forms and devising targeted therapies for aberrant growth, such as in cancer. Inferring the mode of tissue growth, whether it is driven by cells on the surface or by cells in the bulk, is possible in cell culture experiments but difficult in most tissues in living organisms (in vivo). Genetic tracing experiments, where a subset of cells is labeled with inheritable markers, have become important experimental tools to study cell fate in vivo. Here we show that the mode of tissue growth is reflected in the size distribution of the progeny of marked cells. To this end, we derive the clone size distributions using analytical calculations in the limit of negligible cell migration and cell death, and we test our predictions with an agent-based stochastic sampling technique. We show that for surface-driven growth the clone size distribution takes a characteristic power-law form with an exponent determined by fluctuations of the tissue surface. Our results propose a possible way of determining the mode of tissue growth from genetic tracing experiments.
Collapse
|
3
|
Parigini C, Greulich P. Homeostatic regulation of renewing tissue cell populations via crowding control: stability, robustness and quasi-dedifferentiation. J Math Biol 2024; 88:47. [PMID: 38520536 PMCID: PMC10960778 DOI: 10.1007/s00285-024-02057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/25/2024]
Abstract
To maintain renewing epithelial tissues in a healthy, homeostatic state, cell divisions and differentiation need to be tightly regulated. Mechanisms of homeostatic regulation often rely on crowding feedback control: cells are able to sense the cell density in their environment, via various molecular and mechanosensing pathways, and respond by adjusting division, differentiation, and cell state transitions appropriately. Here, we determine, via a mathematically rigorous framework, which general conditions for the crowding feedback regulation (i) must be minimally met, and (ii) are sufficient, to allow the maintenance of homeostasis in renewing tissues. We show that those conditions naturally allow for a degree of robustness toward disruption of regulation. Furthermore, intrinsic to this feedback regulation is that stem cell identity is established collectively by the cell population, not by individual cells, which implies the possibility of 'quasi-dedifferentiation', in which cells committed to differentiation may reacquire stem cell properties upon depletion of the stem cell pool. These findings can guide future experimental campaigns to identify specific crowding feedback mechanisms.
Collapse
Affiliation(s)
- Cristina Parigini
- School of Mathematical Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Te Pūnaha Ātea - Space Institute, University of Auckland, Auckland, New Zealand
| | - Philip Greulich
- School of Mathematical Sciences, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
4
|
Derks LLM, van Boxtel R. Stem cell mutations, associated cancer risk, and consequences for regenerative medicine. Cell Stem Cell 2023; 30:1421-1433. [PMID: 37832550 PMCID: PMC10624213 DOI: 10.1016/j.stem.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Mutation accumulation in stem cells has been associated with cancer risk. However, the presence of numerous mutant clones in healthy tissues has raised the question of what limits cancer initiation. Here, we review recent developments in characterizing mutation accumulation in healthy tissues and compare mutation rates in stem cells during development and adult life with corresponding cancer risk. A certain level of mutagenesis within the stem cell pool might be beneficial to limit the size of malignant clones through competition. This knowledge impacts our understanding of carcinogenesis with potential consequences for the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Lucca L M Derks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
5
|
Barry-Carroll L, Greulich P, Marshall AR, Riecken K, Fehse B, Askew KE, Li K, Garaschuk O, Menassa DA, Gomez-Nicola D. Microglia colonize the developing brain by clonal expansion of highly proliferative progenitors, following allometric scaling. Cell Rep 2023; 42:112425. [PMID: 37099424 DOI: 10.1016/j.celrep.2023.112425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/25/2023] [Accepted: 04/06/2023] [Indexed: 04/27/2023] Open
Abstract
Microglia arise from the yolk sac and enter the brain during early embryogenesis. Upon entry, microglia undergo in situ proliferation and eventually colonize the entire brain by the third postnatal week in mice. However, the intricacies of their developmental expansion remain unclear. Here, we characterize the proliferative dynamics of microglia during embryonic and postnatal development using complementary fate-mapping techniques. We demonstrate that the developmental colonization of the brain is facilitated by clonal expansion of highly proliferative microglial progenitors that occupy spatial niches throughout the brain. Moreover, the spatial distribution of microglia switches from a clustered to a random pattern between embryonic and late postnatal development. Interestingly, the developmental increase in microglial numbers follows the proportional growth of the brain in an allometric manner until a mosaic distribution has been established. Overall, our findings offer insight into how the competition for space may drive microglial colonization by clonal expansion during development.
Collapse
Affiliation(s)
- Liam Barry-Carroll
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Philip Greulich
- School of Mathematical Sciences, University of Southampton, Southampton, UK; Institute for Life Sciences (IfLS), University of Southampton, Southampton, UK
| | - Abigail R Marshall
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharine E Askew
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Kaizhen Li
- Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - David A Menassa
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK; The Queen's College, University of Oxford, Oxford, UK
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK; Institute for Life Sciences (IfLS), University of Southampton, Southampton, UK.
| |
Collapse
|
6
|
François P. New wave theory. Development 2023; 150:287679. [PMID: 36815628 DOI: 10.1242/dev.201647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Paul François
- Department of Biochemistry, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
7
|
MacArthur BD. Stem cell biology needs a theory. Stem Cell Reports 2023; 18:3-5. [PMID: 36630903 PMCID: PMC9860055 DOI: 10.1016/j.stemcr.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 01/12/2023] Open
Abstract
Stem cell biologists are increasingly making use of computational models to decipher their data. However, there is sometimes uncertainty about what makes a "good" model. The purpose of this commentary is to argue for closer integration of experiment and theory in stem cell research and propose guidelines for good theory.
Collapse
Affiliation(s)
- Ben D MacArthur
- Alan Turing Institute, London, UK; Mathematical Sciences, University of Southampton, Southampton, UK; Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
8
|
Dang Y, Rulands S. Making sense of fragmentation and merging in lineage tracing experiments. Front Cell Dev Biol 2022; 10:1054476. [PMID: 36589749 PMCID: PMC9794873 DOI: 10.3389/fcell.2022.1054476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Lineage tracing experiments give dynamic information on the functional behaviour of dividing cells. These experiments therefore have become an important tool for studying stem and progenitor cell fate behavior in vivo. When cell proliferation is high or the frequency of induced clones cannot be precisely controlled, the merging and fragmentation of clones renders the retrospective interpretation of clonal fate data highly ambiguous, potentially leading to unguarded interpretations about lineage relationships and fate behaviour. Here, we discuss and generalize statistical strategies to detect, resolve and make use of clonal fragmentation and merging. We first explain how to detect the rates of clonal fragmentation and merging using simple statistical estimates. We then discuss ways to restore the clonal provenance of labelled cells algorithmically and statistically and elaborate on how the process of clonal fragmentation can indirectly inform about cell fate. We generalize and extend results from the context of their original publication.
Collapse
Affiliation(s)
- Yiteng Dang
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Max-Planck-Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Steffen Rulands
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
9
|
Nakamuta A, Yoshido K, Naoki H. Stem cell homeostasis regulated by hierarchy and neutral competition. Commun Biol 2022; 5:1268. [PMID: 36400843 PMCID: PMC9674595 DOI: 10.1038/s42003-022-04218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Tissue stem cells maintain themselves through self-renewal while constantly supplying differentiating cells. Two distinct models have been proposed as mechanisms of stem cell homeostasis. According to the classical model, there is hierarchy among stem cells, and master stem cells produce stem cells by asymmetric division; whereas, according to the recent model, stem cells are equipotent and neutrally compete. However, the mechanism remains controversial in several tissues and species. Here, we developed a mathematical model linking the two models, named the hierarchical neutral competition (hNC) model. Our theoretical analysis showed that the combination of the hierarchy and neutral competition exhibited bursts in clonal expansion, which was consistent with experimental data of rhesus macaque hematopoiesis. Furthermore, the scaling law in clone size distribution, considered a unique characteristic of the recent model, was satisfied even in the hNC model. Based on the findings above, we proposed the criterion for distinguishing the three models based on experiments.
Collapse
Affiliation(s)
- Asahi Nakamuta
- grid.258799.80000 0004 0372 2033Laboratory of Theoretical Biology, Graduate School of Biostudies, Kyoto University, Yoshidakonoecho, Sakyo, Kyoto, 606-8315 Japan ,grid.258799.80000 0004 0372 2033Faculty of Science, Kyoto University, Yoshidakonoecho, Sakyo, Kyoto, 606-8315 Japan
| | - Kana Yoshido
- grid.258799.80000 0004 0372 2033Laboratory of Theoretical Biology, Graduate School of Biostudies, Kyoto University, Yoshidakonoecho, Sakyo, Kyoto, 606-8315 Japan
| | - Honda Naoki
- grid.258799.80000 0004 0372 2033Laboratory of Theoretical Biology, Graduate School of Biostudies, Kyoto University, Yoshidakonoecho, Sakyo, Kyoto, 606-8315 Japan ,grid.257022.00000 0000 8711 3200Laboratory of Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526 Japan ,grid.257022.00000 0000 8711 3200Kansei-Brain Informatics Group, Center for Brain, Mind and Kansei Sciences Research (BMK Center), Hiroshima University, Kasumi, Minami-ku, Hiroshima, 734-8551 Japan ,grid.250358.90000 0000 9137 6732Theoretical Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787 Japan
| |
Collapse
|
10
|
Abstract
A fundamental challenge when studying biological systems is the description of cell state dynamics. During transitions between cell states, a multitude of parameters may change - from the promoters that are active, to the RNAs and proteins that are expressed and modified. Cells can also adopt different shapes, alter their motility and change their reliance on cell-cell junctions or adhesion. These parameters are integral to how a cell behaves and collectively define the state a cell is in. Yet, technical challenges prevent us from measuring all of these parameters simultaneously and dynamically. How, then, can we comprehend cell state transitions using finite descriptions? The recent virtual workshop organised by The Company of Biologists entitled 'Cell State Transitions: Approaches, Experimental Systems and Models' attempted to address this question. Here, we summarise some of the main points that emerged during the workshop's themed discussions. We also present examples of cell state transitions and describe models and systems that are pushing forward our understanding of how cells rewire their state.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Agathe Chaigne
- MRC, LMCB, University College London, Gower Street, London WC1E 6BT, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Kevin J Chalut
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
11
|
The people behind the papers – Philip Greulich. Development 2021. [DOI: 10.1242/dev.199729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To maintain continually renewing tissues, adult stem cells must be able to both self-renew and differentiate, and thus sit at base of homeostatic lineage hierarchies. A new paper in Development investigates the general principles regulating such lineage architectures from a theoretical perspective. To find out more about the work, we caught up with the paper's first and corresponding author Philip Greulich, Lecturer in Applied Mathematics and Theoretical Physics at the University of Southampton in the UK.
Collapse
|