1
|
Stooke-Vaughan GA, Kim S, Yen ST, Son K, Banavar SP, Giammona J, Kimelman D, Campàs O. The physical roles of different posterior tissues in zebrafish axis elongation. Nat Commun 2025; 16:1839. [PMID: 39984461 PMCID: PMC11845790 DOI: 10.1038/s41467-025-56334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/16/2025] [Indexed: 02/23/2025] Open
Abstract
Shaping embryonic tissues requires spatiotemporal changes in genetic and signaling activity as well as in tissue mechanics. Studies linking specific molecular perturbations to changes in the tissue physical state remain sparse. Here we study how specific genetic perturbations affecting different posterior tissues during zebrafish body axis elongation change their physical state, the resulting large-scale tissue flows, and posterior elongation. Using a custom analysis software to reveal spatiotemporal variations in tissue fluidity, we show that dorsal tissues are most fluid at the posterior end, rigidify anterior of this region, and become more fluid again yet further anteriorly. In the absence of notochord (noto mutants) or when the presomitic mesoderm is substantially reduced (tbx16 mutants), dorsal tissues elongate normally. Perturbations of posterior-directed morphogenetic flows in dorsal tissues (vangl2 mutants) strongly affect the speed of elongation, highlighting the essential role of dorsal cell flows in delivering the necessary material to elongate the axis.
Collapse
Affiliation(s)
| | - Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Shuo-Ting Yen
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Kevin Son
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Samhita P Banavar
- Department of Physics, University of California, Santa Barbara, CA, USA
- Department of Chemical and Biological Engineering, Princeton University, New Jersey, NJ, USA
| | - James Giammona
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Wright R, Wilson V. The role of the node in maintaining axial progenitors. Cells Dev 2025:204004. [PMID: 39954851 DOI: 10.1016/j.cdev.2025.204004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The production of the vertebrate body axis involves the coordinating activity of the organizer, which coincides in amniotes with the node in the gastrulating embryo. This organizer orchestrates nearby axial progenitor populations that produce the spinal cord and musculoskeleton. Various findings, discussed further in this review, suggest that some of these axial progenitors exhibit stem cell-like properties as they display maintenance behaviour such as self-renewal and sustained contribution to derivative tissues. We consider how the node acts to maintain and regulate these progenitor populations by providing mechanical forces and a niche-like signalling environment.
Collapse
Affiliation(s)
- Raffee Wright
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
3
|
Saunders D, Camacho-Macorra C, Steventon B. Spinal cord elongation enables proportional regulation of the zebrafish posterior body. Development 2025; 152:dev204438. [PMID: 39745249 PMCID: PMC11829759 DOI: 10.1242/dev.204438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025]
Abstract
Early embryos display a remarkable ability to regulate tissue patterning in response to changes in tissue size. However, it is not clear whether this ability continues into post-gastrulation stages. Here, we performed targeted removal of dorsal progenitors in the zebrafish tailbud using multiphoton ablation. This led to a proportional reduction in the length of the spinal cord and paraxial mesoderm in the tail, revealing a capacity for the regulation of tissue morphogenesis during tail formation. Following analysis of cell proliferation, gene expression, signalling and cell movements, we found no evidence of cell fate switching from mesoderm to neural fate to compensate for neural progenitor loss. Furthermore, tail paraxial mesoderm length is not reduced upon direct removal of an equivalent number of mesoderm progenitors, ruling out the hypothesis that neuromesodermal competent cells enable proportional regulation. Instead, reduction in cell number across the spinal cord reduces both spinal cord and paraxial mesoderm length. We conclude that spinal cord elongation is a driver of paraxial mesoderm elongation in the zebrafish tail and that this can explain proportional regulation upon neural progenitor reduction.
Collapse
Affiliation(s)
- Dillan Saunders
- Department of Genetics, University of Cambridge, Cambridge, UK, CB2 3EH
| | | | | |
Collapse
|
4
|
The people behind the papers - Dillan Saunders and Benjamin Steventon. Development 2025; 152:dev204593. [PMID: 39786782 DOI: 10.1242/dev.204593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
During early development, embryos coordinate the growth of different tissues to ensure that they reach the correct proportions. A new paper in Development shows that tissue scaling occurs in the tail of the post-gastrulation zebrafish embryo. The study suggests that this scaling is underpinned by multi-tissue tectonics, a mechanism whereby the deformation of one growing tissue can impact the dynamics of a neighbouring tissue. To learn more about the story behind the paper, we caught up with first author Dillan Saunders and corresponding author Benjamin Steventon, an Assistant Professor at the University of Cambridge, UK.
Collapse
|
5
|
Robles-Garcia M, Thimonier C, Angoura K, Ozga E, MacPherson H, Blin G. In vitro modelling of anterior primitive streak patterning with human pluripotent stem cells identifies the path to notochord progenitors. Development 2024; 151:dev202983. [PMID: 39611739 DOI: 10.1242/dev.202983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Notochord progenitors (NotoPs) represent a scarce yet crucial embryonic cell population, playing important roles in embryo patterning and eventually giving rise to the cells that form and maintain intervertebral discs. The mechanisms regulating NotoPs emergence are unclear. This knowledge gap persists due to the inherent complexity of cell fate patterning during gastrulation, particularly within the anterior primitive streak (APS), where NotoPs first arise alongside neuro-mesoderm and endoderm. To gain insights into this process, we use micropatterning together with FGF and the WNT pathway activator CHIR9901 to guide the development of human embryonic stem cells into reproducible patterns of APS cell fates. We show that CHIR9901 dosage dictates the downstream dynamics of endogenous TGFβ signalling, which in turn controls cell fate decisions. While sustained NODAL signalling defines endoderm and NODAL inhibition is imperative for neuro-mesoderm emergence, timely inhibition of NODAL signalling with spatial confinement potentiates WNT activity and enables us to generate NotoPs efficiently. Our work elucidates the signalling regimes underpinning NotoP emergence and provides insights into the regulatory mechanisms controlling the balance of APS cell fates during gastrulation.
Collapse
Affiliation(s)
- Miguel Robles-Garcia
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Chloë Thimonier
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Konstantina Angoura
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Ewa Ozga
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Heather MacPherson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| |
Collapse
|
6
|
Manser CL, Perez-Carrasco R. A mathematical framework for measuring and tuning tempo in developmental gene regulatory networks. Development 2024; 151:dev202950. [PMID: 38780527 PMCID: PMC11234385 DOI: 10.1242/dev.202950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Embryo development is a dynamic process governed by the regulation of timing and sequences of gene expression, which control the proper growth of the organism. Although many genetic programmes coordinating these sequences are common across species, the timescales of gene expression can vary significantly among different organisms. Currently, substantial experimental efforts are focused on identifying molecular mechanisms that control these temporal aspects. In contrast, the capacity of established mathematical models to incorporate tempo control while maintaining the same dynamical landscape remains less understood. Here, we address this gap by developing a mathematical framework that links the functionality of developmental programmes to the corresponding gene expression orbits (or landscapes). This unlocks the ability to find tempo differences as perturbations in the dynamical system that preserve its orbits. We demonstrate that this framework allows for the prediction of molecular mechanisms governing tempo, through both numerical and analytical methods. Our exploration includes two case studies: a generic network featuring coupled production and degradation, with a particular application to neural progenitor differentiation; and the repressilator. In the latter, we illustrate how altering the dimerisation rates of transcription factors can decouple the tempo from the shape of the resulting orbits. We conclude by highlighting how the identification of orthogonal molecular mechanisms for tempo control can inform the design of circuits with specific orbits and tempos.
Collapse
Affiliation(s)
- Charlotte L. Manser
- Department of Life Sciences, Imperial College London, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Ruben Perez-Carrasco
- Department of Life Sciences, Imperial College London, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
7
|
Curcio EJ, Lubkin SR. Flexural rigidity of pressurized model notochords in regular packing patterns. Cells Dev 2024; 177:203895. [PMID: 38040291 DOI: 10.1016/j.cdev.2023.203895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
The biomechanics of embryonic notochords are studied using an elastic membrane model. An initial study varying internal pressure and stiffness ratio determines tension and geometric ratios as a function of internal pressure, membrane stiffness ratio, and cell packing pattern. A subsequent three-point bending study determines flexural rigidity as a function of internal pressure, configuration, and orientation. Flexural rigidity is found to be independent of membrane stiffness ratio. Controlling for number and volume of cells and their internal pressure, the eccentric staircase pattern of cell packing has more than double the flexural rigidity of the radially symmetric bamboo pattern. Moreover, the eccentric staircase pattern is found to be more than twice as stiff in lateral bending than in dorsoventral bending. This suggests a mechanical advantage to the eccentric WT staircase pattern of the embryonic notochord, over patterns with round cross-section.
Collapse
|
8
|
Curcio EJ, Lubkin SR. Physical models of notochord cell packing reveal how tension ratios determine morphometry. Cells Dev 2023; 173:203825. [PMID: 36706628 DOI: 10.1016/j.cdev.2023.203825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
The physical and geometric aspects of notochords are investigated using a model of finite-length notochords, with interior vacuolated cells arranged in two common packing configurations, and sheath modeled as homogeneous and thin. The key ratios governing packing patterns and eccentricity are number of cells per unit length λ and cell tension ratio Γ. By analyzing simulations that vary Γ and total number of cells N, we find that eccentricity, λ, and internal pressure approach consistent asymptotic values away from the tapering ends, as N increases. The length of the tapering ends is quantified as a function of Γ and pattern. Formulas are derived for geometric ratios, pressure, and energy as functions of Γ and pattern. These observations on the relationship between mechanics, geometry, and pattern provide a framework for further work which may provide insight into the roles of mechanosensing and pressure-volume regulation in the notochord.
Collapse
|
9
|
Özelçi E, Mailand E, Rüegg M, Oates AC, Sakar MS. Deconstructing body axis morphogenesis in zebrafish embryos using robot-assisted tissue micromanipulation. Nat Commun 2022; 13:7934. [PMID: 36566327 PMCID: PMC9789989 DOI: 10.1038/s41467-022-35632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Classic microsurgical techniques, such as those used in the early 1900s by Mangold and Spemann, have been instrumental in advancing our understanding of embryonic development. However, these techniques are highly specialized, leading to issues of inter-operator variability. Here we introduce a user-friendly robotic microsurgery platform that allows precise mechanical manipulation of soft tissues in zebrafish embryos. Using our platform, we reproducibly targeted precise regions of tail explants, and quantified the response in real-time by following notochord and presomitic mesoderm (PSM) morphogenesis and segmentation clock dynamics during vertebrate anteroposterior axis elongation. We find an extension force generated through the posterior notochord that is strong enough to buckle the structure. Our data suggest that this force generates a unidirectional notochord extension towards the tailbud because PSM tissue around the posterior notochord does not let it slide anteriorly. These results complement existing biomechanical models of axis elongation, revealing a critical coupling between the posterior notochord, the tailbud, and the PSM, and show that somite patterning is robust against structural perturbations.
Collapse
Affiliation(s)
- Ece Özelçi
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Institute of Bioengineering, EPFL, 1015, Lausanne, Switzerland
| | - Erik Mailand
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Matthias Rüegg
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Andrew C Oates
- Institute of Bioengineering, EPFL, 1015, Lausanne, Switzerland.
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- Institute of Bioengineering, EPFL, 1015, Lausanne, Switzerland.
| |
Collapse
|
10
|
Busby L, Saunders D, Serrano Nájera G, Steventon B. Quantitative Experimental Embryology: A Modern Classical Approach. J Dev Biol 2022; 10:44. [PMID: 36278549 PMCID: PMC9624316 DOI: 10.3390/jdb10040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Experimental Embryology is often referred to as a classical approach of developmental biology that has been to some extent replaced by the introduction of molecular biology and genetic techniques to the field. Inspired by the combination of this approach with advanced techniques to uncover core principles of neural crest development by the laboratory of Roberto Mayor, we review key quantitative examples of experimental embryology from recent work in a broad range of developmental biology questions. We propose that quantitative experimental embryology offers essential ways to explore the reaction of cells and tissues to targeted cell addition, removal, and confinement. In doing so, it is an essential methodology to uncover principles of development that remain elusive such as pattern regulation, scaling, and self-organisation.
Collapse
|
11
|
Abstract
During organismal development, organs and systems are built following a genetic blueprint that produces structures capable of performing specific physiological functions. Interestingly, we have learned that the physiological activities of developing tissues also contribute to their own morphogenesis. Specifically, physiological activities such as fluid secretion and cell contractility generate hydrostatic pressure that can act as a morphogenetic force. Here, we first review the role of hydrostatic pressure in tube formation during animal development and discuss mathematical models of lumen formation. We then illustrate specific roles of the notochord as a hydrostatic scaffold in anterior-posterior axis development in chordates. Finally, we cover some examples of how fluid flows influence morphogenetic processes in other developmental contexts. Understanding how fluid forces act during development will be key for uncovering the self-organizing principles that control morphogenesis.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Bijoy Daga
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Stefano Di Talia
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
12
|
Wang S, Han X, Yu T, Liu Y, Zhang H, Mao H, Hu C, Xu X. Isoprocarb causes neurotoxicity of zebrafish embryos through oxidative stress-induced apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113870. [PMID: 35816841 DOI: 10.1016/j.ecoenv.2022.113870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Isoprocarb is a widely used carbamate insecticide in agriculture and aquaculture. Overuse of isoprocarb always leaves toxic residues in soil and water, however, the potential ecotoxicity of isoprocarb to organisms is still confusing. In this study, zebrafish embryo was used as a model to evaluate the toxicity of isoprocarb. Zebrafish embryos (96 hpf) were separately exposed at different concentrations of isoprocarb. The mortality rate, hatchability rate, average heart beat of the zebrafish embryo were separately calculated. Our results suggested that exposure to isoprocarb induced developmental toxicity in zebrafish embryos. HE staining showed that exposure to isoprocarb caused developmental defect in the hindbrain of zebrafish embryos. As expected, the behavioral analysis also showed that the motor ability of zebrafish embryos were significantly inhibited following exposure to isoprocarb. In terms of mechanism, The expressions of genes involved in neurodevelopment signaling pathways, such as foxo3a, gfap, syn2a, elavl3 and sox19b, were inhibited in zebrafish embryos after exposure to isoprocarb. The acetylcholinesterase (AChE) activity was also reduced in isoprocarb-treated zebrafish embryos. Moreover, oxidative stress was induced by increasing the reactive oxygen species (ROS) level and decreasing the activity of antioxidant enzyme (SOD) after exposure to isoprocarb. Expectedly, acridine orange (AO) staining and the detection of some apoptosis-related genes revealed that oxidative stress resulted in apoptosis. In short, the expressions of genes associated with the neurodevelopmental signaling pathway are inhibited, and oxidative stress is also induced in zebrafish embryos after exposure to isoprocarb, which may be the molecular basics of isoprocarb-induced neurotoxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Shanghong Wang
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xue Han
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tingting Yu
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
13
|
Thomson L, Muresan L, Steventon B. The zebrafish presomitic mesoderm elongates through compaction-extension. Cells Dev 2021. [PMID: 34597846 DOI: 10.1101/2021.03.11.434927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In vertebrate embryos the presomitic mesoderm becomes progressively segmented into somites at the anterior end while extending along the anterior-posterior axis. A commonly adopted model to explain how this tissue elongates is that of posterior growth, driven in part by the addition of new cells from uncommitted progenitor populations in the tailbud. However, in zebrafish, much of somitogenesis is associated with an absence of overall volume increase, and posterior progenitors do not contribute new cells until the final stages of somitogenesis. Here, we perform a comprehensive 3D morphometric analysis of the paraxial mesoderm and reveal that extension is linked to a volumetric decrease and an increase in cell density. We also find that individual cells decrease in volume over successive somite stages. Live cell tracking confirms that much of this tissue deformation occurs within the presomitic mesoderm progenitor zone and is associated with non-directional rearrangement. Taken together, we propose a compaction-extension mechanism of tissue elongation that highlights the need to better understand the role tissue intrinsic and extrinsic forces in regulating morphogenesis.
Collapse
Affiliation(s)
- Lewis Thomson
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
14
|
The zebrafish presomitic mesoderm elongates through compaction-extension. Cells Dev 2021; 168:203748. [PMID: 34597846 PMCID: PMC7612712 DOI: 10.1016/j.cdev.2021.203748] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022]
Abstract
In vertebrate embryos the presomitic mesoderm becomes progressively segmented into somites at the anterior end while extending along the anterior-posterior axis. A commonly adopted model to explain how this tissue elongates is that of posterior growth, driven in part by the addition of new cells from uncommitted progenitor populations in the tailbud. However, in zebrafish, much of somitogenesis is associated with an absence of overall volume increase, and posterior progenitors do not contribute new cells until the final stages of somitogenesis. Here, we perform a comprehensive 3D morphometric analysis of the paraxial mesoderm and reveal that extension is linked to a volumetric decrease and an increase in cell density. We also find that individual cells decrease in volume over successive somite stages. Live cell tracking confirms that much of this tissue deformation occurs within the presomitic mesoderm progenitor zone and is associated with non-directional rearrangement. Taken together, we propose a compaction-extension mechanism of tissue elongation that highlights the need to better understand the role tissue intrinsic and extrinsic forces in regulating morphogenesis.
Collapse
|