1
|
Jiang R, Su J, Xu L, Yang L, Sui S. Screening of key regulatory factors in apoptosis of granulosa cells in healthy and atretic pig follicles based on RNA-seq. Gene 2025; 959:149514. [PMID: 40250537 DOI: 10.1016/j.gene.2025.149514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
The molecular mechanism underlying abnormal follicular atresia remains to be elucidated. Research conducted to date has indicated that ovarian granulosa cell (GC) apoptosis is a significant contributor to follicular atresia. Abnormalities in follicular atresia can result in decreased reproductive efficiency in pigs. It is evident that comparative studies focusing on healthy, early atresia and progressively atresia follicles, particularly from the perspective of follicular atresia induced by ovarian GC apoptosis, have not yet been reported. Specifically, the use of RNA-seq technology to systematically analyse differentially expressed genes and associated signaling pathways in GCs at different stages of atresia remains unexplored. The research was divided into three distinct groups: control, early atresia, and progressively atresia. Key genes and signaling pathways were elucidated through RNA-seq. A Venn diagram revealed 86 overlapping genes that were upregulated during early atresia and downregulated during progressively atresia. Additionally, another 47 overlapping genes were found to be downregulated during early atresia and upregulated during progressively atresia. These 133 overlapping genes were significantly enriched in multiple KEGG pathways. Additionally, in conjunction with the key gene-related network diagram, 6 signaling pathways related to ovarian GC apoptosis were further screened out. These pathways include ovarian steroidogenesis, progesterone-mediated oocyte maturation, gonadotropin-releasing hormone signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, and chemokine signaling pathway. Altogether, 12 key genes were identified: SCARB1, IGF1, PRKACA, ADCY6, LDLR, PLD1, CXCL10, IRF7, ISG15, RNase L, OAS2, and STAT1. Six of these genes were randomly selected for qRT-PCR verification, and their expression levels were found to be consistent with the sequencing results. Consequently, the identification of key regulatory factors involved in the apoptotic process provides a theoretical foundation for investigating the mechanisms underlying abnormal follicular atresia in pigs.
Collapse
Affiliation(s)
- Rong Jiang
- College of Public Health, Dali University, Dali 671000, China
| | - Jingjing Su
- Management Department of Laboratory, Dali University, Dali 671000, China
| | - Linjie Xu
- College of Public Health, Dali University, Dali 671000, China
| | - Lilian Yang
- College of Public Health, Dali University, Dali 671000, China
| | - Shiyan Sui
- College of Public Health, Dali University, Dali 671000, China.
| |
Collapse
|
2
|
Chen Y, Wang S, Zhang C. The Differentiation Fate of Granulosa Cells and the Regulatory Mechanism in Ovary. Reprod Sci 2025; 32:1414-1426. [PMID: 39192066 DOI: 10.1007/s43032-024-01682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Granulosa cells (GCs) are important drives of the reproductive process, not only the supporting cells for nutrition, but also cells with endocrine functions. Their differentiation and development parallel the entire menstruation period and even during pregnancy, making it tightly linked to the fate of the follicle. To elucidate the underlying mechanism is of great significance for related researches. The life course of GCs is briefly divided into five stages, from epithelial cells to pre-granulosa cells, GCs, mural and cumulus cells, lutein cells, and eventually disappear. A wide variety of genes and transcription factors participate in the regulation of different stages, and more importantly, various hormones secreted by the pituitary gland and GCs themselves play a leading role. These endogenous and exogenous signalling molecules interact to form a cross-linked communication network, promoting the development of GCs. Together with oocytes, theca cells and other functional cells in the ovary, GCs drive one of the most vital biological processes in women.
Collapse
Affiliation(s)
- Yilin Chen
- Queen Mary School, Nanchang University, Nanchang, 330006, China
| | - Shimeng Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Chunping Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
3
|
Nguyen NMP, Chang EM, Chauvin M, Sicher N, Kashiwagi A, Nagykery N, Chow C, May P, Mermin-Bunnell A, Cleverdon J, Duong T, Kano M, Godin P, Meinsohn MC, Gao D, Donahoe PK, Pepin D. AMH protects the ovary from doxorubicin by regulating cell fate and the response to DNA damage. Proc Natl Acad Sci U S A 2025; 122:e2414734122. [PMID: 39874288 PMCID: PMC11804487 DOI: 10.1073/pnas.2414734122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025] Open
Abstract
Anti-Müllerian hormone (AMH) protects the ovarian reserve from chemotherapy, and this effect is most pronounced with Doxorubicin (DOX). However, DOX toxicity and AMH rescue mechanisms in the ovary have remained unclear. Herein, we characterize the consequences of these treatments in ovarian cell types using scRNAseq. DOX-induced DNA damage activates Tp53 class mediators across ovarian cell types. In the mesenchyme, cotreatment with AMH halts theca progenitor differentiation and reduces apoptotic gene expression. In preantral granulosa cells, DOX upregulates the cell cycle inhibitor Cdkn1a and dysregulates Wnt signaling, which are ameliorated by AMH cotreatment. Finally, AMH induces Id3, a gene involved in DNA repair, which is necessary to prevent the accumulation of DNA lesions marked by γ-H2AX. Altogether these mechanisms of AMH protection contribute to sustained fertility in mice, offering promising broad avenues for fertility preservation in cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Ngoc Minh Phuong Nguyen
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Eun Mi Chang
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Maeva Chauvin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Natalie Sicher
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Aki Kashiwagi
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Nicholas Nagykery
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Christina Chow
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Phoebe May
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Alana Mermin-Bunnell
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Josephine Cleverdon
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Thy Duong
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Motohiro Kano
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Philippe Godin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Dadi Gao
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02115
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA02114
| | - Patricia K. Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - David Pepin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Harvard Medical School, Boston, MA02115
| |
Collapse
|
4
|
Ge W, Niu YL, Li YK, Li L, Wang H, Li WW, Qiao T, Feng YN, Feng YQ, Liu J, Wang JJ, Sun XF, Cheng SF, Li L, Shen W. Spatiotemporal dynamics of early oogenesis in pigs. Genome Biol 2025; 26:2. [PMID: 39748324 PMCID: PMC11694410 DOI: 10.1186/s13059-024-03464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND In humans and other mammals, the process of oogenesis initiates asynchronously in specific ovarian regions, leading to the localization of dormant and growing follicles in the cortex and medulla, respectively; however, the current understanding of this process remains insufficient. RESULTS Here, we integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to comprehend spatial-temporal gene expression profiles and explore the spatial organization of ovarian microenvironments during early oogenesis in pigs. Projection of the germ cell clusters at different stages of oogenesis into the spatial atlas unveils a "cortical to medullary (C-M)" distribution of germ cells in the developing porcine ovaries. Cross-species analysis between pigs and humans unveils a conserved C-M distribution pattern of germ cells during oogenesis, highlighting the utility of pigs as valuable models for studying human oogenesis in a spatial context. RNA velocity analysis with ST identifies the molecular characteristics and spatial dynamics of granulosa cell lineages originating from the cortical and medullary regions in pig ovaries. Spatial co-occurrence analysis and intercellular communication analysis unveils a distinct cell-cell communication pattern between germ cells and somatic cells in the cortex and medulla regions. Notably, in vitro culture of ovarian tissues verifies that intercellular NOTCH signaling and extracellular matrix (ECM) proteins played crucial roles in initiating meiotic and oogenic programs, highlighting an underappreciated role of ovarian microenvironments in orchestrating germ cell fates. CONCLUSIONS Overall, our work provides insight into the spatial characteristics of early oogenesis and the regulatory role of ovarian microenvironments in germ cell fate within a spatial context.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yi-Lin Niu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Kang Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Han Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wen-Wen Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan-Ni Feng
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Qing Feng
- School Hospital, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Central Laboratory of Qingdao Agricultural University, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
Wang X, Zhou Z, Chai X, Li J, Wang W, Pang Z, Cheng L, Cheng C, Qiao L, Pan Y, Yang K, Liu W, Liu J. Whole-Genome Resequencing to Identify Selection Signatures Associated with High Fertility in Lüliang Black Goat. Animals (Basel) 2024; 15:36. [PMID: 39794979 PMCID: PMC11718830 DOI: 10.3390/ani15010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Lüliang black goat (LBG) is a unique livestock genetic resource of great significance for the local agriculture and economic development of Shanxi, China. However, the kidding rate of LBG is relatively low, which limits efforts to improve the reproductive performance and economic benefits of this breed. Therefore, improving the kidding characteristics of LBG is crucial for increasing its economic benefits. In this study, 20 LBG does were selected for whole-genome resequencing and divided into two groups: 10 in the T group (does with three consecutive kiddings of twin kids) and 10 in the S group (does with three consecutive kiddings of single kids). Based on whole-genome resequencing data, this study comprehensively assessed the population structure and genetic diversity of LBG and explored the related genes that affect reproductive performance. Three selection signal analysis methods-Fst (Fixation Index), π (nucleotide diversity), and XP-CLR (Cross Population Composite Likelihood Ratio)-were applied to screen a total of 838 genes, and enrichment analysis was performed to identify genes closely related to the reproductive performance of LBG, including ENPP3, APC, and GLI2. A generalized linear model was used to conduct a correlation analysis between non-synonymous mutations in the three genes and the number of kids produced. Two loci that were significantly correlated with kidding number were identified (p < 0.05): GLI2 g.63400363 C>T and GLI2 g.63417538 C>T. In general, the LBG population has high genetic diversity and good prospects for genetic improvement. The findings revealed that mining high-fecundity selection characteristics provides a basis for research on goat reproductive mechanisms.
Collapse
Affiliation(s)
- Xu Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Zhenqi Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Xinrui Chai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Jie Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Wannian Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Zhixu Pang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Lifen Cheng
- Shanxi Animal Husbandry Technology Extension Service Center, Taiyuan 030001, China; (L.C.); (C.C.)
| | - Caihong Cheng
- Shanxi Animal Husbandry Technology Extension Service Center, Taiyuan 030001, China; (L.C.); (C.C.)
| | - Liying Qiao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Yangyang Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Kaijie Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Wenzhong Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Jianhua Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.); (Z.Z.); (X.C.); (J.L.); (W.W.); (Z.P.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
- Key Laboratory of Farm Animal Genetic Resources Exploration and Precision Breeding of Shanxi Province, Jinzhong 030801, China
| |
Collapse
|
6
|
Fushii M, Kyogoku H, Lee J, Miyano T. Change in the ability of bovine granulosa cells to elongate transzonal projections and their transcriptome changes during follicle development. J Reprod Dev 2024; 70:362-371. [PMID: 39401905 DOI: 10.1262/jrd.2024-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Granulosa cells (GCs) in secondary follicles differentiate into cumulus cells (CCs) and mural granulosa cells (MGCs) in the antral follicle. Only CCs maintain direct connections with oocytes through transzonal projections (TZPs) and support oocyte growth. Here, we examined whether granulosa cells (GCs) from secondary follicles and MGCs from early and late antral follicles were able to reconstruct complexes with TZP-free denuded oocytes (DOs) and regenerate TZPs. Furthermore, to confirm that the regenerated TZPs were functional, the development of the reconstructed complexes and oocyte growth in the complexes were evaluated. After coculture, GCs and MGCs from early antral follicles reconstructed the complexes with DOs and regenerated TZPs. Furthermore, the oocytes in the integrally reconstructed complexes grew fully and acquired meiotic competence, suggesting that the regenerated TZPs were functional. In contrast, MGCs from the late antral follicles lost their ability to elongate TZPs. As the ability to regenerate TZPs differed among cells, we analyzed the transcriptomes of GCs, CCs, and MGCs collected from follicles of different sizes. The characteristics of TZP generation coincided with the transcriptome changes in two directions: from GCs to CCs and MGCs. In conclusion, until the early antral follicle stage, bovine GCs, CCs, and MGCs have common characteristics to elongate TZPs and form antrum-like structures that support oocyte growth in vitro. Furthermore, as the follicle develops, MGCs lose the ability to elongate TZPs.
Collapse
Affiliation(s)
- Mihoko Fushii
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hirohisa Kyogoku
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Jibak Lee
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takashi Miyano
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
7
|
Yang X, Zhang Y, Zhang H. Cellular and molecular regulations of oocyte selection and activation in mammals. Curr Top Dev Biol 2024; 162:283-315. [PMID: 40180512 DOI: 10.1016/bs.ctdb.2024.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Oocytes, a uniquely pivotal cell population, play a central role in species continuity. In mammals, oogenesis involves distinct processes characterized by sequential rounds of selection, arrest, and activation to produce a limited number of mature eggs, fitting their high-survival yet high-cost fertility. During the embryonic phase, oocytes undergo intensive selection via cytoplasmic and organelle enrichment, accompanied by the onset and arrest of meiosis, thereby establishing primordial follicles (PFs) as a finite reproductive reserve. Subsequently, the majority of primary oocytes enter a dormant state and are gradually recruited through a process termed follicle activation, essential for maintaining orderly fertility. Following activation, oocytes undergo rapid growth, experiencing cycles of arrest and activation regulated by endocrine and paracrine signals, ultimately forming fertilizable eggs. Over the past two decades, advancements in genetically modified animal models, high-resolution imaging, and omics technologies have significantly enhanced our understanding of the cellular and molecular mechanisms that govern mammalian oogenesis. These advances offer profound insights into the regulatory mechanisms of mammalian reproduction and associated female infertility disorders. In this chapter, we provide an overview of current knowledge in mammalian oogenesis, with a particular emphasis on oocyte selection and activation in vivo.
Collapse
Affiliation(s)
- Xuebing Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yan Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
8
|
Bhandary P, Alagundagi DB, Shetty PK, Patil P. Identification of potential miRNA-mRNA regulatory network contributing to pathogenesis of polycystic ovarian syndrome. Ir J Med Sci 2024; 193:2859-2868. [PMID: 39240275 DOI: 10.1007/s11845-024-03795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS), a gynae-endocrine disorder, has a relatively high risk of differential expression of miRNA (DE-miRNA) in the disease progression. AIMS To identify the DE-miRNA in the progression of PCOS in the ovarian cumulus cells. METHODS The microarray dataset GSE72274 was analysed for PCOS-associated DE-miRNAs. miRNet identifies the target genes. Protein-protein interaction (PPI) network was constructed and hub genes were analysed by topology and module analysis. Transcription factors (TFs) and protein kinases (PKs) regulating the hub genes were identified using X2K tool. Biological functions were analysed using DAVID software. Finally, the DGIdb drug-gene interaction tool identifies the candidate medications. RESULTS A total of 1577 DE-miRNAs linked to PCOS were identified, with 13 meeting the specified criteria. Subsequently, its 2053 target genes were retrieved through miRNet. Topology and module analysis identified the hub genes VEGFA, SOX2, KRAS, AKT1, and SMAD4 that are implicated in ovarian regulation. Notably, the study highlighted the significant role of the wnt signalling pathway, which is involved in ovarian function, specifically in follicle development, corpus luteum formation, and steroid production. Additionally, six TFs and PKs were identified as important regulators of these hub genes, and the potential medication interactions identified 11 medicines for VEGFA, KRAS, AKT1, and SMAD4 genes, while no suitable drug for SOX2 was identified. CONCLUSION Identified, hub genes are known to associate with the regulation of ovarian function such as oocyte development, and steroid synthesis via the wnt signalling pathway.
Collapse
Affiliation(s)
- Prajna Bhandary
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to Be University), Mangaluru, Karnataka, 575018, India
| | - Dhananjay B Alagundagi
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to Be University), Mangaluru, Karnataka, 575018, India
| | - Prasanna Kumar Shetty
- IVF-Fertility and Reproductive Medicine Centre, K S Hegde Medical Academy, Justice K S Hegde Charitable Hospital, NITTE (Deemed to Be University), Mangaluru, Karnataka, 575018, India
| | - Prakash Patil
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to Be University), Mangaluru, Karnataka, 575018, India.
| |
Collapse
|
9
|
Xu M, Tang Q, Qi J, Han X, Tao Q, Lu Y, Bai Y, Hu S, Li L, Bai L, Hu J, Wang J, Liu H. Integration of GWAS and transcriptomic analyses reveal candidate genes for duck gonadal development during puberty onset. BMC Genomics 2024; 25:1151. [PMID: 39614145 DOI: 10.1186/s12864-024-11079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Puberty onset signifies the beginning of sexual maturation and reproductive phase in poultry indeed, and plays an essential role in genetics and breeding. Studying gonadal development is one of the important approaches to exploring the genetic mechanism of puberty onset. RESULT In our study, the phenotype data of the testes and ovaries of the 120-day-old Nonghua duck showed a large coefficient of variation, indicating that their gonads were in different developmental states. The CNV-based GWAS results for 358 Nonghua ducks showed two deleted-type CNVRs were associated with testicular weight (TW) and testicular percentage (TP), namely CNVR492 (Chr2: 59473501-59478500 bp) and CNVR494 (Chr2: 59514001-59517000 bp). Additionally, two both-type CNVRs were associated with ovarian weight (OW) and ovarian percentage (OP), namely CNVR557 (Chr2: 99951001-99956500 bp) and CNVR891 (Chr7: 39115001-39122500 bp). RNA-seq analysis showed 6228 and 1070 differentially expressed genes (DEGs) related to the TW and OW. These DEGs were mainly enriched in the MAPK signaling pathway, cytokine-cytokine receptor interaction, and focal adhesion, which were reported to affect gonadal development. Further, by joint analysis of CNV-based GWAS and RNA-seq data, 3 genes, including LOC106019197, CDH19 (LOC101793040), and TYW5 were identified as potential candidate genes for TW and OW. LOC106019197 and CDH19 were down-regulated in the heavier-testes group (> 5 g), while TYW5 was also down-regulated in the heavier-ovaries group (> 3 g). The qRT-PCR revealed that LOC106019197 and CDH19 exhibited higher expression levels in the wild/CN0 and CN0/CN0 genotypes compared to the wild/wild genotype. TYW5 showed the highest expression level in the wild/CN0 genotype and the lowest in the CN2/CN2 genotype. In addition, the expression levels of LOC106019197 and CDH19 were significantly higher at 0w than at 8w and 24w. CONCLUSION Our results revealed that LOC106019197 and CDH19 may act as inhibitors of duck testicular development. TYW5 may play a role in delaying ovarian development. These findings provide new insights into the mechanism of puberty onset in ducks.
Collapse
Affiliation(s)
- Mengru Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Qian Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Xu Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Qiuyu Tao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Yinjuan Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Yuan Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, P.R. China.
| |
Collapse
|
10
|
Spector I, Derech-Haim S, Boustanai I, Safrai M, Meirow D. Anti-Müllerian hormone signaling in the ovary involves stromal fibroblasts: a study in humans and mice provides novel insights into the role of ovarian stroma. Hum Reprod 2024; 39:2551-2564. [PMID: 39361580 DOI: 10.1093/humrep/deae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/08/2024] [Indexed: 10/05/2024] Open
Abstract
STUDY QUESTION What is the involvement of ovarian stroma in the anti-Müllerian hormone (AMH) signaling pathway and which stromal cells are involved? SUMMARY ANSWER Mouse and human ovaries show high expression of AMH receptor II (AMHR2) in the stromal fibroblasts surrounding the follicles and activation of the post-AMHR2 pathway by recombinant AMH was evidenced by increased phosphorylation of SMAD1,5 and 9, increased expression AMHR2 and upregulation of αSMA, suggesting fibroblast activation to initiate myofibroblast differentiation. WHAT IS KNOWN ALREADY AMH secreted by small growing follicles, regulates ovarian activity. It suppresses initial primordial follicle (PMF) recruitment and FSH-dependent growth. AMH signal transduction is mediated by AMHR2, activating intracellular SMAD proteins and other signaling cascades to induce target-gene expression. Although AMHR2 expression has been reported within the follicle unit, there is evidence suggesting it may be identified in the stroma as well. STUDY DESIGN, SIZE, DURATION Fresh murine ovaries were extracted from BALB/c mice (6 weeks old; n = 12 and 21 days old; n = 56). Frozen-thawed ovarian fragments were obtained from 10 women, aged 18-35, who had undergone ovarian tissue cryopreservation and donated frozen ovarian tissue for research. PARTICIPANTS/MATERIALS, SETTING, METHODS Murine (6 weeks old) and human donor ovaries were immunostained for AMHR2 and Collagen 1α/αSMA/VCAM1, with additional vimentin staining in mice. Murine (21 days old) and human donor ovaries were used for fibroblast isolation and subsequent 7-day cultures. Prior to assessing AMH effects on isolated fibroblast culture, purity validation tests were implemented to ensure the absence of epithelial, immune, endothel, granulosa, and theca ovarian cell populations. The fibroblast culture's homogeneity was validated by RT-qPCR and western-blot assays, confirming negativity for E-cadherin, CD31, aromatase, CYP17A1, and positivity for αSMA and vimentin. Fibroblasts were then subjected to rAMH treatment in vitro (200 ng/ml) for 0-72 h, with an additional time point of 96 h for human samples, followed by RT-qPCR, western blot, and immunocytochemistry (ICC) for AMHR2 expression. AMHR2 post-receptor signaling was examined by pSMAD1,5,9 levels via western blot. Activated fibroblast marker, αSMA, was assessed via western blot and ICC. MAIN RESULTS AND THE ROLE OF CHANCE Immunostaining of mouse and human ovarian tissue showed that stromal cells around follicles at all developmental stages exhibit high AMHR2 expression, while granulosa cells of growing follicles show considerably lower levels. The majority of these AMHR2-positive stromal cells were identified as fibroblasts (Collagen1α in mice and human; vimentin in mice). RT-qPCR, western blot, and immunostaining were performed on cultured mouse and human fibroblasts, confirming that they consisted of a pure fibroblast population (αSMA/vimentin positive and negative for other cell-type markers). A total of 99.81% (average 28.94 ± 1.34 cells/field in mice) and 100% (average 19.20 ± 1.39 cells/field in human samples) of these fibroblasts expressed AMHR2 (ICC). rAMH treated cultured fibroblasts showed increased pSMAD1,5 and 9 levels, demonstrating the effects of AMH on its downstream signaling pathway. pSMAD1,5 and 9 expression increased, as detected by western blot: 1.92-fold in mice (48 h, P = 0.026) and 2.37-fold in human samples (48 h, P = 0.0002). In addition, rAMH treatment increased AMHR2 protein expression, as observed in ICC (human): a 2.57-fold upregulation of AMHR2 Mean Fluorescence Intensity (MFI) (96 h, P = 0.00036), and western blot, showing a 4.2-fold time-dependent increase (48 h, P = 0.026) in mice and 2.4-fold change (48 h, P = 0.0003) in human donors. Exposure to rAMH affected AMHR2 transcription upregulation, with a 6.48-fold change (72 h, P = 0.0137) in mice and a 7.87-fold change (72 h, P < 0.0001) in humans. rAMH treatment induced fibroblast activation (αSMA positive), demonstrating the dynamic effects of AMH on fibroblast behavior. αSMA expression elevation was detected in ICC with a 2.28-fold MFI increase in humans (96 h, P = 0.000067), and in western blot with a 5.12-fold increase in mice (48 h, P = 0.0345) and a 2.69-fold increase in humans (48 h, P ≤ 0.0001). Activated AMHR2-positive stained fibroblast fractions were solely located around growing follicles, in both human and mice. In addition, a small population of AMHR2-positive stained theca cells (VCAM1 positive) was observed. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Ex vivo, fibroblast gene expression might be changed by adhesion to the tissue-culture plate. Nevertheless, cultured fibroblasts (with and without rAMH) are subjected to the same conditions. Observations or significant differences can therefore be considered reliable. In addition, the presented effect of rAMH on fibroblasts is not directly linked to the known inhibitory effect of AMH on follicle activation. WIDER IMPLICATIONS OF THE FINDINGS Clarifying the populations of AMH-responsive cells in the ovary provides a foundation for further investigation of the complex AMH signaling across the ovary. The composition of AMH-releasing and -responsive cells can shed light on the communication network between follicles and their environment, which may elucidate the mechanisms behind the AMH inhibitory effect on PMF activation. STUDY FUNDING/COMPETING INTEREST(S) This work was financially supported by grants from the Kahn Foundation. There are no competing interests in this study. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Itay Spector
- Fertility Preservation Laboratory, Sheba Medical Center, Tel Hashomer, Israel
| | - Sanaz Derech-Haim
- Fertility Preservation Laboratory, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilana Boustanai
- Fertility Preservation Laboratory, Sheba Medical Center, Tel Hashomer, Israel
| | - Myriam Safrai
- Fertility Preservation Laboratory, Sheba Medical Center, Tel Hashomer, Israel
| | - Dror Meirow
- Fertility Preservation Laboratory, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Xu X, Yang A, Han Y, Li S, Hao G, Cui N. Pancancer analysis of the interactions between CTNNB1 and infiltrating immune cell populations. Medicine (Baltimore) 2024; 103:e40186. [PMID: 39495984 PMCID: PMC11537592 DOI: 10.1097/md.0000000000040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Recently, evidence has indicated that CTNNB1 is important in a variety of malignancies. However, how CTNNB1 interacts with immune cell infiltration remains to be further investigated. In this study, we focused on the correlations between CTNNB1 and tumorigenesis, tumor progression, mutation, phosphorylation, and prognosis via gene expression profiling interaction analysis; TIMER 2.0, cBioPortal, GTEx, CPTAC, and GEPIA2 database analyses; and R software. CTNNB1 mutations are most found in uterine endometrioid carcinoma and hepatocellular carcinoma. However, no CTNNB1 mutations were found to be associated with a poor prognosis. In addition, CTNNB1 DNA methylation levels were higher in normal tissues than in tumor tissues in cancer except for breast invasive carcinoma, which had higher methylation levels in tumor tissues. The phosphorylation level of the S675 and S191 sites of CTNNB1 was greater in the primary tumor tissues in the clear cell renal cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, pancreatic adenocarcinoma, and breast cancer datasets but not in the glioblastoma multiform dataset. As for, with respect to immune infiltration, CD8 + T-cell infiltration was negatively correlated with the expression of CTNNB1 in thymoma and uterine corpus endometrial carcinoma. The CTNNB1 level was found to be positively associated with the infiltration index of the corresponding fibroblasts in the TCGA tumors of colon adenocarcinoma, human papillomavirus-negative head and neck squamous cell carcinoma, mesothelioma, testicular germ cell tumor, and thymoma. We also identified the top CTNNB1-correlated genes in the TCGA projects and analyzed the expression correlation between CTNNB1 and selected target genes, including PPP4R2, RHOA, and SPRED1. Additionally, pathway enrichment suggested that NUMB is involved in the Wnt pathway. This study highlights the predictive role of CTNNB1 across cancers, suggesting that CTNNB1 might serve as a potential biomarker for the diagnosis and prognosis evaluation of various malignant tumors.
Collapse
Affiliation(s)
- Xiaoyuan Xu
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aimin Yang
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Han
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Siran Li
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guimin Hao
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Cui
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Takase HM, Mishina T, Hayashi T, Yoshimura M, Kuse M, Nikaido I, Kitajima TS. Transcriptomic signatures of WNT-driven pathways and granulosa cell-oocyte interactions during primordial follicle activation. PLoS One 2024; 19:e0311978. [PMID: 39441825 PMCID: PMC11498688 DOI: 10.1371/journal.pone.0311978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Primordial follicle activation (PFA) is a pivotal event in female reproductive biology, coordinating the transition from quiescent to growing follicles. This study employed comprehensive single-cell RNA sequencing to gain insights into the detailed regulatory mechanisms governing the synchronized dormancy and activation between granulosa cells (GCs) and oocytes with the progression of the PFA process. Wntless (Wls) conditional knockout (cKO) mice served as a unique model, suppressing the transition from pre-GCs to GCs, and disrupting somatic cell-derived WNT signaling in the ovary. Our data revealed immediate transcriptomic changes in GCs post-PFA in Wls cKO mice, leading to a divergent trajectory, while oocytes exhibited modest transcriptomic alterations. Subpopulation analysis identified the molecular pathways affected by WNT signaling on GC maturation, along with specific gene signatures linked to dormant and activated oocytes. Despite minimal evidence of continuous up-regulation of dormancy-related genes in oocytes, the loss of WNT signaling in (pre-)GCs impacted gene expression in oocytes even before PFA, subsequently influencing them globally. The infertility observed in Wls cKO mice was attributed to compromised GC-oocyte molecular crosstalk and the microenvironment for oocytes. Our study highlights the pivotal role of the WNT-signaling pathway and its molecular signature, emphasizing the importance of intercellular crosstalk between (pre-)GCs and oocytes in orchestrating folliculogenesis.
Collapse
Affiliation(s)
- Hinako M. Takase
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tappei Mishina
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Mariko Kuse
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo, Japan
| | - Tomoya S. Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
13
|
Yang F, Li X, Zhou L, Cai Y, Kang Z, Liu Z, Yao X, Wang F. Role of secreted frizzled-related protein 5 in granulosa cells of hu sheep ovaries. Theriogenology 2024; 225:142-151. [PMID: 38805996 DOI: 10.1016/j.theriogenology.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
The objective of this study was to examine the expression patterns of secreted frizzled-related protein 5 (SFRP5) in the ovaries of Hu sheep and to explore the key downstream factors of SFRP5 in sheep granulosa cells (GCs) using RNA-seq. In the present study, SFRP5 was widely expressed in the ovary and localized to GCs and oocytes during various stages of follicular development. In addition, the expression of SFRP5 increased with follicular diameter. In contrast to the negative control, SFRP5 knockdown promoted the EdU-positive cell rate with an increase in PCNA mRNA and protein levels, whereas SFRP5 overexpression had the opposite effect. In addition, the cell cycle was propelled from the G0/G1 phase to the S phase with the upregulation of CCNB1, CCND1, CDK1, and CDK4 after SFRP5 knockdown. Moreover, SFRP5 overexpression enhanced the apoptosis of GCs with increased Caspase3 protein levels. Following SFRP5 knockdown, differentially expressed genes were mainly enriched in the PI3K/AKT, MAPK, Wnt, and Hippo signaling pathways, and several related candidate genes such as MMP1, MMP3, SFRP4, INHA, TGFA, and CASP3 were screened. In general, this study enhances our understanding of the expression of SFRP5 in the GCs of Hu sheep, along with its functions in follicular development.
Collapse
Affiliation(s)
- Fan Yang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaodan Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Zhou
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Cai
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziqi Kang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhipeng Liu
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaolei Yao
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Feng Wang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Li P, Zhang Q, Chu C, Ren B, Wu P, Zhang G. Transcriptome Analysis of Hypothalamic-Pituitary-Ovarian Axis Reveals circRNAs Related to Egg Production of Bian Chicken. Animals (Basel) 2024; 14:2253. [PMID: 39123779 PMCID: PMC11311080 DOI: 10.3390/ani14152253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The hypothalamic-pituitary-ovarian (HPO) axis plays a pivotal role in the regulation of egg production in chickens. In addition to the traditional understanding of the HPO axis, emerging research highlights the significant role of circRNAs in modulating the functions of this axis. In the study, we collected hypothalamus, pituitary, and ovarian tissues from low-yielding and high-yielding Bian chickens for transcriptome sequencing. We identified 339, 339, and 287 differentially expressed (DE) circRNAs with p_value < 0.05 and |log2 (fold change)| ≥ 1 in hypothalamus, pituitary, and ovarian tissues. The Gene Ontology (GO) enrichment analysis for the source genes of DE circRNAs has yielded multiple biological process (BP) entries related to cell development, the nervous system, and proteins, including cellular component morphogenesis, cell morphogenesis, nervous system development, neurogenesis, protein modification process, and protein metabolic process. In the top 30 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we observed the enrichment of the GnRH signaling pathway in both the hypothalamus and the pituitary, solely identified the GnRH secretion pathway in the pituitary, and discovered the pathway of oocyte meiosis in the ovary. Furthermore, given that circRNA primarily functions through the ceRNA mechanism, we constructed ceRNA regulatory networks with DE circRNAs originating from the GnRH signaling pathway, GnRH secretion, ovarian steroidogenesis, steroid hormone biosynthesis, and the estrogen signaling pathway. Finally, several important ceRNA regulatory networks related to reproduction were discovered, such as novel_circ_003662-gga-let-7b/miR-148a-3p/miR-146a-5p/miR-146b-5p and novel_circ_003538-gga-miR-7464-3p-SLC19A1. This study will contribute to advancements in understanding the involvement of circRNAs in the HPO axis, potentially leading to innovations in improving egg production and poultry health.
Collapse
Affiliation(s)
- Peifeng Li
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (P.L.); (Q.Z.); (C.C.); (B.R.)
| | - Qi Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (P.L.); (Q.Z.); (C.C.); (B.R.)
| | - Chengzhu Chu
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (P.L.); (Q.Z.); (C.C.); (B.R.)
| | - Binlin Ren
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China; (P.L.); (Q.Z.); (C.C.); (B.R.)
| | - Pengfei Wu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
15
|
Nguyen NMP, Chang EM, Chauvin M, Sicher N, Kashiwagi A, Nagykery N, Chow C, May P, Mermin-Bunnel A, Cleverdon J, Duong T, Meinsohn MC, Gao D, Donahoe PK, Pepin D. AMH protects the ovary from doxorubicin by regulating cell fate and the response to DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595356. [PMID: 38826466 PMCID: PMC11142203 DOI: 10.1101/2024.05.23.595356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Anti-Müllerian hormone (AMH) protects the ovarian reserve from chemotherapy, and this effect is most pronounced with Doxorubicin (DOX). However, the mechanisms of DOX toxicity and AMH rescue in the ovary remain unclear. Herein, we characterize these mechanisms in various ovarian cell types using scRNAseq. In the mesenchyme, DOX activates the intrinsic apoptotic signaling pathway through p53 class mediators, particularly affecting theca progenitors, while co-treament with AMH halts theca differentiation and reduces apoptotic gene expression. In preantral granulosa cells, DOX upregulates the cell cycle inhibitor Cdkn1a and dysregulates Wnt signaling, which are ameliorated by AMH co-treatment. Finally, in follicles, AMH induces Id3 , a protein involved in DNA repair, which is necessary to prevent the accumulation of DNA lesions marked by γ-H2AX in granulosa cells. Altogether this study characterizes cell, and follicle stage-specific mechanisms of AMH protection of the ovary, offering promising new avenues for fertility preservation in cancer patients undergoing chemotherapy. Highlights Doxorubicin treatment induces DNA damage that activates the p53 pathway in stromal and follicular cells of the ovary.AMH inhibits the proliferation and differentiation of theca and granulosa cells and promotes follicle survival following Doxorubicin insult.AMH treatment mitigates Doxorubicin-induced DNA damage in the ovary by preventing the accumulation of γ-H2AX-positive unresolved foci, through increased expression of ID3, a protein involved in DNA repair.
Collapse
|
16
|
Huang X, Huang Z, Li Q, Li W, Han C, Yang Y, Lin H, Wu Q, Zhou Y. De Novo Assembly, Characterization, and Comparative Transcriptome Analysis of Mature Male and Female Gonads of Rabbitfish ( Siganus oramin) (Bloch & Schneider, 1801). Animals (Basel) 2024; 14:1346. [PMID: 38731350 PMCID: PMC11083024 DOI: 10.3390/ani14091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
The rabbitfish, Siganus oramin, is a commercially important table fish in southeastern China. However, there have been few studies on its gonad development and reproduction regulation. Comparative transcriptome analysis was first performed on adult male and female gonads of S. oramin. In total, 47,070 unigenes were successfully assembled and 22,737 unigenes were successfully annotated. Through comparative transcriptome analysis of male and female gonads, a total of 6722 differentially expressed genes were successfully identified, with 3528 upregulated genes and 3154 downregulated genes in the testes. In addition, 39 differentially expressed reproduction-related genes were identified. Finally, quantitative real-time PCR was used to validate the expression levels of several differentially expressed genes. These results provide important data for further studying the function of reproduction-related genes and the molecular mechanism regulating gonad development and reproduction in S. oramin.
Collapse
Affiliation(s)
- Xiaolin Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China (H.L.)
- National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Zhong Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China (H.L.)
- National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Qiang Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Wenjun Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China (H.L.)
- National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China (H.L.)
- National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Qiaer Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China (H.L.)
- National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Yanbo Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China (H.L.)
- National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| |
Collapse
|
17
|
Dang W, Ren Y, Chen Q, He M, Kebreab E, Wang D, Lyu L. Notch2 Regulates the Function of Bovine Follicular Granulosa Cells via the Wnt2/β-Catenin Signaling Pathway. Animals (Basel) 2024; 14:1001. [PMID: 38612240 PMCID: PMC11010942 DOI: 10.3390/ani14071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Ovarian follicular GCs are strongly implicated in the growth, development, and atresia of ovarian follicles. The Wnt/β-catenin and Notch signaling pathways participate in GC proliferation, differentiation, apoptosis, and steroid hormone production during follicular development. However, the crosstalk between Wnt and Notch signaling in GCs remains unclear. This study investigated this crosstalk and the roles of these pathways in apoptosis, cell cycle progression, cell proliferation, and steroid hormone secretion in bovine follicular GCs. The interaction between β-catenin and Notch2 in GCs was assessed by overexpressing CTNNB1, which encodes β-catenin. The results showed that inhibiting the Notch pathway by Notch2 silencing in GCs arrested the cell cycle, promoted apoptosis, reduced progesterone (P4) production, and inhibited the Wnt2-mediated Wnt/β-catenin pathway in GCs. IWR-1 inhibited Wnt2/β-catenin and Notch signaling, reduced GC proliferation, stimulated apoptosis, induced G1 cell cycle arrest, and reduced P4 production. CTNNB1 overexpression had the opposite effect and increased 17β-estradiol (E2) production and Notch2 protein expression. Co-immunoprecipitation assays revealed that Notch2 interacted with β-catenin. These results elucidate the crosstalk between the Wnt/β-catenin and Notch pathways and the role of these pathways in bovine follicular GC development.
Collapse
Affiliation(s)
- Wenqing Dang
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| | - Yongping Ren
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| | - Qingqing Chen
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| | - Min He
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| | - Ermias Kebreab
- College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA;
| | - Dong Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lihua Lyu
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| |
Collapse
|
18
|
Zhang T, Tong Y, Zhu R, Liang Y, Zhang J, Hu C, He M, Hu Z, Shen Z, Niu J, Zhang J, Yu Y, Jin B, Lei S, Zeng Z, Wu Y, Cheng Z, Xiao Z, Guo B, Zhao S, Xu G, Pan W, Chen T. HDAC6-dependent deacetylation of NGF dictates its ubiquitination and maintains primordial follicle dormancy. Theranostics 2024; 14:2345-2366. [PMID: 38646645 PMCID: PMC11024860 DOI: 10.7150/thno.95164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Rationale: Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. Methods: We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, Hdac6-overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation. Results: In the present study, we found that HDAC6 was highly expressed in most dormant primordial follicles. The HDAC6 expression was reduced accompanying reproductive senescence in human and mouse ovaries. Overexpression of Hdac6 delayed the rate of primordial follicle activation, thereby prolonging the mouse reproductive lifespan. Short-term inhibition of HDAC6 promoted primordial follicle activation and follicular development in humans and mice. Mechanism studies revealed that HDAC6 directly interacted with NGF, reducing acetylation modification of NGF and thereby accelerating its ubiquitination degradation. Consequently, the reduced NGF protein level maintained the dormancy of primordial follicles. Conclusions: The physiological significance of the high expression of HDAC6 in most primordial follicles is to reduce NGF expression and prevent primordial follicle activation to maintain female fertility. Reduced HDAC6 expression increases NGF expression in primordial follicles, activating their development and contributing to reproduction. Our study provides a clinical reference value for fertility preservation.
Collapse
Affiliation(s)
- Tuo Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550009, China
- Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, 550009, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, Guiyang, Guizhou, 550009, China
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Yuntong Tong
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Rengguang Zhu
- College of Pharmacy, Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Yaoyun Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, Guiyang, Guizhou, 550009, China
| | - Jixian Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Chujiao Hu
- College of Pharmacy, Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Meina He
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550009, China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Zhu Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, Guiyang, Guizhou, 550009, China
| | - Zhiyi Shen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Jin Niu
- Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Jingjing Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Yuanyuan Yu
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Bangming Jin
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Shan Lei
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Zhirui Zeng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Yingmin Wu
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Zengmei Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, Guiyang, Guizhou, 550009, China
| | - Ziwen Xiao
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Shuyun Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, Guiyang, Guizhou, 550009, China
| | - Guoqiang Xu
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550009, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, 550009, China
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, China
| |
Collapse
|
19
|
Migale R, Neumann M, Mitter R, Rafiee MR, Wood S, Olsen J, Lovell-Badge R. FOXL2 interaction with different binding partners regulates the dynamics of ovarian development. SCIENCE ADVANCES 2024; 10:eadl0788. [PMID: 38517962 PMCID: PMC10959415 DOI: 10.1126/sciadv.adl0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
The transcription factor FOXL2 is required in ovarian somatic cells for female fertility. Differential timing of Foxl2 deletion, in embryonic versus adult mouse ovary, leads to distinctive outcomes, suggesting different roles across development. Here, we comprehensively investigated FOXL2's role through a multi-omics approach to characterize gene expression dynamics and chromatin accessibility changes, coupled with genome-wide identification of FOXL2 targets and on-chromatin interacting partners in somatic cells across ovarian development. We found that FOXL2 regulates more targets postnatally, through interaction with factors regulating primordial follicle formation and steroidogenesis. Deletion of one interactor, ubiquitin-specific protease 7 (Usp7), results in impairment of somatic cell differentiation, germ cell nest breakdown, and ovarian development, leading to sterility. Our datasets constitute a comprehensive resource for exploration of the molecular mechanisms of ovarian development and causes of female infertility.
Collapse
Affiliation(s)
- Roberta Migale
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Michelle Neumann
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mahmoud-Reza Rafiee
- RNA Networks Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sophie Wood
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jessica Olsen
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
20
|
Ahmadi S, Nemoto Y, Ohkubo T. Impact of In Ovo Leptin Injection and Dietary Protein Levels on Ovarian Growth Markers and Early Folliculogenesis in Post-Hatch Chicks ( Gallus gallus domesticus). BIOLOGY 2024; 13:69. [PMID: 38392288 PMCID: PMC10886161 DOI: 10.3390/biology13020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Genetically bred for rapid growth, broiler breeder hens develop obesity and ovarian dysfunction when fed ad libitum, resembling a condition that resembles human polycystic ovary syndrome (PCOS). Nutritional control applies to post-hatched chicks from one week onward to prevent the development of a PCOS-like phenotype in adult broilers. This study investigated the impact of a growth marker, leptin, and post-hatch nutritional intake on early-life ovarian function. Fertile broiler eggs were injected in ovo with physiological saline solution or 5 µg of leptin and then incubated. After hatching, female chicks were fed ad libitum a diet containing low protein (17% low crude protein (LP)) or standard protein (22% standard crude protein (SP)). Tissues were collected from 7- and 28-day-old chicks for RT-qPCR and histological analysis. In contrast to the LP diet, the SP diet suppressed the mRNA expression of ovarian growth markers essential for folliculogenesis in post-hatched chicks. Leptin injection did not influence ovarian growth markers but increased pituitary gonadotropin transcripts in 7-day-old chicks fed with LP diet. No treatment effects on follicle activation were noted on day 7, but by day 28, in ovo leptin-treated LP-fed chicks exhibited a higher percentage of primary follicles. These changes may have resulted from the early upregulation of genes by leptin during the first week, including pituitary gonadotropins and ovarian leptin receptors. The decline in ovarian growth markers with the SP diet highlights the importance of precise post-hatch protein calculation, which may influence future ovarian function in animals. These findings may contribute to future dietary strategies to enhance broiler reproduction.
Collapse
Affiliation(s)
- Sadequllah Ahmadi
- College of Agriculture, Ibaraki University, Ami 300-0393, Japan
- Faculty of Animal Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Yuta Nemoto
- College of Agriculture, Ibaraki University, Ami 300-0393, Japan
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Ami 300-0393, Japan
| |
Collapse
|
21
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
22
|
Xu D, Song S, Wang F, Li Y, Li Z, Yao H, Zhao Y, Zhao Z. Single-cell transcriptomic atlas of goat ovarian aging. J Anim Sci Biotechnol 2023; 14:151. [PMID: 38053167 DOI: 10.1186/s40104-023-00948-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/10/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The ovaries are one of the first organs that undergo degenerative changes earlier in the aging process, and ovarian aging is shown by a decrease in the number and quality of oocytes. However, little is known about the molecular mechanisms of female age-related fertility decline in different types of ovarian cells during aging, especially in goats. Therefore, the aim of this study was to reveal the mechanisms driving ovarian aging in goats at single-cell resolution. RESULTS For the first time, we surveyed the single-cell transcriptomic landscape of over 27,000 ovarian cells from newborn, young and aging goats, and identified nine ovarian cell types with distinct gene-expression signatures. Functional enrichment analysis showed that ovarian cell types were involved in their own unique biological processes, such as Wnt beta-catenin signalling was enriched in germ cells, whereas ovarian steroidogenesis was enriched in granulosa cells (GCs). Further analysis showed that ovarian aging was linked to GCs-specific changes in the antioxidant system, oxidative phosphorylation, and apoptosis. Subsequently, we identified a series of dynamic genes, such as AMH, CRABP2, THBS1 and TIMP1, which determined the fate of GCs. Additionally, FOXO1, SOX4, and HIF1A were identified as significant regulons that instructed the differentiation of GCs in a distinct manner during ovarian aging. CONCLUSIONS This study revealed a comprehensive aging-associated transcriptomic atlas characterizing the cell type-specific mechanisms during ovarian aging at the single-cell level and offers new diagnostic biomarkers and potential therapeutic targets for age-related goat ovarian diseases.
Collapse
Affiliation(s)
- Dejun Xu
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Shuaifei Song
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Fuguo Wang
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Yawen Li
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Ziyuan Li
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Hui Yao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Yongju Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhongquan Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
23
|
Qu Z, Liu L, Wu X, Guo P, Yu Z, Wang P, Song Y, Zheng S, Liu N. Cadmium-induced reproductive toxicity combined with a correlation to the oogenesis process and competing endogenous RNA networks based on a Caenorhabditis elegans model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115687. [PMID: 37976926 DOI: 10.1016/j.ecoenv.2023.115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Accumulation of the heavy metal Cadmium (Cd) in the ovaries and placenta can affect the structure and function of these organs and induce female reproductive toxicity. This toxicity may be due to Cd's similarity to estrogen and its ability to disrupt endocrine systems. However, the exact molecular mechanism by which Cd causes reproductive toxicity at the transcriptome level remains poorly understood. Hence, this study aimed to observe Cd-induced reproductive damage at the gene level, scrutinize the repercussions of Cd exposure on oogenesis, and explicate the putative pathogenesis of Cd-induced oogenesis based on Caenorhabditis elegans (C. elegans) as an in vivo model. The results showed that Cd exposure significantly decreased the number of offspring and prolonged the reproductive span of C. elegans. Cd exposure also reduced the number of cells in mitosis and the pachytene and diakinesis stages of meiosis, thereby disrupting oogenesis. Combined with transcriptional sequencing and bioinformatics analysis, a total of 3167 DEmRNAs were identified. Regarding gene expression, cul-6, mum-2, and vang-1 were found to be related to Cd-induced reproductive toxicity, and their competing endogenous RNA networks were constructed. We observed that mutations of mom-2 and vang-1 in the Wnt pathway could induce susceptibility to Cd-caused meiosis injury. In conclusion, the results indicated that Cd could impair the oogenesis of C. elegans and the Wnt pathway might serve as a protective mechanism against Cd reproductive toxicity. These findings contribute to a better understanding of the damaging effects and molecular biological mechanisms of Cd on the human reproductive system.
Collapse
Affiliation(s)
- Zhi Qu
- School of Nursing and Health, Henan University, Kaifeng 475004, PR China
| | - Limin Liu
- College of Public Health, Zhengzhou University, Zhengzhou 540001, PR China
| | - Xiaoliang Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Peisen Guo
- College of Public Health, Zhengzhou University, Zhengzhou 540001, PR China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou 540001, PR China
| | - Peixi Wang
- School of Nursing and Health, Henan University, Kaifeng 475004, PR China
| | - Yuzhen Song
- School of Nursing and Health, Henan University, Kaifeng 475004, PR China
| | - Shanqing Zheng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China.
| | - Nan Liu
- School of Nursing and Health, Henan University, Kaifeng 475004, PR China; College of Public Health, Zhengzhou University, Zhengzhou 540001, PR China; Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen 518116, PR China.
| |
Collapse
|
24
|
Zhao S, Ma R, Jueraitetibaike K, Xu Y, Jing J, Tang T, Shi M, Zhang H, Ge X, Chen L, Yao B, Guo Z. ZDHHC17 participates in the pathogenesis of polycystic ovary syndrome by affecting androgen conversion to estrogen in granulosa cells. Mol Cell Endocrinol 2023; 578:112076. [PMID: 37769867 DOI: 10.1016/j.mce.2023.112076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive age and is a significant cause of female subfertility. Our previous research demonstrated that the abnormal palmitoylation of heat shock protein-90α (HSP90α) plays a role in the development of PCOS. However, the palmitoyl acyltransferases in HSP90α palmitoylation remain poorly understood. Herein, we identified ZDHHC17 as a major palmitoyl acyltransferase for HSP90α palmitoylation in granulosa cells. ZDHHC17 protein expression was diminished under excess androgen conditions in vitro and in vivo. Consistently, ovarian ZDHHC17 expression was found to be attenuated in patients with PCOS. ZDHHC17 depletion decreased HSP90α palmitoylation levels and hampered the conversion of androgen to estrogen via CYP19A1. Furthermore, ZDHHC17-mediated regulation of CYP19A1 expression was dependent on HSP90α palmitoylation. Our findings reveal that the regulatory role of HSP90α palmitoylation by ZDHHC17 is critical in PCOS pathophysiology and provide insights into the role of ZDHHC17 in reproductive endocrinology.
Collapse
Affiliation(s)
- Shanmeizi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Rujun Ma
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Kadiliya Jueraitetibaike
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Yao Xu
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jun Jing
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ting Tang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China
| | - Munan Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Hong Zhang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China
| | - Xie Ge
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China.
| | - Li Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Bing Yao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
25
|
Ge T, Wen Y, Li B, Huang X, Jiang S, Zhang E. Single-cell sequencing reveals the reproductive variations between primiparous and multiparous Hu ewes. J Anim Sci Biotechnol 2023; 14:144. [PMID: 37964337 PMCID: PMC10644470 DOI: 10.1186/s40104-023-00941-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/20/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND In the modern sheep production systems, the reproductive performance of ewes determines the economic profitability of farming. Revealing the genetic mechanisms underlying differences in the litter size is important for the selection and breeding of highly prolific ewes. Hu sheep, a high-quality Chinese sheep breed, is known for its high fecundity and is often used as a model to study prolificacy traits. In the current study, animals were divided into two groups according to their delivery rates in three consecutive lambing seasons (namely, the high and low reproductive groups with ≥ 3 lambs and one lamb per season, n = 3, respectively). The ewes were slaughtered within 12 h of estrus, and unilateral ovarian tissues were collected and analyzed by 10× Genomics single-cell RNA sequencing. RESULTS A total of 5 types of somatic cells were identified and corresponding expression profiles were mapped in the ovaries of each group. Noticeably, the differences in the ovary somatic cell expression profiles between the high and low reproductive groups were mainly clustered in the granulosa cells. Furthermore, four granulosa cell subtypes were identified. GeneSwitches analysis revealed that the abundance of JPH1 expression and the reduction of LOC101112291 expression could lead to different evolutionary directions of the granulosa cells. Additionally, the expression levels of FTH1 and FTL in mural granulosa cells of the highly reproductive group were significantly higher. These genes inhibit necroptosis and ferroptosis of mural granulosa cells, which helps prevent follicular atresia. CONCLUSIONS This study provides insights into the molecular mechanisms underlying the high fecundity of Hu sheep. The differences in gene expression profiles, particularly in the granulosa cells, suggest that these cells play a critical role in female prolificacy. The findings also highlight the importance of genes such as JPH1, LOC101112291, FTH1, and FTL in regulating granulosa cell function and follicular development.
Collapse
Affiliation(s)
- Ting Ge
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yifan Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Bo Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyu Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shaohua Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Enping Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
26
|
Bobotis BC, Braniff O, Gargus M, Akinluyi ET, Awogbindin IO, Tremblay MÈ. Sex differences of microglia in the healthy brain from embryonic development to adulthood and across lifestyle influences. Brain Res Bull 2023; 202:110752. [PMID: 37652267 DOI: 10.1016/j.brainresbull.2023.110752] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Microglia, the central nervous system innate immune cells, play a critical role in maintaining a homeostatic environment in the brain throughout life. These cells exhibit an impressive range of functions and characteristics that help to ensure proper functioning of the brain. Notably, microglia can present differences in their genetic and physical traits, which can be influenced by a range of factors, including age, environmental exposures, disease, and sex. Remarkably, microglia have been found to express receptors for sex hormones, suggesting that these hormones may play a role in modulating microglial behavior and potentially contribute to sex differences. Additionally, sex-chromosomal factors were shown to impact microglial genetics and functioning. In this review, we will examine how microglial responses in homeostasis are impacted by their interaction with sex hormones and sex chromosomes. Specifically, our investigation will focus on examining this interaction from embryonic development to adulthood, and the influence of lifestyle elements on various microglial features, including density and distribution, morphology, transcriptome, and proteome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Makenna Gargus
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Ifeoluwa Oluleke Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada; Department of Molecular Medicine, Université Laval, Québec, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
| |
Collapse
|
27
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Xu H, Hao Z, Wang Y, Zhang D, Li J, Chen L, Yao N, Qian B, Peng X, Zhan X. Liquid tumor microenvironment enhances WNT signaling pathway of peritoneal metastasis of gastric cancer. Sci Rep 2023; 13:11125. [PMID: 37429893 DOI: 10.1038/s41598-023-38373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
Gastric cancer remains one of the most prevalent tumors worldwide and peritoneal metastasis is responsible for approximately 60% of death in advanced gastric cancer patients. However, the underlying mechanism of peritoneal metastasis is poorly understood. We have established organoids derived from malignant ascites (MA) of gastric cancer patients and noticed that MA supernatant could strongly increase the colony formation of organoids. Thus, we realized the interaction between exfoliated cancer cells (ECCs) and liquid tumor microenvironment contributes to peritoneal metastasis. Further, we designed a medium component control test which proved that exosomes derived from MA could not enhance the growth of organoids. Using Immunofluorescence and confocal imaging as well as dual-luciferase reporter assay, our data showed WNT signaling pathway was upregulated by high concentrations of WNT ligands (wnt3a and wnt5a), which was verified by ELISA. Besides, suppressing WNT signaling pathway diminished the growth promoting function of MA supernatant. This result implicated WNT signaling pathway as a potential therapeutic target for peritoneal metastasis of gastric cancer.
Collapse
Affiliation(s)
- Huawei Xu
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
- Department of Oncology, Tongzhou People's Hospital, Nantong, 226300, China
| | - Zhibin Hao
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Yujie Wang
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Deng Zhang
- Research and Early Development, Haobai Biotechnology Inc, Shanghai, 200235, China
| | - Jie Li
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Ling Chen
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Ninghua Yao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Binbin Qian
- Department of Oncology, Tongzhou People's Hospital, Nantong, 226300, China
| | - Xiaobo Peng
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
29
|
Wiltshire A, Schaal R, Wang F, Tsou T, McKerrow W, Keefe D. Vitrification with Dimethyl Sulfoxide Induces Transcriptomic Alteration of Gene and Transposable Element Expression in Immature Human Oocytes. Genes (Basel) 2023; 14:1232. [PMID: 37372413 DOI: 10.3390/genes14061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite substantial advancements in the field of cryobiology, oocyte and embryo cryopreservation still compromise developmental competence. Furthermore, dimethyl sulfoxide (DMSO), one of the most commonly used cryoprotectants, has been found to exert potent effects on the epigenetic landscape of cultured human cells, as well as mouse oocytes and embryos. Little is known about its impact on human oocytes. Additionally, few studies investigate the effects of DMSO on transposable elements (TE), the control of which is essential for the maintenance of genomic instability. The objective of this study was to investigate the impact of vitrification with DMSO-containing cryoprotectant on the transcriptome, including on TEs, of human oocytes. Twenty-four oocytes at the GV stage were donated by four healthy women undergoing elective oocyte cryopreservation. Oocytes were paired such that half from each patient were vitrified with DMSO-containing cryoprotectant (Vitrified Cohort), while the other half were snap frozen in phosphate buffer, unexposed to DMSO (Non-Vitrified Cohort). All oocytes underwent RNA sequencing via a method with high fidelity for single cell analysis, and which allows for the analysis of TE expression through Switching Mechanism at the 5'-end of the RNA Transcript sequencing 2 (SMARTseq2), followed by functional enrichment analysis. Of the 27,837 genes identified by SMARTseq2, 7331 (26.3%) were differentially expressed (p < 0.05). There was a significant dysregulation of genes involved in chromatin and histone modification. Mitochondrial function, as well as the Wnt, insulin, mTOR, HIPPO, and MAPK signaling pathways were also altered. The expression of TEs was positively correlated with the expression of PIWIL2, DNMT3A, and DNMT3B, and negatively correlated with age. These findings suggest that the current standard process of oocyte vitrification, involving DMSO-containing cryoprotectant, induces significant transcriptome changes, including those involving TEs.
Collapse
Affiliation(s)
- Ashley Wiltshire
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Renata Schaal
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Fang Wang
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Tiffany Tsou
- Institute for Systems Genetics, New York University Langone Medical Center, 550 1st Avenue, New York, NY 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, New York University Langone Medical Center, 550 1st Avenue, New York, NY 10016, USA
| | - David Keefe
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| |
Collapse
|
30
|
Yang X, Yang L. Current understanding of the genomic abnormities in premature ovarian failure: chance for early diagnosis and management. Front Med (Lausanne) 2023; 10:1194865. [PMID: 37332766 PMCID: PMC10274511 DOI: 10.3389/fmed.2023.1194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Premature ovarian failure (POF) is an insidious cause of female infertility and a devastating condition for women. POF also has a strong familial and heterogeneous genetic background. Management of POF is complicated by the variable etiology and presentation, which are generally characterized by abnormal hormone levels, gene instability and ovarian dysgenesis. To date, abnormal regulation associated with POF has been found in a small number of genes, including autosomal and sex chromosomal genes in folliculogenesis, granulosa cells, and oocytes. Due to the complex genomic contributions, ascertaining the exact causative mechanisms has been challenging in POF, and many pathogenic genomic characteristics have yet to be elucidated. However, emerging research has provided new insights into genomic variation in POF as well as novel etiological factors, pathogenic mechanisms and therapeutic intervention approaches. Meanwhile, scattered studies of transcriptional regulation revealed that ovarian cell function also depends on specific biomarker gene expression, which can influence protein activities, thus causing POF. In this review, we summarized the latest research and issues related to the genomic basis for POF and focused on insights gained from their biological effects and pathogenic mechanisms in POF. The present integrated studies of genomic variants, gene expression and related protein abnormalities were structured to establish the role of etiological genes associated with POF. In addition, we describe the design of some ongoing clinical trials that may suggest safe, feasible and effective approaches to improve the diagnosis and therapy of POF, such as Filgrastim, goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding the candidate genomic characteristics in POF is beneficial for the early diagnosis of POF and provides appropriate methods for prevention and drug treatment. Additional efforts to clarify the POF genetic background are necessary and are beneficial for researchers and clinicians regarding genetic counseling and clinical practice. Taken together, recent genomic explorations have shown great potential to elucidate POF management in women and are stepping from the bench to the bedside.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Haider S, Beristain AG. Human organoid systems in modeling reproductive tissue development, function, and disease. Hum Reprod 2023:7147082. [PMID: 37119533 DOI: 10.1093/humrep/dead085] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Indexed: 05/01/2023] Open
Abstract
Research focused on human reproductive biology has primarily relied upon clinical samples affording mainly descriptive studies with limited implementation of functional or mechanistic understanding. More importantly, restricted access to human embryonic material has necessitated the use of animals, primarily rats and mice, and short-term primary cell cultures derived from human patient material. While reproductive developmental processes are generally conserved across mammals, specific features unique to human reproduction have resulted in the development of human-based in vitro systems designed to retain or recapitulate key molecular and cellular processes important in humans. Of note, major advances in 3D epithelial stem cell-based systems modeling human reproductive organ development have been made. These cultures, broadly referred to as organoids, enable research aimed at understanding cellular hierarchies and processes controlling cellular differentiation and function. Moreover, organoids allow the pre-clinical testing of pharmacological substances, both from safety and efficacy standpoints, and hold large potential in driving aspects of personalized medicine that were previously not possible with traditional models. In this mini-review, we focus on summarizing the current state of regenerative organoid culture systems of the female and male reproductive tracts that model organ development, maintenance, and function. Specifically, we will introduce stem cell-based organoid models of the ovary/fallopian tube, endometrium, cervix, prostate gland, and testes. We will also describe organoid systems of the pre-implanting blastocyst and trophoblast, as the blastocyst and its extraembryonic trophectoderm are central to fetal, maternal, and overall pregnancy health. We describe the foundational studies leading to their development and outline the utility as well as specific limitations that are unique and common to many of these in vitro platforms.
Collapse
Affiliation(s)
- Sandra Haider
- Department of Obstetrics & Gynecology, Medical University of Vienna, Vienna, Austria
| | - Alexander G Beristain
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Li X, Wang J, Zhang F, Yu M, Zuo N, Li L, Tan J, Shen W. Cyanidin-3-O-Glucoside Rescues Zearalenone-Induced Apoptosis via the ITGA7-PI3K-AKT Signaling Pathway in Porcine Ovarian Granulosa Cells. Int J Mol Sci 2023; 24:ijms24054441. [PMID: 36901882 PMCID: PMC10002597 DOI: 10.3390/ijms24054441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023] Open
Abstract
Zearalenone (ZEN) is an important secondary metabolite of Fusarium fungi, exposure to which can cause reproductive disorders through its effects on ovarian granulosa cells (GCs) in many mammals, especially in pigs. This study aimed to investigate the protective effects of Cyanidin-3-O-glucoside (C3G) on the ZEN-induced negative effects in porcine GCs (pGCs). The pGCs were treated with 30 µM ZEN and/or 20 µM C3G for 24 h; they were divided into a control (Ctrl) group, ZEN group, ZEN+C3G (Z+C) group, and a C3G group. Bioinformatics analysis was used to systematically screen differentially expressed genes (DEGs) in the rescue process. Results showed that C3G could effectively rescue ZEN-induced apoptosis in pGCs, and notably increase cell viability and proliferation. Furthermore, 116 DEGs were identified, and the phosphatidylinositide 3-kinases-protein kinase B (PI3K-AKT) signaling pathway was the center of attention, of which five genes and the PI3K-AKT signaling pathway were confirmed by real-time quantitative PCR (qPCR) and/or Western blot (WB). As analyzed, ZEN inhibited mRNA and protein levels of integrin subunit alpha-7 (ITGA7), and promoted the expression of cell cycle inhibition kinase cyclin-D3 (CCND3) and cyclin-dependent kinase inhibitor 1 (CDKN1A). After the knock-down of ITGA7 by siRNA, the PI3K-AKT signaling pathway was significantly inhibited. Meanwhile, proliferating cell nuclear antigen (PCNA) expression decreased, and apoptosis rates and pro-apoptotic proteins increased. In conclusion, our study demonstrated that C3G exhibited significant protective effects on the ZEN-induced inhibition of proliferation and apoptosis via the ITGA7-PI3K-AKT pathway.
Collapse
Affiliation(s)
- Xiuxiu Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingya Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fali Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Mubin Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ning Zuo
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinghe Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Wei Shen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence: ; Tel.: +86-0532-58957316
| |
Collapse
|
33
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Ma Y, Du C, Xie X, Zhang Y, Wang C, Xu J, Xia G, Yang Y. To explore the regulatory role of Wnt/P53/Caspase3 signal in mouse ovarian development based on LFQ proteomics. J Proteomics 2023; 272:104772. [PMID: 36414229 DOI: 10.1016/j.jprot.2022.104772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Early ovarian follicular development is regulated by multiple proteins and signaling pathways, including the Wnt gene. To explore the regulatory mechanism of Wnt signaling on early ovarian follicular development, ovaries from 17.5 days post coitum (17.5 dpc) mice were collected and cultured in vitro for four days in the presence of IWP2 as a Wnt activity inhibitor and KN93 as a CaMKII inhibitor. LFQ proteomics technique was then used to analyze the significant differentially abundant (P-SDA) 93 and 262 proteins in the IWP2 and KN93 groups, respectively. Of these, 63 up-regulated proteins and 30 down-regulated proteins were identified for IWP2, along with 3 significant KEGG pathways (P < 0.05). For the KN93 group, 168 up-regulated proteins and 94 down-regulated ones were P-SDA, with 9 significant KEGG pathways also noted (P < 0.05). In both IWP2 and KN93 groups, key pathways (Wnt signaling pathway, Notch signaling pathway, P53 signaling pathway, TGF-β signaling pathway, ovarian steroid production) and metabolic regulation (energy metabolism, metal ion metabolism) were found to be related to early ovarian follicular development. Finally, western blotting demonstrated the regulatory role of Wnt/P53/Caspase3 signaling pathway in mouse ovarian development. These results contribute new knowledge to the understanding of regulatory factors of early ovarian follicular development. SIGNIFICANCE: In this study, label-free quantification (LFQ) was used in combination with liquid chromatography-mass spectrometer (LC-MS/MS) to study potential changes in the proteomic profiles of embryonic mice subjected to Wnt inhibitor IWP2 and CaMKIIinhibitor KN93. In addition, bioinformatics and comparative analyses were performed using publicly available proteomics databases to further explore the underlying mechanisms associated with early mouse ovarian growth and development.
Collapse
Affiliation(s)
- Yabo Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Changzheng Du
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xianguo Xie
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yan Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Chao Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinrui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guoliang Xia
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
35
|
Li C, Zhang H, Wu H, Li R, Wen D, Tang Y, Gao Z, Xu R, Lu S, Wei Q, Zhao X, Pan M, Ma B. Intermittent fasting reverses the declining quality of aged oocytes. Free Radic Biol Med 2023; 195:74-88. [PMID: 36581058 DOI: 10.1016/j.freeradbiomed.2022.12.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Decreased oocyte quality and compromised embryo development are particularly prevalent in older females, but the aging-related cellular processes and effective ameliorative approaches have not been fully characterized. Intermittent fasting (IF) can help improve health and extend lifespan; nevertheless, how it regulates reproductive aging and its mechanisms remain unclear. We used naturally aged mice to investigate the role of IF in reproduction and found that just one month of every-other-day fasting was sufficient to improve oocyte quality. IF not only increased antral follicle numbers and ovulation but also enhanced oocyte meiotic competence and embryonic development by improving both nuclear and cytoplasmic maturation in maternally aged oocytes. The beneficial effects of IF manifested as alleviation of spindle structure abnormalities and chromosome segregation errors and maintenance of the correct cytoplasmic organelle reorganization. Moreover, single-cell transcriptome analysis showed that the positive impact of IF on aged oocytes was mediated by restoration of the nicotinamide adenine dinucleotide (NAD+)/Sirt1-mediated antioxidant defense system, which eliminated excessive accumulated ROS to suppress DNA damage and apoptosis. Collectively, these findings suggest that IF is a feasible approach to protect oocytes against advanced maternal age-related oxidation damage and to improve the reproductive outcomes of aged females.
Collapse
Affiliation(s)
- Chan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hao Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Ruoyu Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Dongxu Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yaju Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Zhen Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Sihai Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
36
|
Zhang T, He M, Zhang J, Tong Y, Chen T, Wang C, Pan W, Xiao Z. Mechanisms of primordial follicle activation and new pregnancy opportunity for premature ovarian failure patients. Front Physiol 2023; 14:1113684. [PMID: 36926197 PMCID: PMC10011087 DOI: 10.3389/fphys.2023.1113684] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Primordial follicles are the starting point of follicular development and the basic functional unit of female reproduction. Primordial follicles are formed around birth, and most of the primordial follicles then enter a dormant state. Since primordial follicles are limited in number and can't be renewed, dormant primordial follicles cannot be reversed once they enter the growing state. Thus, the orderly occurrence of primordial follicles selective activation directly affects the rate of follicle consumption and thus determines the length of female reproductive lifespan. Studies have found that appropriately inhibiting the activation rate of primordial follicles can effectively slow down the rate of follicle consumption, maintain fertility and delay ovarian aging. Based on the known mechanisms of primordial follicle activation, primordial follicle in vitro activation (IVA) technique has been clinically developed. IVA can help patients with premature ovarian failure, middle-aged infertile women, or infertile women due to gynecological surgery treatment to solve infertility problems. The study of the mechanism of selective activation of primordial follicles can contribute to the development of more efficient and safe IVA techniques. In this paper, recent mechanisms of primordial follicle activation and its clinical application are reviewed.
Collapse
Affiliation(s)
- Tuo Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Meina He
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingjing Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuntong Tong
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ziwen Xiao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
37
|
Hsu SH, Chuang KT, Wang LT. Role of wnt ligand secretion mediator signaling in cancer development. JOURNAL OF CANCER RESEARCH AND PRACTICE 2023. [DOI: 10.4103/ejcrp.ejcrp-d-22-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
38
|
Nagamatsu G. Oocyte aging in comparison to stem cells in mice. FRONTIERS IN AGING 2023; 4:1158510. [PMID: 37114094 PMCID: PMC10126682 DOI: 10.3389/fragi.2023.1158510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
To maintain homeostasis, many tissues contain stem cells that can self-renew and differentiate. Based on these functions, stem cells can reconstitute the tissue even after injury. In reproductive organs, testes have spermatogonial stem cells that generate sperm in men throughout their lifetime. However, in the ovary, oocytes enter meiosis at the embryonic stage and maintain sustainable oogenesis in the absence of stem cells. After birth, oocytes are maintained in a dormant state in the primordial follicle, which is the most premature follicle in the ovary, and some are activated to form mature oocytes. Thus, regulation of dormancy and activation of primordial follicles is critical for a sustainable ovulatory cycle and is directly related to the female reproductive cycle. However, oocyte storage is insufficient to maintain a lifelong ovulation cycle. Therefore, the ovary is one of the earliest organs to be involved in aging. Although stem cells are capable of proliferation, they typically exhibit slow cycling or dormancy. Therefore, there are some supposed similarities with oocytes in primordial follicles, not only in their steady state but also during aging. This review aims to summarise the sustainability of oogenesis and aging phenotypes compared to tissue stem cells. Finally, it focuses on the recent breakthroughs in vitro culture and discusses future prospects.
Collapse
Affiliation(s)
- Go Nagamatsu
- Center for Advanced Assisted Reproductive Technologies, University of Yamanashi, Kofu, Yamanashi, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- *Correspondence: Go Nagamatsu,
| |
Collapse
|
39
|
Gong X, Zhang Y, Ai J, Li K. Application of Single-Cell RNA Sequencing in Ovarian Development. Biomolecules 2022; 13:47. [PMID: 36671432 PMCID: PMC9855652 DOI: 10.3390/biom13010047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The ovary is a female reproductive organ that plays a key role in fertility and the maintenance of endocrine homeostasis, which is of great importance to women's health. It is characterized by a high heterogeneity, with different cellular subpopulations primarily containing oocytes, granulosa cells, stromal cells, endothelial cells, vascular smooth muscle cells, and diverse immune cell types. Each has unique and important functions. From the fetal period to old age, the ovary experiences continuous structural and functional changes, with the gene expression of each cell type undergoing dramatic changes. In addition, ovarian development strongly relies on the communication between germ and somatic cells. Compared to traditional bulk RNA sequencing techniques, the single-cell RNA sequencing (scRNA-seq) approach has substantial advantages in analyzing individual cells within an ever-changing and complicated tissue, classifying them into cell types, characterizing single cells, delineating the cellular developmental trajectory, and studying cell-to-cell interactions. In this review, we present single-cell transcriptome mapping of the ovary, summarize the characteristics of the important constituent cells of the ovary and the critical cellular developmental processes, and describe key signaling pathways for cell-to-cell communication in the ovary, as revealed by scRNA-seq. This review will undoubtedly improve our understanding of the characteristics of ovarian cells and development, thus enabling the identification of novel therapeutic targets for ovarian-related diseases.
Collapse
Affiliation(s)
| | | | - Jihui Ai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
40
|
Liu M, Wu Z, Yan C, Liu Y, Xing K, Zhang J, Sun Y. Ovarian transcriptome and metabolic responses of RNAi-mediated farnesyl pyrophosphate synthase knockdown in Neocaridina denticulata sinensis. Genomics 2022; 114:110484. [PMID: 36126831 DOI: 10.1016/j.ygeno.2022.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
Methyl farnesoate (MF) is considered the equivalent of JH in crustaceans and plays an essential role in many crucial physiological processes. It is believed that farnesyl pyrophosphate synthase (FPPS) plays an essential role in the biosynthesis of mevalonate, which is a branch of the JH/MF pathway. The full-length cDNA of FPPS (NdFPPS) from Neocaridina denticulata sinensis was isolated and characterized, and the deduced amino acid of NdFPPS contained a polyprenyl_synt domain. In addition to its ubiquitous tissue expression, NdFPPS was significantly expressed in the ovary. In vivo gene silencing with dsRNA interference was performed to further investigate the function of NdFPPS. An ovarian transcriptomic analysis of dsNdFPPS experimental and control groups was used to compare, annotate, and classify differentially expressed genes (DEGs). A total of 9230 DEGs were identified in the experimental and control groups based on FPKM values, of which 5082 were up-regulated genes and 4148 were down-regulated genes. 761 GO terms and 102 KEGG pathways were enriched for the DEGs. Our results suggest that NdFPPS might play an important role in ovarian development, however, further functional study is needed to elucidate physiological role of NdFPPS in reproduction.
Collapse
Affiliation(s)
- Mengfei Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China
| | - Zixuan Wu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Congcong Yan
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yujie Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Kefan Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Jiquan Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China.
| | - Yuying Sun
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
41
|
Sun Z, Hong Q, Liu Y, He X, Di R, Wang X, Ren C, Zhang Z, Chu M. Characterization of circular RNA profiles of oviduct reveal the potential mechanism in prolificacy trait of goat in the estrus cycle. Front Physiol 2022; 13:990691. [PMID: 36187784 PMCID: PMC9521424 DOI: 10.3389/fphys.2022.990691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/24/2022] [Indexed: 12/29/2022] Open
Abstract
The mammalian oviduct is functionally highly diverse during the estrus cycle. It provides a suitable milieu for oocyte maturation, sperm capacitation, fertilization, early embryo development and transportation. While there have been many studies of molecular mechanisms on the kidding number of goats, a systematic analysis by which the underlying circular RNAs (circRNAs) changes in the oviduct related to prolificacy traits is lacking. Herein, we present a comprehensive circRNA atlas of the oviduct among high- and low-fecundity goats in the follicular phase (FH vs. FL), luteal phase (LH vs. LL), and estrus cycle (FH vs. LH; FL vs. LL) to unravel their potential regulatory mechanisms in improving kidding number. We generated RNA sequencing data, and identified 4,078 circRNAs from twenty sampled Yunshang black goats. Many of these circRNAs are exon-derived and differentially expressed between each comparison group. Subsequently, eight differentially expressed (DE) circRNAs were validated by RT‒qPCR, which was consistent with the RNA-seq data. GO and KEGG enrichment analyses suggested that numerous host genes of DE circRNAs were involved in the hormone secretion, gamete production, fertilization, and embryo development processes. The competing endogenous RNA (ceRNA) interaction network analysis revealed that 2,673 circRNA–miRNA–mRNA axes (including 15 DE circRNAs, 14 miRNAs, and 1,699 mRNAs) were formed, and several target genes derived from the ceRNA network were associated with oviduct functions and reproduction, including SMAD1, BMPR1B, IGF1, REV1, and BMP2K. Furthermore, miR-15a-5p, miR-181b-5p, miR-23b-5p, miR-204-3p, and miR-145-5p might play important roles in reproduction. Finally, a novel circRNA, circIQCG, was identified as potentially involved in embryo development. Overall, our study provides a resource of circRNAs to understand the oviductal function and its connection to prolificacy trait of goats in the differentiation estrus cycle.
Collapse
Affiliation(s)
- Zhipeng Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Zijun Zhang, ; Mingxing Chu,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zijun Zhang, ; Mingxing Chu,
| |
Collapse
|
42
|
Zhang X, Zhao H, Li Y, Zhang Y, Liang Y, Shi J, Zhou R, Hong L, Cai G, Wu Z, Li Z. Amphiregulin Supplementation During Pig Oocyte In Vitro Maturation Enhances Subsequent Development of Cloned Embryos by Promoting Cumulus Cell Proliferation. Cell Reprogram 2022; 24:175-185. [PMID: 35861708 DOI: 10.1089/cell.2022.0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The oocyte in vitro maturation (IVM) technique is important in animal husbandry, biomedicine, and human-assisted reproduction. However, the developmental potential of in vitro matured oocytes is usually lower than that of in vivo matured (IVVM) oocytes. Amphiregulin (AREG) is an EGF-like growth factor that plays critical roles in the maturation and development of mammalian oocytes. This study investigated the effects of AREG supplementation during pig oocyte IVM on the subsequent development of cloned embryos. The addition of AREG to pig oocyte IVM medium improved the developmental competence of treated oocyte-derived cloned embryos by enhancing the expansion and proliferation of cumulus cells (CCs) during IVM. The positive effect of AREG on enhancing the quality of IVVM pig oocytes might be due to the activation of proliferation-related pathways in CCs by acting on the AREG receptor. The present study provides an AREG treatment-based method to improve the developmental competence of cloned pig embryos.
Collapse
Affiliation(s)
- Xianjun Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yanan Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu, China
| | - Rong Zhou
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Chen F, Chen Y, Mai Q. Multi-Omics Analysis and Machine Learning Prediction Model for Pregnancy Outcomes After Intracytoplasmic Sperm Injection–in vitro Fertilization. Front Public Health 2022; 10:924539. [PMID: 35844885 PMCID: PMC9282825 DOI: 10.3389/fpubh.2022.924539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background To explore the methylation profiles in cumulus cells (CCs) of women undergoing intracytoplasmic sperm injection–in vitro fertilization (ICSI–IVF) and establish a prediction model of pregnancy outcomes using machine learning approaches. Methods Methylation data were retrieved from the Gene Expression Omnibus (GEO) database, and differentially methylated genes (DMGs) were subjected to gene set analyses. Support vector machine (SVM), random forest (RF), and logistic regression (LR) were used to establish the prediction model, and microarray data from GEO was analyzed to identify differentially expressed genes (DEGs) associated with the dichotomous outcomes of clinical pregnancy (pregnant vs. non-pregnant). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis provided multi-dimensional validation for selected DMGs. Results A total of 338 differentially methylated CpG sites associated with 146 unique genes across the genome were identified. Among the identified pathways, the prominent ones were involved in the regulation of cell growth and oocyte development (hsa04340, hsa04012, hsa04914, hsa04614, hsa04913, hsa04020, and hsa00510). The area under the curve (AUC) of machine learning classifiers was 0.94 (SVM) vs. 0.88 (RF) vs. 0.97 (LR). 196 DEGs were found in transcriptional microarray. Mapped genes were selected through overlapping enriched pathways in transcriptional profiles and methylated data of CCs, predictive of successful pregnancy. Conclusions Methylated profiles of CCs were significantly different between women receiving ICSI-IVF procedures that conceived successfully and those that did not conceive. Machine learning approaches are powerful tools that may provide crucial information for prognostic assessment. Pathway analysis may be another way in multiomics analysis of cumulus cells.
Collapse
Affiliation(s)
- Fangying Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yixin Chen
- Division of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Qinyun Mai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qinyun Mai
| |
Collapse
|
44
|
Bogoch Y, Jamieson-Lucy A, Vejnar CE, Levy K, Giraldez AJ, Mullins MC, Elkouby YM. Stage Specific Transcriptomic Analysis and Database for Zebrafish Oogenesis. Front Cell Dev Biol 2022; 10:826892. [PMID: 35733854 PMCID: PMC9207522 DOI: 10.3389/fcell.2022.826892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
Oogenesis produces functional eggs and is essential for fertility, embryonic development, and reproduction. The zebrafish ovary is an excellent model to study oogenesis in vertebrates, and recent studies have identified multiple regulators in oocyte development through forward genetic screens, as well as reverse genetics by CRISPR mutagenesis. However, many developmental steps in oogenesis, in zebrafish and other species, remain poorly understood, and their underlying mechanisms are unknown. Here, we take a genomic approach to systematically uncover biological activities throughout oogenesis. We performed transcriptomic analysis on five stages of oogenesis, from the onset of oocyte differentiation through Stage III, which precedes oocyte maturation. These transcriptomes revealed thousands of differentially expressed genes across stages of oogenesis. We analyzed trends of gene expression dynamics along oogenesis, as well as their expression in pair-wise comparisons between stages. We determined their functionally enriched terms, identifying uniquely characteristic biological activities in each stage. These data identified two prominent developmental phases in oocyte differentiation and traced the accumulation of maternally deposited embryonic regulator transcripts in the developing oocyte. Our analysis provides the first molecular description for oogenesis in zebrafish, which we deposit online as a resource for the community. Further, the presence of multiple gene paralogs in zebrafish, and the exclusive curation by many bioinformatic tools of the single paralogs present in humans, challenge zebrafish genomic analyses. We offer an approach for converting zebrafish gene name nomenclature to the human nomenclature for supporting genomic analyses generally in zebrafish. Altogether, our work provides a valuable resource as a first step to uncover oogenesis mechanisms and candidate regulators and track accumulating transcripts of maternal regulators of embryonic development.
Collapse
Affiliation(s)
- Yoel Bogoch
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| | - Allison Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Karine Levy
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| | | | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Yaniv M. Elkouby
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| |
Collapse
|
45
|
Han X, Song Z, Wang W, Tang H. Polymorphism in the 5' regulatory region of CTNNB1 gene and association with age at first lay and egg production. Br Poult Sci 2022; 63:510-518. [PMID: 35164622 DOI: 10.1080/00071668.2022.2042484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The Wnt signalling pathway is centred on the fact that catenin beta-1(CTNNB1) participates in the regulation of ovarian follicle development. The aim of the following study was to identify the polymorphism in the 5' regulatory region of the chicken CTNNB1 gene and evaluate the association between SNPs and egg production traits.2. The study demonstrated that the 5' regulatory region of the CTNNB1 gene has ten SNPs in the chicken flock. After Bonferroni correction for multiple testing, five SNPs (rs315692306, 2:g43385123, rs735854102, 2:g43385457 and rs737907370) were significantly correlated with egg laying traits.3. An association study of the haplotypes with egg laying traits revealed that both haplotypes in block 1 (consisting of rs735052881, rs740662190, rs315692306, and 2:43385123) and block 2 (consisting of rs735854102 and 2:g43385457) were associated with point of lay age and the number of eggs laid at 18-23 weeks. Prediction of transcription factor binding sites showed that transcription factors changed after mutation in block 2. The luciferase assay revealed that the priming activity of the CA haplotype in block2 was the highest.4. Taken together, the rs315692306, 2:g43385123, rs735854102, 2:g43385457 and rs737907370 in the 5' regulatory region of the CTNNB1 gene have significant impacts on egg production.
Collapse
Affiliation(s)
- Xu Han
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Zhifang Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| |
Collapse
|
46
|
Zhang JH, Tasaki T, Tsukamoto M, Wang KY, Azuma K. Deficiency of Wnt10a causes female infertility via the β-catenin/Cyp19a1 pathway in mice. Int J Med Sci 2022; 19:701-710. [PMID: 35582421 PMCID: PMC9108412 DOI: 10.7150/ijms.71127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Wnt signaling is relevant for a wide range of biological processes, including reproductive function. The function of Wnt10a in female fertility, however, remains obscure. In the present study, we explored the structure and function of the female reproductive organs in Wnt10a knockout (KO) mice. The expression of β-catenin signaling was significantly lower in the ovaries of the Wnt10a KO mice compared with wild-type (WT) mice. In addition, the estrous cycles were disrupted, ovarian follicles were diminished, and endometria were thinner, accompanied by lower serum estrogen levels, and higher testosterone and progesterone levels in Wnt10a KO mice. The expression of the ovarian cytochrome P450 family 19 subfamily A member 1 (Cyp19a1) was significantly lower in Wnt10a KO mice. We detected no significant changes in the levels of the gonadotropins between WT and KO mice. Together, our findings indicate that deficiency of Wnt10a causes female infertility through β-catenin and Cyp19a1signaling pathways in mice.
Collapse
Affiliation(s)
- Jia-He Zhang
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu 807-8555, Japan
| | - Takashi Tasaki
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health University, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu 807-8555, Japan
| |
Collapse
|
47
|
Ford EA, Frost ER, Beckett EL, Roman SD, McLaughlin EA, Sutherland JM. Transcriptomic profiling of neonatal mouse granulosa cells reveals new insights into primordial follicle activation†. Biol Reprod 2021; 106:503-514. [PMID: 34673933 PMCID: PMC8934697 DOI: 10.1093/biolre/ioab193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/23/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
The dormant population of ovarian primordial follicles is determined at birth and serves as the reservoir for future female fertility. Yet our understanding of the molecular, biochemical, and cellular processes underpinning primordial follicle activation remains limited. The survival of primordial follicles relies on the correct complement and morphology of granulosa cells, which provide signaling factors essential for oocyte and follicular survival. To investigate the contribution of granulosa cells in the primordial-to-primary follicle transition, gene expression profiles of granulosa cells undergoing early differentiation were assessed in a murine model. Ovaries from C57Bl/6 mice were enzymatically dissociated at time-points spanning the initial wave of primordial follicle activation. Post-natal day (PND) 1 ovaries yielded primordial granulosa cells, and PND4 ovaries yielded a mixed population of primordial and primary granulosa cells. The comparative transcriptome of granulosa cells at these time-points was generated via Illumina NextSeq 500 system, which identified 131 significantly differentially expressed transcripts. The differential expression of eight of the transcripts was confirmed by RT-qPCR. Following biological network mapping via Ingenuity Pathway Analysis, the functional expression of the protein products of three of the differentially expressed genes, namely FRZB, POD1, and ZFX, was investigated with in-situ immunolocalization in PND4 mouse ovaries was investigated. Finally, evidence was provided that Wnt pathway antagonist, secreted frizzled-related protein 3 (FRZB), interacts with a suppressor of primordial follicle activation WNT3A and may be involved in promoting primordial follicle activation. This study highlights the dynamic changes in gene expression of granulosa cells during primordial follicle activation and provides evidence for a renewed focus into the Wnt signaling pathway’s role in primordial follicle activation.
Collapse
Affiliation(s)
- Emmalee A Ford
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, 2305, Australia
| | - Emily R Frost
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, 2305, Australia.,Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Emma L Beckett
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, 2305, Australia.,School of Environmental & Life Sciences, Faculty of Science, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, 2305, Australia.,Priority Research Centre for Drug Development, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, 2308, Australia.,School of Science, Western Sydney University, Penrith, 2750, Australia.,School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, 1142, New Zealand
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, 2305, Australia
| |
Collapse
|