1
|
Maillard L, Bensidoun P, Lagha M. Reshaping transcription and translation dynamics during the awakening of the zygotic genome. Curr Opin Genet Dev 2025; 92:102344. [PMID: 40188779 DOI: 10.1016/j.gde.2025.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 05/13/2025]
Abstract
During the oocyte-to-embryo transition, the transcriptome and proteome are dramatically reshaped. This transition entails a shift from maternally inherited mRNAs to newly synthesized transcripts, produced during the zygotic genome activation (ZGA). Furthermore, a crucial transcription and translation selectivity is required for early embryonic development. Studies across various model organisms have revealed conserved cis- and trans-regulatory mechanisms dictating the regimes by which mRNA and proteins are produced during this critical phase. In this article, we highlight recent technological and conceptual advances that deepen our understanding of how the tuning of both transcription and translation evolves during ZGA.
Collapse
Affiliation(s)
- Louise Maillard
- Institut de Génétique de Montpellier, CNRS UMR5535, Univ Montpellier, Montpellier, France
| | - Pierre Bensidoun
- Institut de Génétique de Montpellier, CNRS UMR5535, Univ Montpellier, Montpellier, France
| | - Mounia Lagha
- Institut de Génétique de Montpellier, CNRS UMR5535, Univ Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Pizzey A, Sutcliffe C, Love JC, Akabuogu E, Rattray M, Ashe MP, Ashe HL. Exploiting the SunTag system to study the developmental regulation of mRNA translation. J Cell Sci 2025; 138:jcs263457. [PMID: 39989130 DOI: 10.1242/jcs.263457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The ability to quantitatively study mRNA translation using SunTag imaging is transforming our understanding of the translation process. Here, we expand the SunTag method to study new aspects of translation regulation in Drosophila. Repression of the maternal hunchback (hb) mRNA in the posterior of the Drosophila embryo is a textbook example of translational control. Using SunTag imaging to quantify translation of maternal SunTag-hb mRNAs, we show that repression in the posterior is leaky, as ∼5% of SunTag-hb mRNAs are translated. In the anterior of the embryo, the maternal and zygotic SunTag-hb mRNAs show similar translation efficiency despite having different untranslated regions (UTRs). We demonstrate that the SunTag-hb mRNA can be used as a reporter to study ribosome pausing at single-mRNA resolution, by exploiting the conserved xbp1 mRNA and A60 pausing sequences. Finally, we adapt the detector component of the SunTag system to visualise and quantify translation of the short gastrulation (sog) mRNA, encoding an essential secreted extracellular BMP regulator, at the endoplasmic reticulum in fixed and live embryos. Together, these tools will facilitate the future dissection of translation regulatory mechanisms during development.
Collapse
Affiliation(s)
- Alastair Pizzey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Catherine Sutcliffe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jennifer C Love
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Emmanuel Akabuogu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Mark P Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
4
|
Sears RM, Nowling NL, Yarbro J, Zhao N. Expanding the tagging toolbox for visualizing translation live. Biochem J 2025; 482:BCJ20240183. [PMID: 39889305 DOI: 10.1042/bcj20240183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/02/2025]
Abstract
Translation is a highly regulated process that includes three steps: initiation, elongation, and termination. Tremendous efforts have been spent to study the regulation of each translation step. In the last two decades, researchers have begun to investigate translation by tracking it in its native and live intracellular environment with high spatiotemporal resolution. To achieve this goal, a handful of tagging tools have been developed that can distinguish nascent chains from previously synthesized mature proteins. In this review, we will focus on these tagging tools and describe their development, working mechanisms, and advantages and drawbacks in tracking translation in live mammalian cells and organisms. In the second part of the review, we will summarize novel discoveries in translation by a recently developed nascent polypeptide tracking technology using tandem epitope tag array tagging tools. The superior spatiotemporal resolution of this technology enables us to directly and continuously track nascent chains live and thus reveal preferred translation location and timing, as well as the kinetics of canonical and noncanonical translation, translation bursts, ribosome quality control, and nonsense-mediated mRNA decay. In the future, we expect more tagging tools to be developed that allow us to track other regulation processes of a protein, such as folding, modifications, and degradation. With the expanding tagging toolbox, there is potential that we can track a protein from translation to degradation to fully understand its regulation in a native live cell environment.
Collapse
Affiliation(s)
- Rhiannon M Sears
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Nathan L Nowling
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Jake Yarbro
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Ning Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| |
Collapse
|
5
|
Bensidoun P, Verbrugghe M, Lagha M. Imaging Translation in Early Embryo Development. Methods Mol Biol 2025; 2923:215-229. [PMID: 40418452 DOI: 10.1007/978-1-0716-4522-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
The ultimate output of gene expression is to ensure that proteins are synthesized at the right levels, locations, and timings. Recently different imaging-based methods have been developed to visualize the translation of single mRNA molecules. These methods rely on signal amplification with the introduction of an array of a short peptide sequence (a tag such as SunTag), recognized by a genetically encodable single-chain antibody (a detector such as scFv). In this chapter, we discuss such methods to image and quantify translation dynamics in the early Drosophila embryo and provide examples based on a twist-32XSunTag reporter. We outline a step-by-step protocol to light-up translation in living embryos. We also detail a combinatorial strategy in fixed samples (smFISH-IF), allowing to distinguish single mRNA molecules engaged in translation.
Collapse
Affiliation(s)
- Pierre Bensidoun
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Morgane Verbrugghe
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, University of Montpellier, Montpellier, France.
| |
Collapse
|
6
|
Forbes Beadle L, Sutcliffe C, Ashe HL. A simple MiMIC-based approach for tagging endogenous genes to visualise live transcription in Drosophila. Development 2024; 151:dev204294. [PMID: 39584418 DOI: 10.1242/dev.204294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Live imaging of transcription in the Drosophila embryo using the MS2 or PP7 systems is transforming our understanding of transcriptional regulation. However, insertion of MS2/PP7 stem-loops into endogenous genes requires laborious CRISPR genome editing. Here, we exploit the previously described Minos-mediated integration cassette (MiMIC) transposon system in Drosophila to establish a method for simply and rapidly inserting MS2/PP7 cassettes into any of the thousands of genes carrying a MiMIC insertion. In addition to generating a variety of stem-loop donor fly stocks, we have made new stocks expressing the complementary coat proteins fused to different fluorescent proteins. We show the utility of this MiMIC-based approach by MS2/PP7 tagging of endogenous genes and the long non-coding RNA roX1, then imaging their transcription in living embryos. We also present live transcription data from larval brains, the wing disc and ovary, thereby extending the tissues that can be studied using the MS2/PP7 system. Overall, this first high-throughput method for tagging mRNAs in Drosophila will facilitate the study of transcription dynamics of thousands of endogenous genes in a range of Drosophila tissues.
Collapse
Affiliation(s)
- Lauren Forbes Beadle
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Catherine Sutcliffe
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
7
|
Fenelon KD, Borad P, Rout B, Malidarreh PB, Nasr MS, Luber JM, Koromila T. Su(H) Modulates Enhancer Transcriptional Bursting in Prelude to Gastrulation. Cells 2024; 13:1759. [PMID: 39513866 PMCID: PMC11545809 DOI: 10.3390/cells13211759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Transcriptional regulation, orchestrated by the interplay between transcription factors (TFs) and enhancers, governs gene expression dynamics crucial for cellular processes. While gross qualitative fluctuations in transcription factor-dependent gene expression patterning have a long history of characterization, the roles of these factors in the nuclei retaining expression in the presence or absence of these factors are now observable using modern techniques. Our study investigates the impact of Suppressor of Hairless (Su(H)), a broadly expressed transcription factor, on enhancer-driven transcriptional modulation using Drosophila early embryos as a model system. Building upon previous findings, we employ super-resolution microscopy to dissect Su(H)'s influence on sog-Distal (sogD) enhancer activity specifically in nuclei with preserved sogD-driven expression in the absence of Su(H) binding. We demonstrate that Su(H) occupancy perturbations alter expression levels and bursting dynamics. Notably, Su(H) absence during embryonic development exhibits region-specific effects, inhibiting expression dorsally and stabilizing expression ventrally, implying a nuanced role in enhancer regulation. Our findings shed light on the intricate mechanisms that govern transcriptional dynamics and suggest a critical patterning role for Notch/Hairless signaling in sog expression as embryos transition to gastrulation.
Collapse
Affiliation(s)
- Kelli D. Fenelon
- Department of Biology, University of Texas at Arlington, Arlington, TX 76010, USA; (K.D.F.); (P.B.)
| | - Priyanshi Borad
- Department of Biology, University of Texas at Arlington, Arlington, TX 76010, USA; (K.D.F.); (P.B.)
| | - Biraaj Rout
- Department of Computer Science, University of Texas at Arlington, Arlington, TX 76010, USA; (B.R.); (P.B.M.); (J.M.L.)
| | - Parisa Boodaghi Malidarreh
- Department of Computer Science, University of Texas at Arlington, Arlington, TX 76010, USA; (B.R.); (P.B.M.); (J.M.L.)
| | - Mohammad Sadegh Nasr
- Department of Computer Science, University of Texas at Arlington, Arlington, TX 76010, USA; (B.R.); (P.B.M.); (J.M.L.)
| | - Jacob M. Luber
- Department of Computer Science, University of Texas at Arlington, Arlington, TX 76010, USA; (B.R.); (P.B.M.); (J.M.L.)
- Multi-Interprofessional Center for Health Informatics, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Theodora Koromila
- Department of Biology, University of Texas at Arlington, Arlington, TX 76010, USA; (K.D.F.); (P.B.)
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
8
|
Bellec M, Chen R, Dhayni J, Trullo A, Avinens D, Karaki H, Mazzarda F, Lenden-Hasse H, Favard C, Lehmann R, Bertrand E, Lagha M, Dufourt J. Boosting the toolbox for live imaging of translation. RNA (NEW YORK, N.Y.) 2024; 30:1374-1394. [PMID: 39060168 PMCID: PMC11404453 DOI: 10.1261/rna.080140.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
Live imaging of translation based on tag recognition by a single-chain antibody is a powerful technique to assess translation regulation in living cells. However, this approach is challenging and requires optimization in terms of expression level and detection sensitivity of the system, especially in a multicellular organism. Here, we improved existing fluorescent tools and developed new ones to image and quantify nascent translation in the living Drosophila embryo and in mammalian cells. We tested and characterized five different green fluorescent protein variants fused to the single-chain fragment variable (scFv) and uncovered photobleaching, aggregation, and intensity disparities. Using different strengths of germline and somatic drivers, we determined that the availability of the scFv is critical in order to detect translation throughout development. We introduced a new translation imaging method based on a nanobody/tag system named ALFA-array, allowing the sensitive and simultaneous detection of the translation of several distinct mRNA species. Finally, we developed a largely improved RNA imaging system based on an MCP-tdStaygold fusion.
Collapse
Affiliation(s)
- Maëlle Bellec
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Ruoyu Chen
- Vilcek Institute of Graduate Studies, NYU School of Medicine, New York 10016, USA
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jana Dhayni
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Antonello Trullo
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
| | - Damien Avinens
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, 34293 Cedex 5, France
| | - Hussein Karaki
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Flavia Mazzarda
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Helene Lenden-Hasse
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
| | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, 34293 Cedex 5, France
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Edouard Bertrand
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, 34293 Cedex 5, France
| |
Collapse
|
9
|
Dufourt J, Bellec M. Shedding light on the unseen: how live imaging of translation could unlock new insights in developmental biology. C R Biol 2024; 347:87-93. [PMID: 39258401 DOI: 10.5802/crbiol.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
Recent advances in live imaging technologies have refined our understanding of protein synthesis in living cells. Among the various approaches to live imaging of translation, this perspective highlights the use of antibody-based nascent peptide detection, a method that enables visualization of single-molecule translation in vivo. We examine how these advances improve our understanding of biological processes, particularly in developing organisms. In addition, we discuss technological advances in this field and suggest further improvements. Finally, we review some examples of how this method could lead to future scientific breakthroughs in the study of translation and its regulation in whole organisms.
Collapse
|
10
|
Chen R, Stainier W, Dufourt J, Lagha M, Lehmann R. Direct observation of translational activation by a ribonucleoprotein granule. Nat Cell Biol 2024; 26:1322-1335. [PMID: 38965420 PMCID: PMC11321996 DOI: 10.1038/s41556-024-01452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Biomolecular condensates organize biochemical processes at the subcellular level and can provide spatiotemporal regulation within a cell. Among these, ribonucleoprotein (RNP) granules are storage hubs for translationally repressed mRNA. Whether RNP granules can also activate translation and how this could be achieved remains unclear. Here, using single-molecule imaging, we demonstrate that the germ cell-determining RNP granules in Drosophila embryos are sites for active translation of nanos mRNA. Nanos translation occurs preferentially at the germ granule surface with the 3' UTR buried within the granule. Smaug, a cytosolic RNA-binding protein, represses nanos translation, which is relieved when Smaug is sequestered to the germ granule by the scaffold protein Oskar. Together, our findings uncover a molecular process by which RNP granules achieve localized protein synthesis through the compartmentalized loss of translational repression.
Collapse
Affiliation(s)
- Ruoyu Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Vilcek Institute of Graduate Studies, NYU School of Medicine, New York, NY, USA
| | - William Stainier
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, Montpellier, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Abstract
The translation of messenger RNA (mRNA) into proteins represents the culmination of gene expression. Recent technological advances have revolutionized our ability to investigate this process with unprecedented precision, enabling the study of translation at the single-molecule level in real time within live cells. In this review, we provide an overview of single-mRNA translation reporters. We focus on the core technology, as well as the rapid development of complementary probes, tags, and accessories that enable the visualization and quantification of a wide array of translation dynamics. We then highlight notable studies that have utilized these reporters in model systems to address key biological questions. The high spatiotemporal resolution of these studies is shedding light on previously unseen phenomena, uncovering the full heterogeneity and complexity of translational regulation.
Collapse
Affiliation(s)
- Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
12
|
Crawford RA, Eastham M, Pool MR, Ashe MP. Orchestrated centers for the production of proteins or "translation factories". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1867. [PMID: 39048533 DOI: 10.1002/wrna.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The mechanics of how proteins are generated from mRNA is increasingly well understood. However, much less is known about how protein production is coordinated and orchestrated within the crowded intracellular environment, especially in eukaryotic cells. Recent studies suggest that localized sites exist for the coordinated production of specific proteins. These sites have been termed "translation factories" and roles in protein complex formation, protein localization, inheritance, and translation regulation have been postulated. In this article, we review the evidence supporting the translation of mRNA at these sites, the details of their mechanism of formation, and their likely functional significance. Finally, we consider the key uncertainties regarding these elusive structures in cells. This article is categorized under: Translation Translation > Mechanisms RNA Export and Localization > RNA Localization Translation > Regulation.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew Eastham
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Martin R Pool
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Wilby EL, Weil TT. Relating the Biogenesis and Function of P Bodies in Drosophila to Human Disease. Genes (Basel) 2023; 14:1675. [PMID: 37761815 PMCID: PMC10530015 DOI: 10.3390/genes14091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Drosophila has been a premier model organism for over a century and many discoveries in flies have furthered our understanding of human disease. Flies have been successfully applied to many aspects of health-based research spanning from behavioural addiction, to dysplasia, to RNA dysregulation and protein misfolding. Recently, Drosophila tissues have been used to study biomolecular condensates and their role in multicellular systems. Identified in a wide range of plant and animal species, biomolecular condensates are dynamic, non-membrane-bound sub-compartments that have been observed and characterised in the cytoplasm and nuclei of many cell types. Condensate biology has exciting research prospects because of their diverse roles within cells, links to disease, and potential for therapeutics. In this review, we will discuss processing bodies (P bodies), a conserved biomolecular condensate, with a particular interest in how Drosophila can be applied to advance our understanding of condensate biogenesis and their role in disease.
Collapse
Affiliation(s)
| | - Timothy T. Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK;
| |
Collapse
|
14
|
Sundaram P, Rao K, Yajima M. Vasa, a regulator of localized mRNA translation on the spindle. Bioessays 2023; 45:e2300004. [PMID: 36825672 PMCID: PMC10023503 DOI: 10.1002/bies.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
Localized mRNA translation is a biological process that allows mRNA to be translated on-site, which is proposed to provide fine control in protein regulation, both spatially and temporally within a cell. We recently reported that Vasa, an RNA-helicase, is a promising factor that appears to regulate this process on the spindle during the embryonic development of the sea urchin, yet the detailed roles and functional mechanisms of Vasa in this process are still largely unknown. In this review article, to elucidate these remaining questions, we first summarize the prior knowledge and our recent findings in the area of Vasa research and further discuss how Vasa may function in localized mRNA translation, contributing to efficient protein regulation during rapid embryogenesis and cancer cell regulation.
Collapse
Affiliation(s)
- Paola Sundaram
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| | - Kavya Rao
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| |
Collapse
|
15
|
Forbes Beadle L, Love JC, Shapovalova Y, Artemev A, Rattray M, Ashe HL. Combined modelling of mRNA decay dynamics and single-molecule imaging in the Drosophila embryo uncovers a role for P-bodies in 5' to 3' degradation. PLoS Biol 2023; 21:e3001956. [PMID: 36649329 PMCID: PMC9882958 DOI: 10.1371/journal.pbio.3001956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/27/2023] [Accepted: 12/13/2022] [Indexed: 01/18/2023] Open
Abstract
Regulation of mRNA degradation is critical for a diverse array of cellular processes and developmental cell fate decisions. Many methods for determining mRNA half-lives rely on transcriptional inhibition or metabolic labelling. Here, we use a non-invasive method for estimating half-lives for hundreds of mRNAs in the early Drosophila embryo. This approach uses the intronic and exonic reads from a total RNA-seq time series and Gaussian process regression to model the dynamics of premature and mature mRNAs. We show how regulation of mRNA stability is used to establish a range of mature mRNA dynamics during embryogenesis, despite shared transcription profiles. Using single-molecule imaging, we provide evidence that, for the mRNAs tested, there is a correlation between short half-life and mRNA association with P-bodies. Moreover, we detect an enrichment of mRNA 3' ends in P-bodies in the early embryo, consistent with 5' to 3' degradation occurring in P-bodies for at least a subset of mRNAs. We discuss our findings in relation to recently published data suggesting that the primary function of P-bodies in other biological contexts is mRNA storage.
Collapse
Affiliation(s)
- Lauren Forbes Beadle
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jennifer C. Love
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Yuliya Shapovalova
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Artem Artemev
- Department of Computing, Imperial College London, London, United Kingdom
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail: (MR); (HLA)
| | - Hilary L. Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail: (MR); (HLA)
| |
Collapse
|
16
|
Frampton SL, Sutcliffe C, Baldock C, Ashe HL. Modelling the structure of Short Gastrulation and generation of a toolkit for studying its function in Drosophila. Biol Open 2022; 11:275491. [PMID: 35603711 PMCID: PMC9194680 DOI: 10.1242/bio.059199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
A BMP gradient is essential for patterning the dorsal-ventral axis of invertebrate and vertebrate embryos. The extracellular BMP binding protein Short Gastrulation (Sog) in Drosophila plays a key role in BMP gradient formation. In this study, we combine genome editing, structural and developmental approaches to study Sog function in Drosophila. We generate a sog knockout fly stock, which allows simple reintegration of altered versions of the sog coding sequence. As proof-of-principle, we test the requirement for two cysteine residues that were previously identified as targets for palmitoylation, which has been proposed to enhance Sog secretion. However, we show that the sogC27,28S mutant is viable with only very mild phenotypes, indicating that these residues and their potential modification are not critical for Sog secretion in vivo. Additionally, we use experimental negative stain EM imaging and hydrodynamic data to validate the AlphaFold structure prediction for Sog. The model suggests a more compact shape than the vertebrate ortholog Chordin and conformational flexibility between the C-terminal von Willebrand C domains. We discuss how this altered compactness may contribute to mechanistic differences in Sog and Chordin function during BMP gradient formation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sophie L. Frampton
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Catherine Sutcliffe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK,Authors for correspondence (, )
| | - Hilary L. Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK,Authors for correspondence (, )
| |
Collapse
|
17
|
Lepeta K, Bauer M, Aguilar G, Vigano MA, Matsuda S, Affolter M. Studying Protein Function Using Nanobodies and Other Protein Binders in Drosophila. Methods Mol Biol 2022; 2540:219-237. [PMID: 35980580 DOI: 10.1007/978-1-0716-2541-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The direct manipulation of proteins by nanobodies and other protein binders has become an additional and valuable approach to investigate development and homeostasis in Drosophila. In contrast to other techniques, that indirectly interfere with proteins via their nucleic acids (CRISPR, RNAi, etc.), protein binders permit direct and acute protein manipulation. Since the first use of a nanobody in Drosophila a decade ago, many different applications exploiting protein binders have been introduced. Most of these applications use nanobodies against GFP to regulate GFP fusion proteins. In order to exert specific protein manipulations, protein binders are linked to domains that confer them precise biochemical functions. Here, we reflect on the use of tools based on protein binders in Drosophila. We describe their key features and provide an overview of the available reagents. Finally, we briefly explore the future avenues that protein binders might open up and thus further contribute to better understand development and homeostasis of multicellular organisms.
Collapse
Affiliation(s)
| | - Milena Bauer
- Biozentrum der Universität Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Duk MA, Gursky VV, Samsonova MG, Surkova SY. Application of Domain- and Genotype-Specific Models to Infer Post-Transcriptional Regulation of Segmentation Gene Expression in Drosophila. Life (Basel) 2021; 11:life11111232. [PMID: 34833107 PMCID: PMC8618293 DOI: 10.3390/life11111232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Unlike transcriptional regulation, the post-transcriptional mechanisms underlying zygotic segmentation gene expression in early Drosophila embryo have been insufficiently investigated. Condition-specific post-transcriptional regulation plays an important role in the development of many organisms. Our recent study revealed the domain- and genotype-specific differences between mRNA and the protein expression of Drosophila hb, gt, and eve genes in cleavage cycle 14A. Here, we use this dataset and the dynamic mathematical model to recapitulate protein expression from the corresponding mRNA patterns. The condition-specific nonuniformity in parameter values is further interpreted in terms of possible post-transcriptional modifications. For hb expression in wild-type embryos, our results predict the position-specific differences in protein production. The protein synthesis rate parameter is significantly higher in hb anterior domain compared to the posterior domain. The parameter sets describing Gt protein dynamics in wild-type embryos and Kr mutants are genotype-specific. The spatial discrepancy between gt mRNA and protein posterior expression in Kr mutants is well reproduced by the whole axis model, thus rejecting the involvement of post-transcriptional mechanisms. Our models fail to describe the full dynamics of eve expression, presumably due to its complex shape and the variable time delays between mRNA and protein patterns, which likely require a more complex model. Overall, our modeling approach enables the prediction of regulatory scenarios underlying the condition-specific differences between mRNA and protein expression in early embryo.
Collapse
Affiliation(s)
- Maria A. Duk
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (M.A.D.); (M.G.S.)
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia;
| | - Vitaly V. Gursky
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia;
| | - Maria G. Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (M.A.D.); (M.G.S.)
| | - Svetlana Yu. Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (M.A.D.); (M.G.S.)
- Correspondence:
| |
Collapse
|
19
|
Vinter DJ, Hoppe C, Ashe HL. Live and fixed imaging of translation sites at single mRNA resolution in the Drosophila embryo. STAR Protoc 2021; 2:100812. [PMID: 34585149 PMCID: PMC8450298 DOI: 10.1016/j.xpro.2021.100812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Significant regulation of gene expression is mediated at the translation level. Here, we describe protocols for imaging and analysis of translation at single mRNA resolution in both fixed and living Drosophila embryos. These protocols use the SunTag system, in which the protein of interest is visualized by inserting a peptide array that is recognized by a single chain antibody. Simultaneous detection of individual mRNAs using the MS2/MCP system or by smFISH allows translation sites to be identified and quantified. For complete information on the generation and use of this protocol, please refer to Vinter et al. (2021).
Collapse
Affiliation(s)
- Daisy J. Vinter
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Caroline Hoppe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Hilary L. Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
20
|
Cai X, Rondeel I, Baumgartner S. Modulating the bicoid gradient in space and time. Hereditas 2021; 158:29. [PMID: 34404481 PMCID: PMC8371787 DOI: 10.1186/s41065-021-00192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022] Open
Abstract
Background The formation of the Bicoid (Bcd) gradient in the early Drosophila is one of the most fascinating observations in biology and serves as a paradigm for gradient formation, yet its mechanism is still not fully understood. Two distinct models were proposed in the past, the SDD and the ARTS model. Results We define novel cis- and trans-acting factors that are indispensable for gradient formation. The first one is the poly A tail length of the bcd mRNA where we demonstrate that it changes not only in time, but also in space. We show that posterior bcd mRNAs possess a longer poly tail than anterior ones and this elongation is likely mediated by wispy (wisp), a poly A polymerase. Consequently, modulating the activity of Wisp results in changes of the Bcd gradient, in controlling downstream targets such as the gap and pair-rule genes, and also in influencing the cuticular pattern. Attempts to modulate the Bcd gradient by subjecting the egg to an extra nuclear cycle, i.e. a 15th nuclear cycle by means of the maternal haploid (mh) mutation showed no effect, neither on the appearance of the gradient nor on the control of downstream target. This suggests that the segmental anlagen are determined during the first 14 nuclear cycles. Finally, we identify the Cyclin B (CycB) gene as a trans-acting factor that modulates the movement of Bcd such that Bcd movement is allowed to move through the interior of the egg. Conclusions Our analysis demonstrates that Bcd gradient formation is far more complex than previously thought requiring a revision of the models of how the gradient is formed.
Collapse
Affiliation(s)
- Xiaoli Cai
- Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden
| | - Inge Rondeel
- Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden.,Present address: Hubrecht Institute, 3584 CT, Utrecht, The Netherlands
| | - Stefan Baumgartner
- Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden. .,Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
21
|
The early Drosophila embryo as a model system for quantitative biology. Cells Dev 2021; 168:203722. [PMID: 34298230 DOI: 10.1016/j.cdev.2021.203722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022]
Abstract
With the rise of new tools, from controlled genetic manipulations and optogenetics to improved microscopy, it is now possible to make clear, quantitative and reproducible measurements of biological processes. The humble fruit fly Drosophila melanogaster, with its ease of genetic manipulation combined with excellent imaging accessibility, has become a major model system for performing quantitative in vivo measurements. Such measurements are driving a new wave of interest from physicists and engineers, who are developing a range of testable dynamic models of active systems to understand fundamental biological processes. The reproducibility of the early Drosophila embryo has been crucial for understanding how biological systems are robust to unavoidable noise during development. Insights from quantitative in vivo experiments in the Drosophila embryo are having an impact on our understanding of critical biological processes, such as how cells make decisions and how complex tissue shape emerges. Here, to highlight the power of using Drosophila embryogenesis for quantitative biology, I focus on three main areas: (1) formation and robustness of morphogen gradients; (2) how gene regulatory networks ensure precise boundary formation; and (3) how mechanical interactions drive packing and tissue folding. I further discuss how such data has driven advances in modelling.
Collapse
|