1
|
Rizzuto G. B Cell Responses to the Placenta and Fetus. ANNUAL REVIEW OF PATHOLOGY 2025; 20:33-58. [PMID: 39264989 PMCID: PMC11912550 DOI: 10.1146/annurev-pathmechdis-111523-023459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Pregnancy has fascinated immunologists ever since Peter Medawar's observation that reproduction runs contrary to the founding tenets of immunology. During healthy pregnancy, maternal B cells interact with antigens of the foreign conceptus (placenta and fetus) yet do not elicit rejection. Instead, robust and redundant fetomaternal tolerance pathways generally prevent maternal B cells and antibodies from harming the placenta and fetus. Fetomaternal tolerance is not absolute, and unfortunately there exist several pregnancy complications that arise from breaks therein. Here, important historic and recent developments in the field of fetomaternal tolerance pertaining to maternal B cells and antibodies are reviewed. General rules from which to conceptualize humoral tolerance to the placenta and fetus are proposed. Significant but underexplored ideas are highlighted and topics for future research are suggested, findings from which are predicted to provide insight into the fundamental nature of tolerance and bolster efforts to combat immune-mediated pregnancy complications.
Collapse
Affiliation(s)
- Gabrielle Rizzuto
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
- Department of Anatomic Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| |
Collapse
|
2
|
Wei J, Zhang L, Xu H, Luo Q. Preterm birth, a consequence of immune deviation mediated hyperinflammation. Heliyon 2024; 10:e28483. [PMID: 38689990 PMCID: PMC11059518 DOI: 10.1016/j.heliyon.2024.e28483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Preterm birth represents a multifaceted syndrome with intricacies still present in our comprehension of its etiology. In the context of a semi-allograft, the prosperity from implantation to pregnancy to delivery hinges on the establishment of a favorable maternal-fetal immune microenvironment and a successful trilogy of immune activation, immune tolerance and then immune activation transitions. The occurrence of spontaneous preterm birth could be related to abnormalities within the immune trilogy, stemming from deviation in maternal and fetal immunity. These immune deviations, characterized by insufficient immune tolerance and early immune activation, ultimately culminated in an unsustainable pregnancy. In this review, we accentuated the role of both innate and adaptive immune reason in promoting spontaneous preterm birth, reviewed the risk of preterm birth from vaginal microbiome mediated by immune changes and the potential of vaginal microbiomes and metabolites as a new predictive marker, and discuss the changes in the role of progesterone and its interaction with immune cells in a preterm birth population. Our objective was to contribute to the growing body of knowledge in the field, shedding light on the immunologic reason of spontaneous preterm birth and effective biomarkers for early prediction, providing a roadmap for forthcoming investigations.
Collapse
Affiliation(s)
- Juan Wei
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| | - LiYuan Zhang
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| | - Heng Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| |
Collapse
|
3
|
Uehre GM, Tchaikovski S, Ignatov A, Zenclussen AC, Busse M. B Cells Induce Early-Onset Maternal Inflammation to Protect against LPS-Induced Fetal Rejection. Int J Mol Sci 2023; 24:16091. [PMID: 38003279 PMCID: PMC10671511 DOI: 10.3390/ijms242216091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
The maternal balance between B regulatory (Breg) cells and inflammatory B cells is of central importance for protection against preterm birth (PTB). However, the impact of B cell signaling in early maternal and fetal immune responses on inflammatory insults remains underinvestigated. To understand which role B cells and B-cell-specific signaling play in the pathogenesis of PTB, the later was induced by an injection of LPS in B cell-sufficient WT mice, CD19-/-, BMyD88-/- and µMT murine dams at gestational day 16 (gd 16). WT dams developed a strong inflammatory response in their peritoneal cavity (PC), with an increased infiltration of granulocytes and enhanced IL-6, TNF-α, IL-17 and MCP-1 levels. However, they demonstrated a reduced NOS2 expression of PC macrophages 4 h after the LPS injection. Simultaneously, LPS-challenged WT dams upregulated pregnancy-protective factors like IL-10 and TARC. The concentrations of inflammatory mediators in the placental supernatants, amniotic fluids, fetal serums and gestational tissues were lower in LPS-challenged WT dams compared to CD19-/-, BMyD88-/- and µMT dams, thereby protecting WT fetuses from being born preterm. B cell deficiency, or the loss of B-cell-specific CD19 or MyD88 expression, resulted in an early shift from immune regulation towards inflammation at the fetomaternal interface and fetuses, resulting in PTB.
Collapse
Affiliation(s)
- Gina Marie Uehre
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany;
- University Hospital for Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany; (S.T.); (A.I.)
| | - Svetlana Tchaikovski
- University Hospital for Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany; (S.T.); (A.I.)
| | - Atanas Ignatov
- University Hospital for Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany; (S.T.); (A.I.)
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany;
- Saxonian Incubator for Translation Research, Leipzig University, 04103 Leipzig, Germany
| | - Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany;
- University Hospital for Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany; (S.T.); (A.I.)
| |
Collapse
|
4
|
Jiang L, Cao D, Yeung WSB, Lee KF. Single-Cell RNA-Sequencing Reveals Interactions between Endometrial Stromal Cells, Epithelial Cells, and Lymphocytes during Mouse Embryo Implantation. Int J Mol Sci 2022; 24:ijms24010213. [PMID: 36613656 PMCID: PMC9820401 DOI: 10.3390/ijms24010213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The decidualization of endometrial stromal cells (ESCs) is an essential process facilitating embryo implantation. However, the roles of non-decidualized and decidualized ESCs in regulating the microenvironment of a receptive endometrium remain unclear. We investigated single-cell transcriptomic changes in the uterus of a CD-1 mouse model at the post-implantation stage. The implantation and inter-implantation sites of the uteruses of pregnant mice at 4.5 and 5.5 days post-coitum were dissected for single-cell RNA sequencing. We identified eight cell types: epithelial cells, stromal cells, endothelial cells, mesothelial cells, lymphocytes, myocytes, myeloids, and pericytes. The ESC transcriptome suggests that the four ESC subtypes are involved in the extracellular remodeling during implantation. The trajectory plot of ESC subtypes indicates embryo implantation that involves a differentiation pathway from undifferentiated ESCs (ESC 1) to decidualized ESCs (DEC ESCs), with distinct signaling pathways between the ESC subtypes. Furthermore, the ligand-receptor analysis suggests that ESCs communicate with epithelial cells and immune cells through nectin and ICAM signaling. Collectively, both decidualized and non-decidualized ESCs may regulate the endometrial microenvironment for optimal endometrial receptivity and immune tolerance. This study provides insights on the molecular and cellular characteristics of mouse ESCs in modulating the epithelial and lymphocyte functions during early embryo implantation.
Collapse
Affiliation(s)
- Luhan Jiang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen 518053, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen 518053, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen 518053, China
- Correspondence: ; Fax: +852-2816-1947
| |
Collapse
|
5
|
Busse M, Zenclussen AC. IL-10 Producing B Cells Protect against LPS-Induced Murine Preterm Birth by Promoting PD1- and ICOS-Expressing T Cells. Cells 2022; 11:cells11172690. [PMID: 36078100 PMCID: PMC9454497 DOI: 10.3390/cells11172690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
B cells and in particular IL-10-secreting B cells emerge as important players in immune balance during pregnancy. We have recently revealed that CD19-deficient (CD19−/−), B cell-specific IL-10-deficient (BIL-10−/−) and B cell-deficient µMT pregnant mice are highly susceptible to LPS-induced preterm birth (PTB). We aimed to analyze the ability of IL-10-secreting cells to protect from PTB and the underlying mechanisms. Wild type (WT), CD19−/−, BIL-10−/− and µMT mice were treated with LPS at gd16 and the cellular immune response was investigated 24 h later. LPS-treated BIL-10−/− dams showed a more pronounced PTB phenotype compared to WT, CD19−/− and µMT females, and increased inflammatory and reduced anti-inflammatory mediator concentrations in the peritoneal cavity and serum. CD19−/−, BIL-10−/− and µMT mice displayed altered immune cell population frequencies in the blood and uterus with lower numbers of IL-10-secreting B cells and T cells. BIL-10−/− mothers presented decreased frequencies of uterine CD4+CD25+Foxp3+ Treg cells. Co-stimulatory molecules are critical for feto-maternal tolerance and IL-10 secretion. We found dysregulated PD-1 expression in peripheral blood and ICOS expression in the uterus of CD19−/−, BIL-10−/− and µMT dams. Our data show that B cell-specific IL-10-signaling is essential for a balanced maternal immune response to an inflammatory stimulant that cannot be hampered without IL-10-secreting B cells.
Collapse
Affiliation(s)
- Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Saxonian Incubator for Translation Research, Leipzig University, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-2351265
| |
Collapse
|
6
|
Ginhoux F, Martin P. Insights into the role of immune cells in development and regeneration. Development 2022; 149:275254. [DOI: 10.1242/dev.200829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648Singapore
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
7
|
Busse M, Plenagl S, Campe NKJ, Müller AJ, Tedford K, Schumacher A, Zenclussen AC. Maternal B Cell-Intrinsic MyD88 Signaling Mediates LPS-Driven Intrauterine Fetal Death. Cells 2021; 10:2693. [PMID: 34685673 PMCID: PMC8534512 DOI: 10.3390/cells10102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Immunological networks balance tolerance towards paternal alloantigens during pregnancy with normal immune response to pathogens. Subclinical infections can impact this balance and lead to preterm birth or even intrauterine fetal death (IUFD). We recently showed that loss of maternal B cells renders murine fetuses susceptible to IUFD after LPS exposure. Since the signaling pathway involved in this B-cell mediated response remains unclear, we aimed to understand the participation of MyD88 in this response using B-cell-specific MyD88-deficient (BMyD88-/-) mice. B cells isolated from wild-type (WT), BMyD88-/-, CD19-/- and MyD88-/- dams on gestational day (gd) 10 responded differently to LPS concerning cytokine secretion. In vivo LPS challenge on gd 10 provoked IUFD in CD19-/- mothers with functional MyD88, while fetuses from BMyD88-/- and MyD88-/- mice were protected. These outcomes were associated with altered cytokine levels in the maternal serum and changes in CD4+ T-cell responses. Overall, the loss of MyD88 signaling in maternal B cells prevents the activation of cytokine release that leads to IUFD. Thus, while MyD88 signaling in maternal B cells protects the mother from infection, it ultimately kills the fetus. Understanding the cellular mechanisms underlying infection-driven pregnancy complications is the first step to designing powerful therapeutic strategies in the future.
Collapse
Affiliation(s)
- Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany; (M.B.); (S.P.); (N.K.J.C.)
| | - Susanne Plenagl
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany; (M.B.); (S.P.); (N.K.J.C.)
| | - Norina Kim Jutta Campe
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany; (M.B.); (S.P.); (N.K.J.C.)
| | - Andreas J. Müller
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany;
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Kerry Tedford
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany;
| | - Anne Schumacher
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany;
- Saxonian Incubator for Translation Research, Leipzig University, 04103 Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany;
- Saxonian Incubator for Translation Research, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|